Please note that the journal's website will not be available from May 17 to the morning of May 19 due to maintenance of the university's electrical system. Sorry for any inconvenience in advance!
MMN-766

Some aspects of $L_v^q({\mathbb{R}}^d)\cap W^{p,w}_k({\mathbb{R}}^d)$

Abstract

Let $1\leq p,q<\infty$ and $v,w$ be Beurling’s weight functions on ${\mathbb{R}}^d$. In this article we deal with harmonic properties of intersection space $A^{q,p}_{k,v,w}({\mathbb{R}}^d)=L_v^q(\mathbb{R}^d)\cap W_k^{p,w}({\mathbb{R}}^d)$ defi…ned by aid of weighted Lebesgue space $L_v^q(\mathbb{R}^d)$ and weighted Sobolev space $W_k^{p,w}({\mathbb{R}}^d)$. We research the inclusions and inequalities between the spaces $A^{q,p}_{k,v,w}(\Omega)$, where $\Omega\subset\mathbb{R}^d$ be an open set. Finally, we investigate the space of multipliers $M(A^{1,p}_{k,w}(\mathbb{R}^d),L_w^1(\mathbb{R}^d))$.


Vol. 16 (2015), No. 1, pp. 165-180
DOI: https://doi.org/10.18514/MMN.2015.766


Download: MMN-766