Miskolc Mathematical Notes
HU e-ISSN 1787-2413
Vol. 16 (2015), No 1, pp. 165-180

Some aspects of $L_{v}^{q}\left(\mathbb{R}^{d}\right) \cap W_{k}^{p, w}\left(\mathbb{R}^{d}\right)$

Nihan Güngör and Birsen Sağir

SOME ASPECTS OF $L_{v}^{q}\left(\mathbb{R}^{d}\right) \cap W_{k}^{p, w}\left(\mathbb{R}^{d}\right)$

NİHAN GÜNGÖR AND BİRSEN SAĞIR

Received 24 September, 2013

Abstract

Let $1 \leq q, p<\infty$ and v, w be Beurling's weight functions on \mathbb{R}^{d}. In this article we deal with harmonic properties of intersection space $A_{k, v, w}^{q, p}\left(\mathbb{R}^{d}\right)=L_{v}^{q}\left(\mathbb{R}^{d}\right) \cap W_{k}^{p, w}\left(\mathbb{R}^{d}\right)$ defined by aid of weighted Lebesgue space $L_{v}^{q}\left(\mathbb{R}^{d}\right)$ and weighted Sobolev space $W_{k}^{p, w}\left(\mathbb{R}^{d}\right)$. We research the inclusions and inequalities between the spaces $A_{k, v, w}^{q, p}(\Omega)$ where $\Omega \subset \mathbb{R}^{d}$ be an open set. Finally, we proved that the spaces $M\left(A_{k, w}^{1, p}\left(\mathbb{R}^{d}\right), L_{w}^{1}\left(\mathbb{R}^{d}\right)\right)$ can be identified with the weighted spaces of bounded measures $M_{w}\left(\mathbb{R}^{d}\right)$.

2010 Mathematics Subject Classification: 46E35; 46J10; 46H25; 43A22 Keywords: weighted Sobolev space, Banach module, Banach algebra, approximate identity, continuous embedding, multiplier

1. Introduction and preliminaries

Throughout this work, \mathbb{R}^{d} denote d-dimensional real Euclidean space with Lebesgue measure $d x$. We use Beurling's weight function, i.e., a measurable, locally bounded function on \mathbb{R}^{d} satisfying $\omega(x) \geq 1$ and $\omega(x+y) \leq \omega(x) \omega(y)$ for all $x, y \in \mathbb{R}^{d}[2]$. We denote weighted Lebesgue space $L_{\omega}^{p}\left(\mathbb{R}^{d}\right)=\left\{f \mid f \omega \in L^{p}\left(\mathbb{R}^{d}\right)\right\}$ which is a Banach space under the norm

$$
\|f\|_{p, \omega}=\int_{\mathbb{R}^{d}}|f(x)|^{p} \omega^{p}(x) d x .
$$

Some well-known terms such as convolution, translation invariant, continuous embeddings, Banach algebra, Banach module, essential Banach ideal, approximate identity will be used frequently through this paper; their definitions may be found in [6], [13],[15], [22]. It is known that $L_{\omega}^{p}\left(\mathbb{R}^{d}\right)$ is translation invariant and

$$
\begin{equation*}
\left\|L_{s} f\right\|_{p, \omega} \leq \omega(s)\|f\|_{p, \omega} \tag{1.1}
\end{equation*}
$$

for any $f \in L_{\omega}^{p}\left(\mathbb{R}^{d}\right)$. The translation operator $L_{s}\left(L_{s} f(x)=f(x-s)\right)$ is continuous on $L_{\omega}^{p}\left(\mathbb{R}^{d}\right)$. For two weight functions ω_{1} and ω_{2}, we write $\omega_{1} \prec \omega_{2}$ if and only if there exists a constant $c>0$ such that $\omega_{1}(x) \leq c \omega_{2}(x)$ for all $x \in \mathbb{R}^{d}$. We write $\omega_{1} \approx \omega_{2}$ if and only if $\omega_{1} \prec \omega_{2}$ and $\omega_{2} \prec \omega_{1}$. Recall that one has $L_{\omega_{1}}^{p}\left(\mathbb{R}^{d}\right) \subset$ $L_{\omega_{2}}^{p}\left(\mathbb{R}^{d}\right)$ if and only if $\omega_{2} \prec \omega_{1}$. The space $L_{\omega}^{p}\left(\mathbb{R}^{d}\right)$ is a Banach module over $L_{\omega}^{1}\left(\mathbb{R}^{d}\right)$ under the convolution [8].

If $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{d}\right) \in \mathbb{R}^{d}$ is an d-tuple of nonnegative integers α_{i}, then it is written $\alpha \in \mathbb{Z}_{+}^{d}$ and $|\alpha|=\sum_{i=1}^{d} \alpha_{i}$. Similarly if $D_{j}=\frac{\partial}{\partial x_{j}}$ for $1 \leq j \leq d$, then

$$
D^{\alpha}=D_{1}^{\alpha_{1}} D_{2}^{\alpha_{2}} \ldots D_{d}^{\alpha_{d}}=\frac{\partial^{|\alpha|}}{\partial x_{1}^{\alpha_{1}} \partial x_{2}^{\alpha_{2}} \ldots \partial x_{d}^{\alpha_{d}}}
$$

denotes a differential operator of order α. For given two locally integrable functions u and v on \mathbb{R}^{d}, we say that v is $\alpha^{t h}$-weak derivative of u, written $D^{\alpha} u=v$, provided

$$
\int_{\mathbb{R}^{d}} u(x) D^{\alpha} \varphi(x) d x=(-1)^{|\alpha|} \int_{\mathbb{R}^{d}} v(x) \varphi(x) d x
$$

for all $\varphi \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$, where $C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$ is the space of all infinitely differentiable functions on \mathbb{R}^{d}, each with compact support. It is known that a weak derivative, if it exists, is uniquely defined up to a set of measure zero and also it is linear [19].

Let w be Beurling's weight function. For any nonnegative integer k and $1 \leq p<$ ∞, the weighted Sobolev space $W_{k}^{p, w}\left(\mathbb{R}^{d}\right)$ is defined as the space of the functions $u \in L_{w}^{p}\left(\mathbb{R}^{d}\right)$ such that $D^{\alpha} u$ exists and $D^{\alpha} u \in L_{w}^{p}\left(\mathbb{R}^{d}\right)$ for all $\alpha \in \mathbb{Z}_{+}^{d}$ with $|\alpha| \leq k$. $W_{k}^{p, w}\left(\mathbb{R}^{d}\right)$ is a Banach space with the norm

$$
\|u\|_{W_{k}^{p, w}}=\sum_{|\alpha| \leq k}\left\|D^{\alpha} u\right\|_{p, w} \text { [12],[21]. }
$$

Weighted Sobolev spaces are defined by aid of weighted Lebesgue space $L_{w}^{p}\left(\mathbb{R}^{d}\right)$ by Kufner in 1980s. Clearly, $W_{k}^{p, w}\left(\mathbb{R}^{d}\right)$ is a subspace of $L_{w}^{p}\left(\mathbb{R}^{d}\right)$ and also $W_{0}^{p, w}\left(\mathbb{R}^{d}\right)=L_{w}^{p}\left(\mathbb{R}^{d}\right)$. For any k , it is obvious the embedding $W_{k}^{p, w}\left(\mathbb{R}^{d}\right) \hookrightarrow$ $L_{w}^{p}\left(\mathbb{R}^{d}\right)$. If $\omega=1, W_{k}^{p, w}\left(\mathbb{R}^{d}\right)=W_{k}^{p}\left(\mathbb{R}^{d}\right)$. If we take norm $\|\cdot\|_{p, w}$ instead of $\|\cdot\|_{p}$, we get the following properties by using the method in [10] and [12]. If $w_{2} \prec$
w_{1} and $k>l$, then $W_{k}^{p, w_{1}}(\Omega) \hookrightarrow W_{l}^{p, w_{2}}(\Omega)$ for an arbitrary open set $\Omega \subset \mathbb{R}^{d}$. $W_{k}^{p, w}\left(\mathbb{R}^{d}\right)$ is translation invariant and

$$
\begin{equation*}
\left\|L_{s} f\right\|_{W_{k}^{p, w}} \leq \omega(s)\|f\|_{W_{k}^{p, w}} \tag{1.2}
\end{equation*}
$$

for any $f \in W_{k}^{p, w}\left(\mathbb{R}^{d}\right)$. The translation operator is continuous on $W_{k}^{p, w}\left(\mathbb{R}^{d}\right)$. Also $W_{k}^{p, w}\left(\mathbb{R}^{d}\right)$ is a Banach module over $L_{\omega}^{1}\left(\mathbb{R}^{d}\right)$ under the convolution.

Sobolev spaces $W_{k}^{p}\left(\mathbb{R}^{d}\right)$ of integer order were introduced by S.L. Sobolev in [17], [18]. These spaces are defined over an arbitrary domain $\Omega \subset \mathbb{R}^{d}$ by using subspaces of Lebesgue spaces. Many generalizations and specializations of these spaces have been constructed and studied in years. In particular, there are extensions that allow arbitrary real values of k, weighted spaces that introduce weight functions into the L^{p}-norms and other generalizations involve different orders of differentitaion and different L^{p}-norms in different coordinate directions. Finally, there has been much work on Sobolev spaces and its related areas. To an interested reader, we can suggest our main reference book [1] and the references therein.

Let E and F be two translation invariant Banach spaces. A multiplier on E to F is a bounded linear operator commuting with all translations. We denote by $M(E, F)$ the space of all multipliers on E to F [14].

2. SOME RESULTS IN $L_{v}^{q}\left(\mathbb{R}^{d}\right) \cap W_{k}^{p, w}\left(\mathbb{R}^{d}\right)$

If one looks for Sobolev algebras in literature, one sees that there are a lot of published papers about Sobolev algebras obtained by using different function spaces that are defined over different groups or sets. These spaces have been investigated under several respects, and mostly applied to the study of strongly nonlinear variational problems and partial differential equations.

In the sense of our study, we attach importance to [3], [5], [20]. In [5], it is showed that the space $L_{\alpha}^{p}(G) \cap L^{\infty}(G)$ is an algebra with respect to pointwise multiplication, where G is a connected unimodular Lie group. Also, sufficient conditions for the Sobolev spaces to form an algebra under pointwise multiplication have been given in [20].

In [3], Chu defined $A_{k}^{p}\left(\mathbb{R}^{d}\right)=L^{1}\left(\mathbb{R}^{d}\right) \cap W^{k, p}\left(\mathbb{R}^{d}\right)$ spaces and showed some algebraic properties of these spaces (Segal algebras). In this section, we will generalize his results to weighted Sobolev algebras.

Let $1 \leq q, p<\infty, k$ be a nonnegative integer and v, w be Beurling's weight functions on \mathbb{R}^{d}. We deal with the some harmonic properties of the intersection space $L_{v}^{q}\left(\mathbb{R}^{d}\right) \cap W_{k}^{p, w}\left(\mathbb{R}^{d}\right)$. This space, denoted by $A_{k, v, w}^{q, p}\left(\mathbb{R}^{d}\right)$, is a normed space
with the norm

$$
\|\cdot\|_{k, v, w}^{q, p}=\|\cdot\|_{q, v}+\|\cdot\|_{W_{k}^{p, w}} .
$$

Theorem 1. $\left(A_{k, v, w}^{q, p}\left(\mathbb{R}^{d}\right),\|\cdot\|_{k, v, w}^{q, p}\right)$ is a Banach space.
Proof. Assume that $\left(f_{n}\right)$ be a Cauchy sequence in $A_{k, v, w}^{q, p}\left(\mathbb{R}^{d}\right)$. Clearly $\left(f_{n}\right)$ is a Cauchy sequence in both $L_{v}^{q}\left(\mathbb{R}^{d}\right)$ and $W_{k}^{p, w}\left(\mathbb{R}^{d}\right)$. For this reason, $\left(f_{n}\right)$ converges to $f \in L_{v}^{q}\left(\mathbb{R}^{d}\right)$ and $g \in W_{k}^{p, w}\left(\mathbb{R}^{d}\right)$. By using the inequalities $\|\cdot\|_{q} \leq\|\cdot\|_{q, v}$ and $\|\cdot\|_{p} \leq\|\cdot\|_{p, w} \leq\|\cdot\|_{W_{k}^{p, w}}$, we can easily demonstrate that there exist a subsequence $\left(f_{n_{k}}\right)$ of $\left(f_{n}\right)$ such that $f_{n_{k}} \rightarrow f$ a.e. and a subsequence $\left(f_{n_{k_{l}}}\right)$ of $\left(f_{n_{k}}\right)$ such that $f_{n_{k_{l}}} \rightarrow g$ a.e. Therefore, we get $f=g$ a.e.

Theorem 2. (i) $\left(A_{k, v, w}^{q, p}\left(\mathbb{R}^{d}\right),\|\cdot\|_{k, v, w}^{q, p}\right)$ is translation invariant and

$$
\left\|L_{s} f\right\|_{k, v, w}^{q, p} \leq(v+w)(s)\|f\|_{k, v, w}^{q, p}
$$

for all $f \in A_{k, v, w}^{q, p}\left(\mathbb{R}^{d}\right)$.
(ii) The function $s \rightarrow L_{s} f$ is continuous from \mathbb{R}^{d} to $A_{k, v, w}^{q, p}\left(\mathbb{R}^{d}\right)$ for any $f \in$ $A_{k, v, w}^{q, p}\left(\mathbb{R}^{d}\right)$.

Proof. (i) We know that the spaces $L_{v}^{q}\left(\mathbb{R}^{d}\right)$ and $W_{k}^{p, w}\left(\mathbb{R}^{d}\right)$ are translation invariant. Hence $A_{k, v, w}^{q, p}\left(\mathbb{R}^{d}\right)$ is translation invariant. We get

$$
\begin{aligned}
\left\|L_{s} f\right\|_{k, v, w}^{q, p} & =\left\|L_{s} f\right\|_{q, v}+\left\|L_{s} f\right\|_{W_{k}^{p, w}} \\
& \leq v(s)\|f\|_{q, v}+w(s)\|f\|_{W_{k}^{p, w}} \\
& \leq(v+w)(s)\|f\|_{k, v, w}^{q, p}
\end{aligned}
$$

by (1.1) and (1.2).
(ii) Since $s \rightarrow L_{s} f$ is continuous in $L_{v}^{q}\left(\mathbb{R}^{d}\right)$, for any $\varepsilon>0$ and $s_{0} \in \mathbb{R}^{d}$ there is a neighbourhood V_{1} of s_{0} such that

$$
\begin{equation*}
\left\|L_{s} f-L_{s_{0}} f\right\|_{q, v}<\frac{\varepsilon}{2} \tag{2.1}
\end{equation*}
$$

for all $s \in V_{1}$. There is a neighbourhood V_{2} of s_{0} such that

$$
\begin{equation*}
\left\|L_{s} f-L_{s_{0}} f\right\|_{W_{k}^{p, w}}<\frac{\varepsilon}{2} \tag{2.2}
\end{equation*}
$$

for all $s \in V_{2}$, because the function $s \rightarrow L_{s} f$ is continuous in $W_{k}^{p, w}\left(\mathbb{R}^{d}\right)$. Consequently $V=V_{1} \cap V_{2}$ is a neighbourhood of s_{0} and we get

$$
\left\|L_{s} f-L_{s_{0}} f\right\|_{k, v, w}^{q, p}<\varepsilon
$$

for $s \in V$ by (2.1) and (2.2).
Theorem 3. $A_{k, v, w}^{q, p}\left(\mathbb{R}^{d}\right)$ is a BF-space.
Proof. Let $f \in A_{k, v, w}^{q, p}\left(\mathbb{R}^{d}\right)$ and any compact subset $K \subset \mathbb{R}^{d}$. Using Hölder inequality with $\frac{1}{p}+\frac{1}{p^{\prime}}=1$, we obtain

$$
\begin{aligned}
\int_{K}|f(x)| d x & =\int_{\mathbb{R}^{d}}|f(x)| \chi_{K}(x) d x \\
& \leq\left(\int_{\mathbb{R}^{d}}|f(x)|^{p} d x\right)^{\frac{1}{p}}\left(\int_{\mathbb{R}^{d}}\left(\chi_{K}(x)\right)^{p^{\prime}} d x\right)^{\frac{1}{p^{\prime}}} \\
& \leq\|f\|_{p, w} \mu(K)^{\frac{1}{p^{\prime}}} \leq\|f\|_{W_{k}^{p, w}} \mu(K)^{\frac{1}{p^{\prime}}}
\end{aligned}
$$

for any $f \in W_{k}^{p, w}\left(\mathbb{R}^{d}\right)$. If we write $M_{K}=\mu(K)^{\frac{1}{p^{\prime}}}$, there exists $M_{K}>0$ such that

$$
\begin{equation*}
\int_{K}|f(x)| d x \leq M_{K}\|f\|_{W_{k}^{p, w}} \tag{2.3}
\end{equation*}
$$

Also since $L_{v}^{q}\left(\mathbb{R}^{d}\right)$ is a BF-space, there exists $N_{K}>0$ such that

$$
\begin{equation*}
\int_{K}|f(x)| d x \leq N_{K}\|f\|_{q, v} \tag{2.4}
\end{equation*}
$$

If we write $C_{K}=\max \left\{M_{K}, N_{K}\right\}$, we get

$$
\int_{K}|f(x)| d x \leq C_{K}\|f\|_{k, v, w}^{q, p}
$$

by (2.3) and (2.4).
Theorem 4. If $v \prec w^{\prime}$ and $w \prec w^{\prime}$, then $A_{k, v, w}^{q, p}\left(\mathbb{R}^{d}\right)$ is Banach module over $L_{w^{\prime}}^{1}\left(\mathbb{R}^{d}\right)$ under the convolution.

Proof. Assume that $v \prec w^{\prime}$ and $w \prec w^{\prime}$. Then we know that $L_{w^{\prime}}^{1}\left(\mathbb{R}^{d}\right) \subset L_{v}^{1}\left(\mathbb{R}^{d}\right)$ and $L_{w^{\prime}}^{1}\left(\mathbb{R}^{d}\right) \subset L_{w}^{1}\left(\mathbb{R}^{d}\right)$. Consequently there exist $c_{1}, c_{2}>0$ such that $\|g\|_{1, v} \leq$ $c_{1}\|g\|_{1, w^{\prime}}$ and $\|g\|_{1, w} \leq c_{2}\|g\|_{1, w^{\prime}}$ for any $g \in L_{w^{\prime}}^{1}\left(\mathbb{R}^{d}\right)$. Since $L_{v}^{q}\left(\mathbb{R}^{d}\right)$ is a Banach module over $L_{v}^{1}\left(\mathbb{R}^{d}\right)$ and $W_{k}^{p, w}\left(\mathbb{R}^{d}\right)$ is a Banach module over $L_{w}^{1}\left(\mathbb{R}^{d}\right)$ under the convolution, we get

$$
\begin{aligned}
\|f * g\|_{k, v, w}^{q, p} & =\|f * g\|_{q, v}+\|f * g\|_{W_{k}^{p, w}} \\
& \leq\|f\|_{q, v}\|g\|_{1, v}+\|f\|_{W_{k}^{p, w}}\|g\|_{1, w} \\
& \leq\|f\|_{q, v} c_{1}\|g\|_{1, w^{\prime}}+\|f\|_{W_{k}^{p, w} c_{2}}\|g\|_{1, w^{\prime}} \\
& \leq \max \left\{c_{1}, c_{2}\right\}\|f\|_{k, v, w}^{q, p}\|g\|_{1, w^{\prime}}
\end{aligned}
$$

for any $f \in A_{k, v, w}^{q, p}\left(\mathbb{R}^{d}\right)$ and $g \in L_{w^{\prime}}^{1}\left(\mathbb{R}^{d}\right)$.
Theorem 5. If $1 \leq p<\infty$ and $w \prec v$, then $A_{k, v, w}^{1, p}\left(\mathbb{R}^{d}\right)$ is Banach algebra under the convolution.

Proof. Suppose that $w \prec v$. So, there is a constant $c>0$ such that $\|f\|_{1, w} \leq$ $c\|f\|_{1, v}$ for any $f \in L_{v}^{1}\left(\mathbb{R}^{d}\right)$. Now we take any $f, g \in A_{k, v, w}^{1, p}\left(\mathbb{R}^{d}\right)$. Since $L_{v}^{1}\left(\mathbb{R}^{d}\right)$ is a Beurling algebra and $W_{k}^{p, w}\left(\mathbb{R}^{d}\right)$ is $L_{w}^{1}\left(\mathbb{R}^{d}\right)$-module, we find

$$
\begin{aligned}
\|f * g\|_{k, v, w}^{1, p} & =\|f * g\|_{1, v}+\|f * g\|_{W_{k}^{p, w}} \leq\|f\|_{1, v}\|g\|_{1, v}+\|f\|_{W_{k}^{p, w}}\|g\|_{1, w} \\
& \leq\|f\|_{1, v}\|g\|_{1, v}+\|f\|_{W_{k}^{p, w} c}\|g\|_{1, v} \leq \max \{1, c\}\|f\|_{k, v, w}^{1, p}\|g\|_{1, v} \\
& \leq \max \{1, c\}\|f\|_{k, v, w}^{1, p}\|g\|_{k, v, w}^{1, p}
\end{aligned}
$$

If we define a new function on $A_{k, v, w}^{1, p}\left(\mathbb{R}^{d}\right)$ such that $|\|\cdot\||=\max \{1, c\}\|\cdot\|_{k, v, w}^{1, p}$, then we can see easily that it is a norm. Moreover, the norms $|\|\cdot\||$ and $\|\cdot\|_{k, v, w}^{1, p}$ on $A_{k, v, w}^{1, p}\left(\mathbb{R}^{d}\right)$ are equivalent. Hence we obtain

$$
\begin{aligned}
|\|f * g\|| & =\max \{1, c\}\|f * g\|_{k, v, w}^{1, p} \\
& \leq \max \{1, c\} \max \{1, c\}\|f\|_{k, v, w}^{1, p}\|g\|_{k, v, w}^{1, p} \\
& \leq|\|f\||\|g\| \mid
\end{aligned}
$$

Definition 1. A sequence of functions φ_{n} in $C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$ satisfies the following conditions:
(i) $\varphi_{n}(x) \geq 0$ for all $x \in \mathbb{R}^{d}$
(ii) $\int_{\mathbb{R}^{d}} \varphi_{n}(x) d x=1$
(iii) The support of φ_{n} is in $\left[-\varepsilon_{n}, \varepsilon_{n}\right]^{d}, \varepsilon_{n}>0$ and $\lim _{n \rightarrow \infty} \varepsilon_{n}=0$ [9].

Theorem 6. The sequence offunctions φ_{n} is an approximate identity for $A_{k, v, w}^{q, p}\left(\mathbb{R}^{d}\right)$.
Proof. Since φ_{n} is an approximate identity, for any $f \in L_{v}^{q}\left(\mathbb{R}^{d}\right)$ and $\varepsilon>0$ there exists $n_{1} \in \mathbb{N}$ such that

$$
\begin{equation*}
\left\|f * \varphi_{n}-f\right\|_{q, v}<\frac{\varepsilon}{2} \tag{2.5}
\end{equation*}
$$

for all $n \geq n_{1}$. Also we can see that there exists a $n_{2} \in \mathbb{N}$ such that

$$
\begin{equation*}
\left\|f * \varphi_{n}-f\right\|_{W_{k, w}^{p}}<\frac{\varepsilon}{2} \tag{2.6}
\end{equation*}
$$

for all $n \geq n_{2}$ by using the method in [4],[22]. If we set $n_{0}=\max \left\{n_{1}, n_{2}\right\}$, then by (2.5) and (2.6) we obtain

$$
\left\|f * \varphi_{n}-f\right\|_{k, v, w}^{q, p}<\varepsilon
$$

for all $n \geq n_{0}$.
Theorem 7. For each $f \neq 0, f \in A_{k, v, w}^{q, p}\left(\mathbb{R}^{d}\right)$ there exists $c(f)>0$ such that

$$
c(f)(v+w)(s) \leq\left\|L_{s} f\right\|_{k, v, w}^{q, p} \leq(v+w)(s)\|f\|_{k, v, w}^{q, p}
$$

Proof. For given $f \in A_{k, v, w}^{q, p}\left(\mathbb{R}^{d}\right)$, we write $f \in L_{v}^{q}\left(\mathbb{R}^{d}\right)$ and $f \in W_{k}^{p, w}\left(\mathbb{R}^{d}\right)$. Let K be any compact subset of \mathbb{R}^{d}. Since $\left\|L_{s} f\right\|_{W_{k}^{p, w}} \geq\left\|D^{\alpha} L_{s} f\right\|_{p, w}$ for all $f \in W_{k}^{p, w}\left(\mathbb{R}^{d}\right)$, we find

$$
\begin{aligned}
\left\|L_{s} f\right\|_{W_{k}^{p, w}} & \geq\left\|D^{\alpha} L_{s} f\right\|_{p, w}=\left\{\int_{\mathbb{R}^{d}}\left|D^{\alpha} f(x-s)\right|^{p} w^{p}(x) d x\right\}^{\frac{1}{p}} \\
& =\left\{\int_{\mathbb{R}^{d}}\left|D^{\alpha} f(u)\right|^{p} w^{p}(u+s) d u\right\}^{\frac{1}{p}} \geq\left\{\int_{K}\left|D^{\alpha} f(u)\right|^{p} \frac{w^{p}(s)}{w^{p}(-u)} d u\right\}^{\frac{1}{p}} \\
& \geq\left\{\int_{K}\left|D^{\alpha} f(u)\right|^{p} \frac{w^{p}(s)}{\sup _{u \in K} w^{p}(-u)} d u\right\}^{\frac{1}{p}} \geq \frac{w(s)}{\sup _{u \in K} w(-u)}\left\|D^{\alpha} f \chi_{K}\right\|_{p} .
\end{aligned}
$$

If we set $c_{1}(f)=\frac{\left\|D^{\alpha} f \chi_{K}\right\|_{p}}{\sup w(-u)} u \in K$

$$
\begin{equation*}
\left\|L_{s} f\right\|_{W_{k}^{p, w}} \geq c_{1}(f) w(s) . \tag{2.7}
\end{equation*}
$$

Also we know that there exists a constant $c_{2}(f)>0$ such that

$$
\begin{equation*}
\left\|L_{s} f\right\|_{q, v} \geq c_{2}(f) v(s) \tag{2.8}
\end{equation*}
$$

for all $f \in L_{v}^{q}\left(\mathbb{R}^{d}\right)$. If we set $c(f)=\min \left\{c_{1}(f), c_{2}(f)\right\}$, then we get

$$
\begin{equation*}
\left\|L_{s} f\right\|_{k, v, w}^{q, p} \geq c(f)(v+w)(s) \tag{2.9}
\end{equation*}
$$

by inequalities (2.7) and (2.8). Also we know that

$$
\begin{equation*}
\left\|L_{s} f\right\|_{k, v, w}^{q, p} \leq(v+w)(s)\|f\|_{k, v, w}^{q, p} \tag{2.10}
\end{equation*}
$$

by Theorem 2. Hence the proof is completed from (2.9) and (2.10).
Proposition 1. Let $1 \leq q_{1}, q_{2}, p_{1}, p_{2}<\infty$ and $v_{1}, v_{2}, w_{1}, w_{2}$ be weight functions on \mathbb{R}^{d}. Then

$$
A_{k, v_{1}, w_{1}}^{q_{1}, p_{1}}\left(\mathbb{R}^{d}\right) \subset A_{k, v_{2}, w_{2}}^{q_{2}, p_{2}}\left(\mathbb{R}^{d}\right)
$$

if and only if there is a constant $M>0$ such that

$$
\|f\|_{k, v_{2}, w_{2}}^{q_{2}, p_{2}} \leq M\|f\|_{k, v_{1}, w_{1}}^{q_{1}, p_{1}}
$$

for every $f \in A_{k, v_{1}, w_{1}}^{q_{1}, p_{1}}\left(\mathbb{R}^{d}\right)$.
Proof. Assume that $A_{k, v_{1}, w_{1}}^{q_{1}, p_{1}}\left(\mathbb{R}^{d}\right) \subset A_{k, v_{2}, w_{2}}^{q_{2}, p_{2}}\left(\mathbb{R}^{d}\right)$. We define the norm

$$
\|f\|=\|f\|_{k, v_{1}, w_{1}}^{q_{1}, p_{1}}+\|f\|_{k, v_{2}, w_{2}}^{q_{2}, p_{2}}
$$

for all $f \in A_{k, v_{1}, w_{1}}^{q_{1}, p_{1}}\left(\mathbb{R}^{d}\right)$. Let $\left(f_{n}\right)$ be a Cauchy sequence in $\left(A_{k, v_{1}, w_{1}}^{q_{1}, p_{1}}\left(\mathbb{R}^{d}\right),\|\cdot\|\right)$. Hence $\left(f_{n}\right)$ is a Cauchy sequence in

$$
\left(A_{k, v_{1}, w_{1}}^{q_{1}, p_{1}}\left(\mathbb{R}^{d}\right),\|\cdot\|_{k, v_{1}, w_{1}}^{q_{1}, p_{1}}\right) \text { and }\left(A_{k, v_{2}, w_{2}}^{q_{2}, p_{2}}\left(\mathbb{R}^{d}\right),\|\cdot\|_{k, v_{2}, w_{2}}^{q_{2}, p_{2}}\right) \text {. }
$$

Since $\left(A_{k, v_{1}, w_{1}}^{q_{1}, p_{1}}\left(\mathbb{R}^{d}\right),\|\cdot\|_{k, v_{1}, w_{1}}^{q_{1}, p_{1}}\right)$ and $\left(A_{k, v_{2}, w_{2}}^{q_{2}, p_{2}}\left(\mathbb{R}^{d}\right),\|\cdot\|_{k, v_{2}, w_{2}}^{q_{2}, p_{2}}\right)$ are Banach spaces, there exist $f \in A_{k, v_{1}, w_{1}}^{q_{1}, p_{1}}\left(\mathbb{R}^{d}\right)$ and $g \in A_{k, v_{2}, w_{2}}^{q_{2}, p_{2}}\left(\mathbb{R}^{d}\right)$ such that

$$
\left\|f_{n}-f\right\|_{k, v_{1}, w_{1}}^{q_{1}, p_{1}} \rightarrow 0 \text { and }\left\|f_{n}-g\right\|_{k, v_{2}, w_{2}}^{q_{2}, p_{2}} \rightarrow 0 .
$$

If we use the inequalities $\|\cdot\|_{p_{1}} \leq\|\cdot\|_{k, v_{1}, w_{1}}^{q_{1}, p_{1}}$ and $\|\cdot\|_{p_{2}} \leq\|\cdot\|_{k, v_{2}, w_{2}}^{q_{2}, p_{2}}$, then we find $\left\|f_{n}-f\right\|_{p_{1}} \rightarrow 0$ and $\left\|f_{n}-g\right\|_{p_{2}} \rightarrow 0$. Thus there is a subsequence $\left(f_{n_{k}}\right)$ of $\left(f_{n}\right)$ such that $f_{n_{k}} \rightarrow f$ a.e. and also there is a subsequence $\left(f_{n_{k_{l}}}\right)$ of $\left(f_{n_{k}}\right)$ such that $f_{n_{k_{l}}} \rightarrow g$ a.e. Therefore we find $f=g$ a.e., consequently we get $\left\|f_{n}-f\right\| \rightarrow 0$.

Hence $\left(A_{k, v_{1}, w_{1}}^{q_{1}, p_{1}}\left(\mathbb{R}^{d}\right),\|\cdot\|\right)$ is a Banach space. We consider the unit function I from $\left(A_{k, v_{1}, w_{1}}^{q_{1}, p_{1}}\left(\mathbb{R}^{d}\right),\|\cdot\|\right)$ onto $\left(A_{k, v_{1}, w_{1}}^{q_{1}, p_{1}}\left(\mathbb{R}^{d}\right),\|\cdot\|_{k, v_{1}, w_{1}}^{q_{1}, p_{1}}\right)$. Since $\|I(f)\|_{k, v_{1}, w_{1}}^{q_{1}, p_{1}}=$ $\|f\|_{k, v_{1}, w_{1}}^{q_{1}, p_{1}} \leq\|f\|$, the unit function is continuous. Then it is homeomorphism by Banach Theorem. This means that $\|$.$\| and \|.\|_{k, v_{1}, w_{1}}^{q_{1}, p_{1}}$ are equivalent, so there is a constant $M>0$ such that

$$
\begin{equation*}
\|f\| \leq M\|f\|_{k, v_{1}, w_{1}}^{q_{1}, p_{1}} \tag{2.11}
\end{equation*}
$$

for all $f \in A_{k, v_{1}, w_{1}}^{q_{1}, p_{1}}\left(\mathbb{R}^{d}\right)$. If we use the definiton of $\|\cdot\|$ and the inequality (2.11), then we obtain $\|f\|_{k, v_{2}, w_{2}}^{q_{2}, p_{2}} \leq M\|f\|_{k, v_{1}, w_{1}}^{q_{1}, p_{1}}$.

Conversely, if $\|f\|_{k, v_{2}, w_{2}}^{q_{2}, p_{2}} \leq M\|f\|_{k, v_{1}, w_{1}}^{q_{1}, p_{1}}$ for all $f \in A_{k, v_{1}, w_{1}}^{q_{1}, p_{1}}\left(\mathbb{R}^{d}\right)$, we can easily that the inclusion $A_{k, v_{1}, w_{1}}^{q_{1}, p_{1}}\left(\mathbb{R}^{d}\right) \subset A_{k, v_{2}, w_{2}}^{q_{2}, p_{2}}\left(\mathbb{R}^{d}\right)$ holds.

It is easy to obtain the following proposition by aid of Proposition 1.
Proposition 2. Let $v_{1}, v_{2}, w_{1}, w_{2}$ be weight functions on \mathbb{R}^{d} and $1 \leq q, p<\infty$. If $v_{2} \prec v_{1}$ and $w_{2} \prec w_{1}$, then $A_{k, v_{1}, w_{1}}^{q, p}\left(\mathbb{R}^{d}\right) \subset A_{k, v_{2}, w_{2}}^{q, p}\left(\mathbb{R}^{d}\right)$.

Theorem 8. Let $\Omega \subset \mathbb{R}^{d}$ be an open set and $v_{1}, v_{2}, w_{1}, w_{2}$ be weight functions on \mathbb{R}^{d} satisfying $v_{2} \prec v_{1}$ and $w_{2} \prec w_{1}$. Then

$$
A_{k, v_{1}, w_{1}}^{q, p}(\Omega) \hookrightarrow A_{l, v_{2}, w_{2}}^{q, p}(\Omega)
$$

for all $k, l \in \mathbb{Z}^{+}$where $k>l$.
Proof. Let $f \in A_{k, v_{1}, w_{1}}^{q, p}(\Omega)$ be given, so we write
$f \in L_{v_{1}}^{q}(\Omega)$ and $f \in W_{k}^{p, w_{1}}(\Omega)$. It is known that $L_{v_{1}}^{q}(\Omega) \subset L_{v_{2}}^{q}(\Omega)$ where $v_{2} \prec v_{1}$. Also we know that $W_{k}^{p, w_{1}}(\Omega) \subset W_{l}^{p, w_{2}}(\Omega)$ where $w_{2} \prec w_{1}$ and $k>l$. Therefore we obtain $f \in L_{v_{2}}^{q}(\Omega) \cap W_{l}^{p, w_{2}}(\Omega)=A_{l, v_{2}, w_{2}}^{q, p}(\Omega)$. So we find $A_{k, v_{1}, w_{1}}^{q, p}(\Omega) \subset A_{l, v_{2}, w_{2}}^{q, p}(\Omega)$.

There exists a constant $c_{1}>0$ such that

$$
\begin{equation*}
\|f\|_{q, v_{2}} \leq c_{1}\|f\|_{q, v_{1}} \tag{2.12}
\end{equation*}
$$

for all $f \in L_{v_{1}}^{q}(\Omega)$, because $v_{2} \prec v_{1}$. Moreover, since $W_{k}^{p, w_{1}}(\Omega) \hookrightarrow W_{l}^{p, w_{2}}(\Omega)$ where $k>l$ and $w_{2} \prec w_{1}$, there exists a constant $c_{2}>0$ such that

$$
\begin{equation*}
\|f\|_{W_{l}^{p, w_{2}}} \leq c_{2}\|f\|_{W_{k}^{p, w_{1}}} \tag{2.13}
\end{equation*}
$$

for all $f \in W_{k}^{p, w_{1}}(\Omega)$. If we set $c=\max \left\{c_{1}, c_{2}\right\}$, we get

$$
\begin{aligned}
\|f\|_{l, v_{2}, w_{2}}^{q, p} & \leq c\left(\|f\|_{q, v_{1}}+\|f\|_{W_{k}^{p, w_{1}}}\right) \\
& \leq c\|f\|_{k, v_{1}, w_{1}}^{q, p}
\end{aligned}
$$

from the inequalities (2.12) and (2.13) This completes the proof.

We prove the following theorem with using method in [23].
Theorem 9. Let $v_{1}, v_{2}, w_{1}, w_{2}$ be weight functions on \mathbb{R}^{d} satisfying $v_{2} \prec v_{1}, w_{2} \prec$ w_{1} and $k, l \in \mathbb{Z}^{+}$with $k>l$. If $\Omega \subset \mathbb{R}^{d}$ be an open set such that $\mu(\Omega)<\infty$, then

$$
A_{k, v_{1}, w_{1}}^{s, r}(\Omega) \subset A_{l, v_{2}, w_{2}}^{q, p}(\Omega
$$

where $1 \leq q<s<\infty$ and $1 \leq p<r<\infty$.
Proof. Assume that $f \in A_{k, v_{1}, w_{1}}^{s, r}(\Omega)$, so we write $f \in L_{v_{1}}^{S}(\Omega)$ and $f \in W_{k}^{r, w_{1}}(\Omega)$. If we set $\alpha=\frac{s}{q}$ where $1 \leq q<s<\infty$ and let β be conjugate exponent of α, then we find

$$
\begin{align*}
\|f\|_{q, v_{1}}^{q} & =\int_{\Omega}|f(x)|^{q} v_{1}^{q}(x) d x \leq\left\{\int_{\Omega}\left[|f(x)|^{q} v_{1}^{q}(x)\right]^{\frac{s}{q}} d x\right\}^{\frac{q}{s}}\left\{\int_{\Omega}\left(\chi_{\Omega}\right)^{\beta} d x\right\}^{\frac{1}{\beta}} \\
& \leq\left(\int_{\Omega}|f(x)|^{s} v_{1}^{s}(x) d x\right)^{\frac{q}{s}}[\mu(\Omega)]^{\frac{1}{\beta}}=\|f\|_{s, v_{1}}^{q}[\mu(\Omega)]^{\frac{1}{\beta}} \tag{2.14}
\end{align*}
$$

by Hölder inequality. Since $\mu(\Omega)<\infty$ and $f \in L_{v_{1}}^{s}(\Omega)$, we obtain $f \in L_{v_{1}}^{q}(\Omega)$ from (2.14). Hence we have $f \in L_{v_{2}}^{q}(\Omega)$, because $v_{2} \prec v_{1}$. Also we can see that $W_{k}^{r, w_{1}}(\Omega) \subset W_{k}^{p, w_{1}}(\Omega)$ where $1 \leq p<r<\infty$ and $\mu(\Omega)<\infty$ by similar method. Since $w_{2} \prec w_{1}$ and $k>l$, we find $W_{k}^{p, w_{1}}(\Omega) \subset W_{l}^{p, w_{2}}(\Omega)$. So we get $W_{k}^{r, w_{1}}(\Omega) \subset W_{l}^{p, w_{2}}(\Omega)$, therefore we write $f \in W_{l}^{p, w_{2}}(\Omega)$. Thus we obtain $f \in L_{v_{2}}^{q}(\Omega) \cap W_{l}^{p, w_{2}}(\Omega)=A_{l, v_{2}, w_{2}}^{q, p}(\Omega)$. This completes the proof.

Theorem 10. Let $v_{1}, v_{2}, w_{1}, w_{2}$ be weight functions on \mathbb{R}^{d} satisfying $v_{2} \prec v_{1}$, $w_{2} \prec w_{1}$ and $k, l \in \mathbb{Z}^{+}$with $k>l$. If $\Omega \subset \mathbb{R}^{d}$ be an open set such that $\mu(\Omega)<\infty$, then there exist $c(f)>0$ and $c>0$ such that

$$
c(f)\left(v_{2}+w_{2}\right)(s) \leq\left\|L_{s} f\right\|_{l, v_{2}, w_{2}}^{q, p} \leq c\left(v_{2}+w_{2}\right)(s)\|f\|_{k, v_{1}, w_{1}}^{s, r}
$$

for all $f \in A_{k, v_{1}, w_{1}}^{s, r}(\Omega), f \neq 0$ where $1 \leq q<s<\infty$ and $1 \leq p<r<\infty$.
Proof. For given $f \in A_{k, v_{1}, w_{1}}^{s, r}(\Omega)$, there exists a constant $c>0$ such that

$$
\begin{equation*}
c(f)\left(v_{2}+w_{2}\right)(s) \leq\left\|L_{s} f\right\|_{l, v_{2}, w_{2}}^{q, p} \tag{2.15}
\end{equation*}
$$

by Theorem 7 and Theorem 9. Since $v_{2} \prec v_{1}$, there is a constant $c_{1}>0$ such that

$$
\begin{equation*}
\|f\|_{q, v_{2}} \leq c_{1}\|f\|_{q, v_{1}} \tag{2.16}
\end{equation*}
$$

Also since $W_{k}^{p, w_{1}}(\Omega) \hookrightarrow W_{l}^{p, w_{2}}(\Omega)$ where $w_{2} \prec w_{1}$ and $k>l$, there is a constant $c_{2}>0$ such that

$$
\begin{equation*}
\|f\|_{W_{l}^{p, w_{2}}} \leq c_{2}\|f\|_{W_{k}^{p, w_{1}}} . \tag{2.17}
\end{equation*}
$$

If we set $m_{1}=\max \left\{c_{1}, c_{2}\right\}$, we obtain

$$
\begin{aligned}
\left\|L_{s} f\right\|_{l, v_{2}, w_{2}}^{q, p} & =\left\|L_{s} f\right\|_{q, v_{2}}+\left\|L_{s} f\right\|_{W_{l}^{p, w_{2}}} \\
& \leq v_{2}(s)\|f\|_{q, v_{2}}+w_{2}(s)\|f\|_{W_{l}^{p, w_{2}}} \\
& \leq v_{2}(s) c_{1}\|f\|_{q, v_{1}}+w_{2}(s) c_{2}\|f\|_{W_{k}^{p, w_{1}}} \\
& \leq m_{1}\left(v_{2}+w_{2}\right)(s)\|f\|_{k, v_{1}, w_{1}}^{q, p}
\end{aligned}
$$

by using (2.16) and (2.17). Also we can see that $A_{k, v_{1}, w_{1}}^{S, r}(\Omega) \subset A_{k, v_{1}, w_{1}}^{q, p}(\Omega)$ by Theorem 9 and so there exists a constant $m_{2}>0$ such that

$$
\|f\|_{k, v_{1}, w_{1}}^{q, p} \leq m_{2}\|f\|_{k, v_{1}, w_{1}}^{s, r}
$$

by Proposition 1. Thus there exists a constant $c>0$ such that

$$
\begin{equation*}
\left\|L_{s} f\right\|_{l, v_{2}, w_{2}}^{q, p} \leq c\left(v_{2}+w_{2}\right)(s)\|f\|_{k, v_{1}, w_{1}}^{s, r} \tag{2.18}
\end{equation*}
$$

for all $f \in A_{k, v_{1}, w_{1}}^{s, r}(\Omega)$. If we combine (2.15) with (2.18), the proof is completed.

We prove the following theorem with using method in [1].
Theorem 11. Let $\Omega \subset \mathbb{R}^{d}$ be open set, $v_{1}, v_{2}, w_{1}, w_{2}$ be weight functions on \mathbb{R}^{d} satisfying $v_{2} \prec v_{1}, w_{2} \prec w_{1}$ and $k, l \in \mathbb{Z}^{+}$with $k>l$. If $\frac{1}{s}=\frac{\lambda}{q_{1}}+\frac{1-\lambda}{q_{2}}, \frac{1}{r}=$ $\frac{\lambda}{p_{1}}+\frac{1-\lambda}{p_{2}}$ for some λ with $0<\lambda<1$, then

$$
A_{k, v_{1}, w_{1}}^{q_{1}, p_{1}}(\Omega) \cap A_{k, v_{1}, w_{1}}^{q_{2, p_{2}}}(\Omega) \subset A_{l, v_{2}, w_{2}}^{s, r}(\Omega)
$$

where $1 \leq q_{1}<s<q_{2}<\infty$ and $1 \leq p_{1}<r<p_{2}<\infty$.
Proof. Suppose that $f \in A_{k, v_{1}, w_{1}}^{q_{1}, p_{1}}(\Omega) \cap A_{k, v_{1}, w_{1}}^{q_{2,}, p_{2}}(\Omega)$, so we write $f \in L_{v_{1}}^{q_{1}}(\Omega) \cap$ $L_{v_{1}}^{q_{2}}(\Omega)$ and $f \in W_{k}^{p_{1}, w_{1}}(\Omega) \cap W_{k}^{p_{2}, w_{1}}(\Omega)$. If we set $t=\frac{q_{1}}{s \lambda}$, then we see $t^{\prime}=$ $\frac{q_{2}}{s(1-\lambda)}$ is conjugate exponent of t. Thus we obtain

$$
\begin{aligned}
\|f\|_{s, v_{1}}^{s} & =\int_{\Omega}|f(x)|^{s} v_{1}^{s}(x) d x \\
& =\int_{\Omega}|f(x)|^{s \lambda} v_{1}^{s \lambda}(x)|f(x)|^{s(1-\lambda)} v_{1}^{s(1-\lambda)}(x) d x \\
& \leq\left\{\int_{\Omega}\left[|f(x)|^{s \lambda} v_{1}^{s \lambda}(x)\right]^{\frac{q_{1}}{s \lambda}} d x\right\}^{\frac{s \lambda}{q_{1}}}
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\int_{\Omega}\left[|f(x)|^{s(1-\lambda)} v_{1}^{s(1-\lambda)}(x)\right]^{\frac{q_{2}}{s(1-\lambda)}} d x\right\}^{\frac{s(1-\lambda)}{q_{2}}} \\
= & \|f\|_{q_{1}, v_{1}}^{s \lambda}\|f\|_{q_{2}, v_{1}}^{s(1-\lambda)}
\end{aligned}
$$

by Hölder inequality. Since $f \in L_{v_{1}}^{q_{1}}(\Omega) \cap L_{v_{1}}^{q_{2}}(\Omega)$, we get $f \in L_{v_{1}}^{s}(\Omega)$. Also we can show that $f \in W_{k}^{r, w_{1}}(\Omega)$ by similar method under the hypothesis. Hence we find $f \in L_{v_{1}}^{s}(\Omega) \cap W_{k}^{r, w_{1}}(\Omega)=A_{k, v_{1}, w_{1}}^{s, r}(\Omega)$. We know that $A_{k, v_{1}, w_{1}}^{s, r}(\Omega) \subset$ $A_{l, v_{2}, w_{2}}^{s, r}(\Omega)$ where $v_{2} \prec v_{1}, w_{2} \prec w_{1}$ and $k>l$ by Theorem 8 , therefore we get $f \in A_{l, v_{2}, w_{2}}^{s, r}(\Omega)$.
3. MULTIPLIER SPACES OF $\left(A_{k, w, w}^{1, p}\left(\mathbb{R}^{d}\right), L_{w}^{1}\left(\mathbb{R}^{d}\right)\right)$

In this section we call the intersection space $L_{w}^{1}\left(\mathbb{R}^{d}\right) \cap W_{k}^{p, w}\left(\mathbb{R}^{d}\right)$ as $A_{k, w, w}^{1, p}\left(\mathbb{R}^{d}\right)$ and equipped with the sum norm $\|f\|_{k, w}^{1, p}=\|f\|_{1, w}+\|f\|_{W_{k}^{p, w}}$. We denote the space of multipliers from $A_{k, w, w}^{1, p}\left(\mathbb{R}^{d}\right)$ to $L_{w}^{1}\left(\mathbb{R}^{d}\right)$ by $M\left(A_{k, w, w}^{1, p}\left(\mathbb{R}^{d}\right), L_{w}^{1}\left(\mathbb{R}^{d}\right)\right)$. It is known that $L_{w}^{1}\left(\mathbb{R}^{d}\right)$ is a closed ideal in the space $M_{w}\left(\mathbb{R}^{d}\right)$ which is defined by

$$
M_{w}\left(\mathbb{R}^{d}\right)=\left\{\mu: \mu \text { is a bounded measure and }\|\mu\|_{\omega}=\int_{\mathbb{R}^{d}} w d|\mu|<\infty\right\}
$$

We will show that $M\left(A_{k, w, w}^{1, p}\left(\mathbb{R}^{d}\right), L_{w}^{1}\left(\mathbb{R}^{d}\right)\right) \cong M_{w}\left(\mathbb{R}^{d}\right)$ by using results in the second section.

Proposition 3. If $\mu \in M_{w}\left(\mathbb{R}^{d}\right)$ and $f \in A_{k, w, w}^{1, p}\left(\mathbb{R}^{d}\right)$, then $\mu * f \in A_{k, w, w}^{1, p}\left(\mathbb{R}^{d}\right)$ and $\|\mu * f\|_{k, w}^{1, p} \leq\|\mu\|_{\omega}\|f\|_{k, w}^{1, p}$.

Proof. Since $s \rightarrow L_{s} f$ is a continuous function from \mathbb{R}^{d} to $A_{k, w, w}^{1, p}\left(\mathbb{R}^{d}\right)$ for $f \in$ $A_{k, w, w}^{1, p}\left(\mathbb{R}^{d}\right)$ and μ is a bounded Borel measure, then $\int_{\mathbb{R}^{d}}\left\|L_{s} f\right\|_{k, w}^{1, p} d|\mu|(s)<\infty$. So, the integral $\int_{\mathbb{R}^{d}} L_{s} f d \mu(s)$ belong to $A_{k, w, w}^{1, p}\left(\mathbb{R}^{d}\right)$ by [16, Proposition 3.2.62]. Therefore we get

$$
\begin{aligned}
\|\mu * f\|_{k, w}^{1, p} & =\left\|\int_{\mathbb{R}^{d}} L_{s} f d \mu(s)\right\|_{k, w}^{1, p} \leq \int_{\mathbb{R}^{d}}\left\|L_{s} f\right\|_{k, w}^{1, p} d|\mu|(s) \\
& \leq \int_{\mathbb{R}^{d}}\|f\|_{k, w}^{1, p} w(s) d|\mu|(s)=\|f\|_{k, w}^{1, p}\|\mu\|_{\omega}
\end{aligned}
$$

Proposition 4. $A_{k, w, w}^{1, p}\left(\mathbb{R}^{d}\right)$ is an essential Banach ideal in $L_{w}^{1}\left(\mathbb{R}^{d}\right)$.
Proof. Let $f \in A_{k, w, w}^{1, p}\left(\mathbb{R}^{d}\right)$ and $g \in L_{w}^{1}\left(\mathbb{R}^{d}\right)$. By Theorem 4, we can easily see that $f * g \in A_{k, w, w}^{1, p}\left(\mathbb{R}^{d}\right)$ and we find

$$
\begin{aligned}
\|f * g\|_{k, w}^{1, p} & =\|f * g\|_{1, w}+\|f * g\|_{W_{k}^{p, w}} \\
& \leq\|f\|_{1, w}\|g\|_{1, w}+\|f\|_{W_{k}^{p, w}}\|g\|_{1, w} \\
& \leq\|f\|_{k, w}^{1, p}\|g\|_{1, w} .
\end{aligned}
$$

We known that $C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$ is a dense subset of $L_{w}^{1}\left(\mathbb{R}^{d}\right)$ [10] and we can easily see that $C_{c}^{\infty}\left(\mathbb{R}^{d}\right) \subset A_{k, w, w}^{1, p}\left(\mathbb{R}^{d}\right)$. Hence we find that $A_{k, w, w}^{1, p}\left(\mathbb{R}^{d}\right)$ is a dense subset of $L_{w}^{1}\left(\mathbb{R}^{d}\right)$. So we get that $A_{k, w, w}^{1, p}\left(\mathbb{R}^{d}\right)$ is a dense Banach ideal in $L_{w}^{1}\left(\mathbb{R}^{d}\right)$. Now let $f \in A_{k, w, w}^{1, p}\left(\mathbb{R}^{d}\right)$ and $\varepsilon>0$. By Theorem 2 , there is a neighbourhood U of the unit element e of \mathbb{R}^{d} such that

$$
\left\|L_{s} f-f\right\|_{k, w}^{1, p}<\varepsilon
$$

for all $s \in \mathbb{R}^{d}$. Let $\left(\varphi_{n}\right)_{n \in \mathbb{N}}$ be as in Definition 1 , so there exists $n_{0} \in \mathbb{N}$ such that $\operatorname{supp} \varphi_{n_{0}} \subset U$. Thus

$$
\begin{aligned}
\left\|\varphi_{n} * f-f\right\|_{k, w}^{1, p} & =\left\|\int_{\mathbb{R}^{d}} \varphi_{n}(s)\left(L_{s} f-f\right) d s\right\|_{k, w}^{1, p} \\
& \leq\left\|L_{s} f-f\right\|_{k, w}^{1, p} \int_{\mathbb{R}^{d}} \varphi_{n}(s) d s \\
& =\left\|L_{s} f-f\right\|_{k, w}^{1, p}<\varepsilon
\end{aligned}
$$

for all $n \geq n_{0}$. Therefore $A_{k, w, w}^{1, p}\left(\mathbb{R}^{d}\right)$ is an essential Banach ideal in $L_{w}^{1}\left(\mathbb{R}^{d}\right)$.

Theorem 12. Let $T: A_{k, w, w}^{1, p}\left(\mathbb{R}^{d}\right) \rightarrow L_{w}^{1}\left(\mathbb{R}^{d}\right)$ be a linear transformation, then the following are equivalent.
i) $T \in M\left(A_{k, w, w}^{1, p}\left(\mathbb{R}^{d}\right), L_{w}^{1}\left(\mathbb{R}^{d}\right)\right)$.
ii) There exists a unique measure $\mu \in M_{w}\left(\mathbb{R}^{d}\right)$ such that $T f=\mu * f$ for each $f \in A_{k, w, w}^{1, p}\left(\mathbb{R}^{d}\right)$.

Moreover the correspondence between T and μ defines an isometric algebra isomorphism of $M\left(A_{k, w, w}^{1, p}\left(\mathbb{R}^{d}\right), L_{w}^{1}\left(\mathbb{R}^{d}\right)\right)$ onto $M_{w}\left(\mathbb{R}^{d}\right)$.

Proof. Let $\mu \in M_{w}\left(\mathbb{R}^{d}\right)$ and $T f=\mu * f$ for each $f \in A_{k, w, w}^{1, p}\left(\mathbb{R}^{d}\right)$. Then,

$$
\begin{aligned}
\|T f\|_{1, w} & =\|\mu * f\|_{1, w}=\int_{\mathbb{R}^{d}}\left|\int_{\mathbb{R}^{d}} f(x-s) \mu(s) d s\right| w(x) d x \\
& \leq \int_{\mathbb{R}^{d}}\left(\int_{\mathbb{R}^{d}}|f(x-s)||\mu(s)| d s\right) w(x) d x \\
& \leq \int_{\mathbb{R}^{d}}\left(\int_{\mathbb{R}^{d}}|f(x) \| \mu(s)| d s\right) w(x+s) d x \\
& \leq \int_{\mathbb{R}^{d}}\left(\int_{\mathbb{R}^{d}}|f(x)| w(x) d x\right) w(s)|\mu(s)| d s \\
& \leq\|f\|_{1, w}\|\mu\|_{w} \leq\|f\|_{k, w}^{1, p}\|\mu\|_{w} .
\end{aligned}
$$

Hence we get $T \in M\left(A_{k, w, w}^{1, p}\left(\mathbb{R}^{d}\right), L_{w}^{1}\left(\mathbb{R}^{d}\right)\right)$ and $\|T\| \leq\|\mu\|_{\omega}$.
Conversely, suppose that $T \in M\left(A_{k, w, w}^{1, p}\left(\mathbb{R}^{d}\right), L_{w}^{1}\left(\mathbb{R}^{d}\right)\right)$. Therefore we have

$$
\|T f\|_{1, w} \leq\|T\|\|f\|_{k, w}^{1, p}=\|T\|\left(\|f\|_{1, w}+\|f\|_{W_{k}^{p, w}}\right)
$$

for each $f \in A_{k, w, w}^{1, p}\left(\mathbb{R}^{d}\right)$. In [7, Lemma 2.1], it is obtained $\lim _{s \rightarrow \infty}\left\|f+L_{s} f\right\|_{p, w}=$ $2^{\frac{1}{p}}\|f\|_{p, w}$ for all $f \in L_{w}^{p}\left(\mathbb{R}^{d}\right)$ using the method in [11]. Since the norm $\|\cdot\|_{W_{k}^{p, w}}$ is a finite sum of L_{w}^{p} norms, we find $\lim _{s \rightarrow \infty}\left\|f+L_{s} f\right\|_{W_{k}^{p, w}}=2^{\frac{1}{p}}\|f\|_{W_{k}^{p, w}}$. So we get

$$
2\|T f\|_{1, w}=\lim _{s \rightarrow \infty}\left\|T f+T L_{s} f\right\|_{1, w}=\lim _{s \rightarrow \infty}\left\|T\left(f+L_{s} f\right)\right\|_{1, w}
$$

$$
\begin{aligned}
& \leq \lim _{s \rightarrow \infty}\|T\|\left(\left\|f+L_{s} f\right\|_{1, w}+\left\|f+L_{s} f\right\|_{W_{k}^{p, w}}\right) \\
& \leq\|T\|\left(2\|f\|_{1, w}+2^{\frac{1}{p}}\|f\|_{W_{k}^{p, w}}\right) .
\end{aligned}
$$

Therefore we have

$$
\|T f\|_{1, w} \leq\|T\|\left(\|f\|_{1, w}+2^{\frac{1}{p}-1}\|f\|_{W_{k}^{p, w}}\right) .
$$

Repeating this process n times, we see that

$$
\|T f\|_{1, w} \leq\|T\|\left(\|f\|_{1, w}+2^{n\left(\frac{1}{p}-1\right)}\|f\|_{W_{k}^{p, w}}\right) .
$$

Since $p>1$ we obtain $\lim _{n \rightarrow \infty} 2^{n\left(\frac{1}{p}-1\right)}=0$ and so we conclude that

$$
\|T f\|_{1, w} \leq\|T\|\|f\|_{1, w} .
$$

Hence T is continuous on $A_{k, w, w}^{1, p}\left(\mathbb{R}^{d}\right)$, considered as a subspace of $L_{w}^{1}\left(\mathbb{R}^{d}\right)$. Thus T defines a continuous linear transformation from $A_{k, w, w}^{1, p}\left(\mathbb{R}^{d}\right)$ as a subspace of $L_{w}^{1}\left(\mathbb{R}^{d}\right)$ to $L_{w}^{1}\left(\mathbb{R}^{d}\right)$ which commutes with translation. Since $A_{k, w, w}^{1, p}\left(\mathbb{R}^{d}\right)$ is dense in $L_{w}^{1}\left(\mathbb{R}^{d}\right), T$ determines a unique element T^{\prime} of
$M\left(L_{w}^{1}\left(\mathbb{R}^{d}\right)\right)$ and $\left\|T^{\prime}\right\| \leq\|T\|$. There exists a unique element $\mu \in M_{w}\left(\mathbb{R}^{d}\right)$ such that $T^{\prime} f=\mu * f$ for each $f \in L_{w}^{1}\left(\mathbb{R}^{d}\right)$ and $\|\mu\|_{w}=\left\|T^{\prime}\right\|$. Consequently $T f=\mu * f$ for each $f \in A_{k, w, w}^{1, p}\left(\mathbb{R}^{d}\right)$ and $\|\mu\|_{w} \leq\|T\|$. Hence (i) and (ii) are equivalent. It is evident that the correspondence between T and μ defines isometric algebra isomorhism from $M\left(A_{k, w, w}^{1, p}\left(\mathbb{R}^{d}\right), L_{w}^{1}\left(\mathbb{R}^{d}\right)\right)$ onto $M_{w}\left(\mathbb{R}^{d}\right)$.

References

[1] R. Adams and J. Fournier, Sobolev spaces, 2nd ed., ser. Pure and Applied Mathematics. London: Academic Press, 2003.
[2] A. Beurling, "Sur les intégrales de Fourier absolument convergentes et leur application à une transformation fonctionelle," in Proceedings of the Ninth Scandinavian Mathematical Congress, Helsinki, 1938, pp. 345-366.
[3] C. Chu, "Some properties of sobolev algebras," Soochow J. Math., vol. 9, pp. 47-52, 1983.
[4] J. Conway, A course in functional analysis, 1st ed., ser. Graduate Texts in Mathematics. New York: Springer-Verlag Berlin Heidelberg, 1985.
[5] T. Coulhon, E. Russ, and V. Tardivel-Nachef, "Sobolev algebras on Lie groups and Riemannian manifolds," Amer.J. Math., vol. 123, no. 2, pp. 283-342, 2001.
[6] R. Doran and J. Wichmann, Approximate Identities and Factorization in Banach Modules, 1st ed., ser. Lecture Notes in Mathematics. New York: Springer-Verlag Berlin Heidelberg, 1979.
[7] C. Duyar and B. Sağır, "A note on multipliers of weighted Lebesgue spaces," to submitted Thai Journal Of Mathematics, 2011.
[8] R. Fischer, A. T. Gürkanlı, and T. Liu, "On a family of weighted spaces," Math. Slovaca, vol. 46, pp. 71-82, 1996.
[9] C. Gasquet and P. Witomski, Fourier analysis and applications: filtering, numerical computation, wavelets, ser. Texts in Applied Mathematics. New York: Springer-Verlag, 1999.
[10] N. Güngör, "Ağırlıklı sobolev cebirleri ve bazı özellikleri," Master's thesis, Ondokuz Mayıs University, Samsun, 2012.
[11] L. Hörmander, "Estimates for translation invariant operators in L^{p}-spaces," Acta Math, vol. 104, pp. 93-140, 1960.
[12] A. Kufner, Weighted Sobolev spaces, 1st ed., ser. Teubner-Texte zur Mathematik. B. G. Teubner Verlagsgesellschaft Leipzig, 1980.
[13] A. Kufner, O. John, and S. Fucik, Function spaces, 1st ed., ser. Czechoslovak Academy of Sciences. New York: Noordhoff İnternational Publishing, 1977.
[14] R. Larsen, An introduction to the theory of multipliers, 2nd ed., ser. Grundlehren der mathematischen Wissenschaften. Die Grundlehren der mathematischen wissenschaften, 1971.
[15] R. Larsen, Banach algebras. An introduction, ser. Pure and Applied Mathematics. New York: Marcel Dekker Inc., 1977.
[16] H. Reiter and J. Stegeman, Classical harmonic analysis and locally compact groups, 1st ed., ser. London Mathematical Society monographs. Oxford University Press, 2000.
[17] S. Sobolev, "On a theorem of functional analysis," Mat. Sb., vol. 46, pp. 471-496, 1938.
[18] S. Sobolev, Some applications of functional analysis in mathematical physics, 3rd ed., ser. Translation of Mathematical Monographs. Moscow: English transl.:Amer. Mat. Soc., 1988.
[19] E. Stein, Singular integrals and differentiability properties of functions, 2nd ed. New Jersey: Princeton University Press, 1970.
[20] R. Strichartz, "A note on sobolev algebras," Proc. of the Amer. Math. Soc., vol. 29, no. 1, pp. 205-207, 1971.
[21] B. Turesson, Nonlinear potential theory and weighted Sobolev spaces, 1st ed., ser. Lecture Notes in Mathematics. New York: Springer - Verlag, 2000.
[22] H. Wang, Homogeneous Banach algebras, ser. Lecture Notes Pure and Applied Mathematics. New York: Marcel Dekker Inc., 1977.
[23] J. Yeh, Real analysis theory of measure and integration, 2nd ed. World Scientific Publishing, 2006.

Authors' addresses

Nihan Güngör

Gümüşhane University, Faculty Of Engineering, Department Of Mathematical Engineering, 29100 Gümüşhane, Turkey

E-mail address: nihangungor@gumushane.edu.tr

Birsen Sağir

Ondokuz Mayıs University, Faculty Of Sciences And Arts, Department Of Mathematics, Kurupelit, 55139 Samsun, Turkey

E-mail address: bduyar@omu.edu.tr

