MMN-5218

Existence of solutions for fractional boundary value problem via global minimization theorem

Souad Ayadi; Amina Boucenna; Meltem Erden Ege; Ozgur Ege;

Abstract

The aim of this work is to use a global minimization theorem to prove the existence of at least a nontrivial solution for the problem: \begin{equation*}\label{pb1} \begin{cases} D^{\alpha}_{T^{-}}\left( D^{\alpha}_{0^{+}} \left( D^{\alpha}_{T^{-}}\left( D^{\alpha}_{0^{+}}u(x)\right)\right)\right)= f\left( x,u(x)\right), \quad x \in \left[0, T \right],\\ u(0)= u(T) = 0,\\ D^{\alpha}_{T^{-}}\left( D^{\alpha}_{0^{+}}u(0)\right)= D^{\alpha}_{T^{-}}\left( D^{\alpha}_{0^{+}}u(T)\right) = 0, \end{cases} \end{equation*} where $0 <\alpha\leq 1$ and $ f:\; \left[0, T \right]\times \mathbb R \rightarrow \mathbb R $ a Carath\'{e}odory function, $D^{\alpha}_{0^{+}},D^{\alpha}_{T^{-}}$ are the left and right fractional Riemann-Liouville derivatives of order $ \alpha$, respectively.


Vol. 26 (2025), No. 2, pp. 579-590
DOI: https://doi.org/10.18514/MMN.2025.5218


Download: MMN-5218