MMN-4484
Note on blow up solutions for a general class of semilinear parabolic equations involving second order operator
Abdelhak Bousgheiri; Anass Ourraoui;Abstract
This work deals with an initial-boundary value problem of $p-$Lapalcaien parabolic equation
\begin{equation*}
\begin{gathered}
(h(u))_t=\triangle_p u +f(u(x,t)) \quad\text{in }\Omega\times (0,\infty),\\
u(x,t)= 0\quad\text{on } \partial\Omega\times[0,\infty),\\
u(x,0)=u_0\geq0,\quad x\in\overline{\Omega},
\end{gathered}
\end{equation*}
where $\Omega$ is bounded domain in $\mathbb{R}^N,~N\geq1.$ Our contribution is to introduce a new condition to obtain the blow-up solutions of the above equations.
Vol. 25 (2024), No. 1, pp. 165-171