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Abstract. This work deals with an initial-boundary value problem of Laplacian parabolic equa-
tion

(h(u)) +Dpu= fu(x,r)), in Qx(0,00),
u(x,r) =0, on 9Q x (0,0)
u(xg) =up >0, xeQ,

where € is a bounded domain in RV, N > 1. Our contribution is to give a new condition on
nonlinearity to obtain the blow-up solutions of the above equations.
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1. INTRODUCTION

Over the past few years, a blow-up phenomenon of global solutions for non linear
reaction diffusion equations and systems has been extensively investigated by many
authors. These authors studied the questions of global existence, blow-up at some
finite time, blow-up rate, blow-up set, asymptotic behavior for solutions and so on as
well as a variety of methods used to research these questions. Particularly, the prob-
lems of the blow-up and global solutions for non linear reaction diffusion equations
under Dirichlet boundary conditions have been considered in [1,4,5,7-9, 12, 13].
However, due to the explosive nature of the solutions, it is very important in applic-
ations to determine lower bounds on the blow-up time. Presently, the research on
the lower bound of the blow-up time for the non local problems with Dirichlet or
Neumann boundary condition had some new progress. We provide the reader to the
literature [3, 6] and [ 1], for some recent interesting research on the local reaction-
diffusion equation with non local boundary conditions we can refer to [9].
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Inspired by the above mentioned papers, especially from [3] and [13], we discuss
the blow-up solutions of the following initial-boundary value problem of p-Laplacian
parabolic equation:

(h(u)r + Lpu = f(u(x.1)), in Qx (0,e),
u(x,t) =0, on 9Q x (0,00), (1.1)
u(xo) = up > 0, xeQ,

where (1), f(t) € C*(R*),h(t) > 0, (t) > 1 and f(t) > 0 for T > 0.

We borrow some ideas from the work [3] and we extend them to more general
parabolic problem which involves the p—Laplacian operator.

The papers [4, 8], and [9] studied the special cases of problem (1.1). In [9], the
following problem was considered by Payne and Schaefe:

ut:Apu+f(u(x>t))a in Qx (0,00),
u(x,t) =0, on 9Q x (0,00),
u(xo) = ug > 0, xeQ,

where Q is a bounded domain on RY with smooth boundary dQ. They used a dif-
ferential inequality technique and a comparison principle to obtain a lower bound on
blow-up time when blow-up occurs.

Little later, Payne, Philippin and Schaefer investigated the problem in [8]:

w = V.(p(|Vul*)Vu)u+ f(u), in Qx (0,00),
u(x,t) =0, on 0Q x (0,00),
M(XO) = U 2 07 X € Q,

where Q is a bounded domain on RY with smooth boundary dQ. Under appropri-
ate assumptions on the functions f,p and ug, a lower bound on blow-up time was
showed by applying a differential technique when blow-up does occur. Moreover, a
criterion for blow-up and conditions which ensure that blow-up cannot occur were
also obtained. Finally, the following problem was studied by Payne and Philippin in
[4]:

u = ANu+K(t) f(u(x,1)), in Qx (0,00),
u(_x,[) = 07 on dQ x (0,°°),
M(X()) = U > 07 X e Q,

where Q is a bounded domain of R, (N > 2) with smooth boundary 0.

A first-order differential inequality technique and Sobolev inequality were used to
give the sufficient conditions which guarantee the blow-up or the global existence of
the solution. In addition, lower and upper bounds on blow-up time were also derived.
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We proceed as follows. In Section 2 we establish a sufficient condition on the data
of problem (1.1) to guarantee the blow-up of the solution and obtain an upper bound
on blow-up time by a new condition noted (C,).

We introduce a condition sufficient to ensure the solution blows up at some finite
time and obtain an upper bound on blow-up time.

(Cp) AF(u) <uf(u)+pu?+98, u>0,
A=2

where 0 < u < Aip, and A; p, is the first eigenvalue of the p-Laplacian A .

Blow-up phenomena for this kind of problems in bounded domains have been ex-
tensively studied. Concavity method has been used so far to derive the blow-up
solutions for some variants of the equations (1.1), see [I, 6, 8, 13]. By using the
concavity method, Philippin and Proytcheva, in [10], obtained the blow-up solutions
for problem (1.1) (with & = id) under the conditions:

(C) (2+e)F(u) <uf(u), u>0,e>0.

We point out that the used condition (C},) is more weaker than (C*), so it is more
interesting. Meanwhile, local existence of classical solutions (or weak solutions) to
such problems have been also established by many works. Since that not all solu-
tions of these equations exist for all time, so many authors deal with the sufficient
conditions for the local existence of solutions see for example [2—4] .

2. MAIN RESULT AND PROOFS

Let consider the functional H such that:

4 i
H(t) = / K ().
0
Through this paper, we suppose that:
(Hy) H(t)>h (t)t, for t> 0.
In this section, our main result can be read as follows:

Theorem 1. Under the hypothesis (Hy), let a function f satisfy the condition (C))
and p > 2. If the initial data up € L () N Wol’p(Q) such that

_;/QVuo(x)|pdx—|—/g[F(uo(x))—5]dx>0, @.1)

then the nonnegative weak solution to the problem (1.1) blows up at finite time T*,

ie
3
lim/ /uz(x,s)dx:—i-oo,
t—=T* Jo JQ

where s > 2 and § is the constant in the condition (Cp).
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Consider the Sobolev space WO1 7(Q), which is the closure of C* functions com-
pactly supported in € for the norm:

= [ lolPax+ [ |5urax
Q Q

The p-Laplacian operator is defined by
17 — 1,
Ay Wy P (Q) — W Q)
ur—s Ap(u) = div(|Vu|""*Vu),

where W~14(Q) is the dual space of WOl 7(Q) and we have

1 1

1<p,g<oo, —4+—-—=1.
P q

Let u be a function of WO1 7(Q), not identically 0. Through the above definitions, the
function u is called an eigenfunction if

/ IVu(x)|P2VuVodx = A / lu(x)|P~2uddx forall ¢ € C3(Q).
Q Q
The corresponding real number A is called an eigenvalue.

Lemma 1 ([4]). For 1 < P < oo, there exist A , > 0 and an eigenfunction e; , €
WOI"p (Q) such that
Aperp =Aiperp
e1p(x) =0, x€dQ.
Moreover, Ay, is given by:

\vanlz
Mp= inf Jo [V

> 0.
wir@) JolvI?

Proof of Theorem 1.
// u; ( xs)dxds<—l/[|Vu(x O|P — |7 uo(x)|P]dx

2.2)
+ [ IF(ux,0) = F (o))

We define a function J, by:

1) :—11)/Q|vu(x,t)|pdx+/g[F(u(x,t))—S]dx.

Then it follows from (2.2) that

t):—;/Q|Vu(x,t)|pdx+/Q[F(u(x,t))—S]dx
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1 e
> ——/ |Vuo|pdx+/[F(uo)78]dx+/ /h (u)u; (x,s)dxds
PJ/Q Q 0 JQ

:Jp(O)—|—/Ot/gh/(u)u,2(x,s)dxds.

On the other hand, we define a function by

W (f) = /0 ’ /Q H(u(x,s))dxds+M, 1 >0,

where M > 0 is a constant to be determined later. Accordingly, by virtue the definition
of the functional H and the fact that du = %’;dr, it yields

ql;)(t):/QH(u(x,s))dx:/Q/Oth/(u)u,udsdx—l—/QH(uo)dx
_ /O t /Q (H (u(x.1)))dx. (2.3)

Vi) = /Q H(u(x,s))dx
:/QyApuyu_f(u)udx
:/Q—]Vu]”dx—&—/mg:udS—i-/Qf(u(x,s))u(x,s)dx

= [ —Ivulrax+ [ pluts)utr.)dx

By using the condition (C p), Lemma 1, and (2.3) in turn, we obtain that

Then

"

V() > —/Q \Vu\pdx—i-/g[kF(u) — Bu — \8dx

1,0+ 2L [ Fupax— [ wnnpx

> M) + [(7‘_?7‘“’ - B] /Q WPdx

> Mp(t)

> [Jp(0)+ /O ’ /Q h/(u)u,z(x,s)dxds] . 2.4)

Applying the Schwartz inequality, we obtain that

(W)2(1) < 4(1+9) ( / /O W () (x, )dsdx)? + (1 + é)(H(uo(x))dx>

< 4(1+9) M(/O’(h’(u)u)zds)é(/ol uz(x,s)ds)é] . (1+ é) [H (10 (x) )2
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4(1+39) <// 2dsdx> <//ut xsdsdx>

(1+5)[ (uo(x))d?, (2.5)

where 8 > 0 is arbitrary. Combining the above estimates (2.4) and (2.5), we obtain
that

W, (V1) = (140, (1) > 0

by choosing 6 =0 = \/g —1 >0 and M is large enough. This means that the solu-
tions u blow up in finite time 7*. g

Remark 1. By the same argument with slight changes, we may prove that our
result is still available for the following problem

(h(u)) + Du= f(u(x,1)), in Qx (0,00),
u(x,t) =0, on 9Q x (0,00),
u(xo) = ug > 0, xeQ,

In fact, the above theorem can work for the case p = 2.

Example 1. For p > 2, where the functional 2 = id and f(u(x,t)) = u”, the weak
solution to the problem (1.1) blows up at finite time 7* provided

/|w0 |de+/ lJuo (x)|? — 8] dx > 0.
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