MMN-3784

Hyers-Ulam-Rassias Stability of some sequential neutral functional differential equations with Caputo-Hadamard fractional derivative

Abdellatif Ben Makhlouf; El-sayed El-hady;

Abstract

Functional and functional differential equations are of great importance in many applications such as epidemiology, control theory and networks. Differential equations involving fractional orders provide powerful tools in modeling the spread of many disease like COVID-19. However, analytical solutions for such kind of equations are not reachable. Therefore, close exact solutions are of interests in many scientific investigations. Stability theory in the sense of Ulam-Hyers-Rassias provides such close exact solutions. In this article, we employ a fixed point theory to investigate the stability of some sequential neutral functional differential equations with Caputo-Hadamard fractional derivative. In this way, we generalize several earlier outcomes.


Vol. 26 (2025), No. 1, pp. 69-79
DOI: https://doi.org/10.18514/MMN.2025.3784


Download: MMN-3784