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Abstract. In this article, we employ a fixed point theory to investigate the stability in the sense
of Hyers-Ulam-Rassias of some sequential neutral functional differential equations with Caputo-
Hadamard fractional derivative. We present two examples to illustrate our main results. In this
way, we generalize several earlier outcomes.
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1. INTRODUCTION

Functional equations grow in an exponential way in many applications like net-
works (see e.g. [11, 14]). Particular cases of functional equations are functional
differential equations that are also of central importance in many disciplines such
as control theory, neural networks, epidemiology, etc. [1]. Fractional derivatives are
capable of describing hereditary and memory effects in many processes and materials
like e.g., bioengineering, biology, aerodynamics, and chemistry. So the study of neut-
ral functional differential equations in presence of fractional derivatives constitutes
an important area of research. For more details, see the text [31].

Recently, there has been a considerable progress in fractional calculus, and many
other problems of fractional differential equations, see e.g. [21], and Podlubny [23].
It should be noted that, much of the work on the topic involves Caputo and Riemann-
Liouville type fractional derivatives (see e.g. [4,9,26,29,30]). Besides the mentioned
fractional derivatives, there is another fractional derivative introduced by Hadamard
in 1892 (see [16]). The new derivative introduced by Hadamard is known as Hadam-
ard derivative and differs from above mentioned derivatives in the presence of logar-
ithmic function of arbitrary exponent in its kernel. It should be remarked that Jarad
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et.al. in [19] modified the fractional derivative of the mentioned Hadamard type into
a more suitable one with physically interpretable initial conditions comparable to the
Caputo setting and named it Caputo-Hadamard fractional derivative. For somehow
detailed explanation of Hadamard fractional derivative and integral, the reader is ad-
vised to see the articles [12].

Stability theory arose as a consequence of the famous talk delivered by Ulam at a
conference held in Wisconsin University in 1940 (see e.g. [17]). Ulam’s type of sta-
bility is useful, because it guarantees that there is a close exact solution. Nowadays,
it becomes a research trend in many applications (see e.g. [18] for more references
and details). The famous stability question presented by Ulam can be rewritten as
follows:

If G is a group and (G∗,ρ) is a metric group. Is it true that for ε > 0, there exist a
δ > 0 such that if F : G→G∗ satisfies

ρ(F(ab),F(a)F(b))< δ

for all a,b ∈G, then a homomorphism g : G→G∗ exists such that

ρ(F(a),g(a))< ε

for all a ∈G?
The open problem mentioned above has been handled by many mathematicians as

follows. In 1941, D. H. Hyers introduced a positive answer to it in case of Banach
spaces. Since then, the stability problem is called Ulam-Hyers or Hyers-Ulam sta-
bility problem. The most important result after Hyers seems to be that introduced in
1978 by Rassias (see [25]). The idea of Rassias is simply a generalization of the result
of Hyers by considering the stability in the case of unbounded Cauchy differences.
The result obtained by Rassias can be rewritten as follows (see [25]):

Theorem 1. Consider two Banach spaces B,B∗, and a continuous mapping f
from R into B∗. Suppose that there exists ω ≥ 0 and ϑ ∈ [0,1) such that

∥ f (b1 +b2)− f (b1)− f (b2)∥ ≤ ω(∥b1∥ϑ +∥b2∥ϑ), b1,b2 ∈B∗ \{0}.
Then there exists a unique solution f ∗ : B→B∗ of the Cauchy equation with

∥ f (b1)− f ∗(b1)∥ ≤
2ω∥b1∥ϑ

|2−2ϑ|
, b1 ∈B∗ \{0}.

Since then, the stability problem is known as the Ulam-Hyers-Rassias or the Hyers-
Ulam-Rassias stability (see also [10]).

During the last three decades, stability of differential equations has been a focus
of scientific investigations by many researchers see e.g. [6, 22]. As a consequence of
the interesting results presented in this direction, many articles devoted to this subject
have been written (see e.g. [8, 20, 24]. In 2019, Shikhare and Kucche (see [28]), em-
ployed weakly Picard operator to investigate the stability of some kind of equations
in Banach Spaces in the sense of Hyers-Ulam. Furthermore, they obtained stability in



STABILITY OF SOME EQUATIONS WITH CAPUTO-HADAMARD FRACTIONAL DERIVATIVE 71

the sense of Ulam-Hyers-Rassias for such kind of equations via Pachpatte’s integral
inequalities. Also Shah and Zada in 2019 (see [27]) used a fixed point approach to
investigate the stability of impulsive Volterra integral equation. In 2020, the authors
in [5] investigated the stability of some general differential equation using fixed point
approach. See also [15], where the authors studied the stability of some Caputo frac-
tional differential equations using fixed point approach. Note that in the case of the
Riemann-Louisville fractional derivative only the case without any delays is studied
(see e.g. [7]). The authors in [2] investigated the Hyers-Ulam stability of the non-
linear fractional stochastic neutral differential equations system. In [3], the authors
studied the Ulam stability of Caputo type fractional stochastic neutral differential
equations.

The article is divided into three sections. In the next section we recall some pre-
liminaries, section 3 shows the main results: stability results in Hyers-Ulam-Rassias
sense, in section 4, we used two examples to illustrate our results, and in section 5
we conclude our work.

2. PRELIMINARIES

We use this section to introduce notations, some definitions, and recall some well-
known results. We start to recall the notions of the Hadamard fractional integral and
derivative respectively as follows. Throughout the paper, we use R to denote the set
of real numbers and C([a,b],R) to denote the set of continuous functions from an
interval [a,b] into the set R.

Definition 1. [21] The Hadamard fractional integral of order λ for a function h is
defined as

Iλh(t) =
1

Γ(λ)

∫ t

1

(
log

t
ν

)λ−1 h(ν)
ν

dν, λ > 0,

provided the integral exists.

Definition 2. ([21]) The Hadamard derivative of fractional order λ ∈ (0,1) for a
function h : [1,∞)→ R is defined as

Dλh(t) =
1

Γ(1−λ)

(
t

d
dt

)∫ t

1

(
log

t
ν

)−λ h(ν)
ν

dν,

with log(·) = loge(·).

Now, we recall the notion of the Caputo-Hadamard fractional derivative as follows.

Definition 3. [21] The Caputo-Hadamard derivative of fractional order λ ∈ (0,1)
for a function h : [1,∞)→ R is defined as

CDλh(t) = Dλ [h(t)−h(1)] .

Now, the concept of contractive operator (see e.g. [13])
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Definition 4. ([13]) Let (X ,κ) be a generalized complete metric space. The map-
ping Π : X → X is called a contraction if there exists a constant q1 with 0 < q1 < 1
such that whenever κ(x1,x2)< ∞ one has

κ(Πx1,Πx2)≤ q1κ(x1,x2).

The following is an important results that will play an important role in our ana-
lysis. We recall it from [13].

Theorem 2. Suppose (F,d) is a complete metric space and L : F → F is a con-
traction (for some δ ∈ [0,1]), d(L(x),L(y)) ≤ δd(x,y) for all x,y ∈ F. Suppose that
there exists v ∈ F, χ > 0 and d(v,L(v)) ≤ χ. Then, there exists a unique k ∈ F such
that k = L(k). Moreover,

d(v,k)≤ χ

1−δ
.

The purpose of the article is to study the stability of the solution of the follow-
ing Caputo-Hadamard sequential fractional order neutral functional differential equa-
tions

Dυ1 [Dυ2y(σ)− f2(σ,yσ)] = f1(σ,yσ), σ ∈ I := [1,b], (2.1)

with initial conditions y(σ) = φ(σ), σ ∈ [1− κ,1], Dυ2y(1) = η ∈ R, where φ ∈
C([1−κ,1],R), 0 < υ1,υ2 < 1, f1, f2 : I ×C([−κ,0],R)→ R are given functions.

For any function y defined on [1−κ,b] and any t ∈ I, we denote by yσ the element
of Cκ :=C([−κ,0],R) defined by yσ(s) = y(σ+ s), s ∈ [−κ,0], with norm ∥yσ∥=
sup{y(σ+ s);−κ ≤ s ≤ 0}.

3. MAIN RESULTS

Here, we apply the Banach fixed point theory to study stability of (2.1) in the sense
of Hyers-Ulam-Rassias. The following theorem is our main theorem, where we show
that under some conditions functions that satisfy (2.1) approximately (in some sense)
are close (in some way) to the solutions of (2.1). In other words, we investigate the
Hyers-Ulam-Rassias stability of (2.1).

Theorem 3. Let f1 : I ×R → R, f2 : I ×R → R are some continuous functions
satisfying the following conditions

| fi(σ,φ1)− fi(σ,φ2)| ≤ li∥φ1 −φ2∥,

for all σ ∈ I,φ1, φ2 ∈Cκ and for some li > 0 i = 1,2.
If z ∈C2([1−κ,b],R) satisfies

|Dυ1 [Dυ2z(σ)− f2(σ,zσ)]− f1(σ,zσ)| ≤ εγ(σ),

for all σ ∈ [1,b], where ε > 0 and γ(σ) is a positive, nondecreasing, continuous
function, then there exists a unique solution z∗ of (2.1) with z∗(σ) = z(σ), σ ∈
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[1−κ,1], such that

|z(σ)− z∗(σ)| ≤

 1

1−
(

l1
µυ1+υ2 +

l2
µυ1

)
 Mbµ

Γ(υ1 +υ2 +1)
εγ(σ), ∀σ ∈ [1,b],

where M = sup
s∈[1,b]

(
(logs)υ1+υ2

sµ

)
and µ is a positive constant such that

(
l1

µυ1+υ2
+

l2
µυ1

)
< 1.

Proof. Consider the metric d on E =C([1−κ,b],R) by

d(y1,y2) = inf

{
k ∈ [0,∞) :

|y1(σ)− y2(σ)|
ψ(σ)

≤ kγ̃(σ),∀σ ∈ [1−κ,b]

}
,

with ψ(σ) = σ
µ for σ ∈ [1,b] and ψ(σ) = 1 for σ ∈ [1− κ,1], and γ̃(σ) = γ(σ) for

σ ∈ [1,b] and γ̃(σ) = γ(1) for σ ∈ [1−κ,1].
We consider the operator B : E → E such that (By)(σ) = z(σ), for σ ∈ [1−κ,1],

and

(By)(σ) = z(1)+(Dυ2z(1)− f2(1,z(1)))
(logσ)υ2

Γ(υ2 +1)

+
1

Γ(υ1)

∫
σ

1

(
log

σ

s

)υ1−1 f2(s,ys)

s
ds

+
1

Γ(υ1 +υ2)

∫
σ

1

(
log

σ

s

)υ1+υ2−1 f2(s,ys)

s
ds.

Let y1,y2 ∈ E, we have (By1)(σ)− (By2)(σ) = 0, for all σ ∈ [1−κ,1].
For σ ∈ [1,b], we get∣∣∣(By1)(σ)− (By2)(σ)

∣∣∣
≤ 1

Γ(υ1)

∫
σ

1

(
log

σ

s

)υ1−1 ∣∣∣ f2(s,y1s)− f2(s,y2s)

s

∣∣∣ds

+
1

Γ(υ1 +υ2)

∫
σ

1

(
log

σ

s

)υ1+υ2−1 ∣∣∣ f1(s,y1s)− f1(s,y2s)

s

∣∣∣ds

≤ l2
Γ(υ1)

∫
σ

1

(
log

σ

s

)υ1−1 ∥y1s − y2s∥
s

ds

+
l1

Γ(υ1 +υ2)

∫
σ

1

(
log

σ

s

)υ1+υ2−1 ∥y1s − y2s∥
s

ds.
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For s ∈ [1,σ], there is q ∈ [−κ,0] such that ∥y1s − y2s∥ = |y1(s + q)− y2(s + q)|.
Therefore,

∥y1s − y2s∥=
|y1(s+q)− y2(s+q)|

ψ(s+q)̃γ(s+q)
ψ(s+q)̃γ(s+q)

≤ d(y1,y2)ψ(s+q)̃γ(s+q)≤ d(y1,y2)ψ(s)γ(s).

Therefore,∣∣∣(By1)(σ)− (By2)(σ)
∣∣∣≤ l2

Γ(υ1)
d(y1,y2)γ(σ)

∫
σ

1

(
log

σ

s

)υ1−1 sµ

s
ds

+
l1

Γ(υ1 +υ2)
d(y1,y2)γ(σ)

∫
σ

1

(
log

σ

s

)υ1+υ2−1 sµ

s
ds.

For λ > 0, by using the change of variable u = µ logσ−µ logs, we get∫
σ

1

(
log

σ

s

)λ−1 sµ

s
ds =

∫ µ logσ

0

(
u
µ

)λ−1

σ
µ e−u

µ
du ≤ σµ

µλ
Γ(λ).

Then, ∣∣∣(By1)(σ)− (By2)(σ)
∣∣∣≤ l2d(y1,y2)γ(σ)

σµ

µυ1
+ l1d(y1,y2)γ(σ)

σµ

µυ1+υ2

≤
(

l1
µυ1+υ2

+
l2

µυ1

)
d(y1,y2)γ(σ)σ

µ

Then, B is contractive (see Definition 4). For σ ∈ [1−κ,1], we have

(Bz)(σ)− z(σ) = 0.

We have

|Dυ1 [Dυ2z(σ)− f2(σ,zσ)]− f1(σ,zσ)| ≤ εγ(σ),∀σ ∈ [1,b].

By using Lemma 2.3 in [1], we get

|z(σ)−Bz(σ)| ≤ ε

Γ(υ1 +υ2)

∫
σ

1

(
log

σ

s

)υ1+υ2−1 γ(s)
s

ds

≤ εγ(σ)

Γ(υ1 +υ2)

∫
σ

1

(
log

σ

s

)υ1+υ2−1 1
s

ds

≤ εγ(σ)

Γ(υ1 +υ2 +1)
(logσ)υ1+υ2 ,∀σ ∈ [1,b].

Hence
|z(σ)−Bz(σ)|

σµ ≤ ε

Γ(υ1 +υ2 +1)
γ(σ)

(logσ)υ1+υ2

σµ

≤ εM
Γ(υ1 +υ2 +1)

γ(σ), ∀σ ∈ [1,b],
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then

d(z,Bz)≤ ε
M

Γ(υ1 +υ2 +1)
.

Using Theorem 2, there exists a solution z∗ of (2.1) such that

d(z,z∗)≤ ε

 1

1−
(

l1
µυ1+υ2 +

l2
µυ1

)
 M

Γ(υ1 +υ2 +1)
,

so that

|z(σ)− z∗(σ)| ≤

 1

1−
(

l1
µυ1+υ2 +

l2
µυ1

)
 Mbµ

Γ(υ1 +υ2 +1)
εγ(σ),

for all σ ∈ [1,b]. □

Remark 1. It should be remarked that in our analysis, we proved the existence as
a part of the stability results in Theorem 3. Moreover, we get rid off the essential
condition in Theorem 3.2 in [1].

The following theorem represents the stability of (2.1) in the sense of Ulam-Hyers.

Theorem 4. Let f1 : I ×R → R, f2 : I ×R → R are some continuous functions
satisfying the following conditions

| fi(σ,φ1)− fi(σ,φ2)| ≤ li∥φ1 −φ2∥,

for all σ ∈ I,φ1, φ2 ∈Cκ and for some li > 0 i = 1,2.
If z ∈C2([1−κ,b],R) satisfies

|Dυ1 [Dυ2z(σ)− f2(σ,zσ)]− f1(σ,zσ)| ≤ ε,

for all σ ∈ [1,b], where ε > 0, then there exists a unique solution z∗ of (2.1) with
z∗(σ) = z(σ), σ ∈ [1−κ,1], such that

|z(σ)− z∗(σ)| ≤

 1

1−
(

l1
µυ1+υ2 +

l2
µυ1

)
 Mbµ

Γ(υ1 +υ2 +1)
ε,∀σ ∈ [1,b],

where M = sup
s∈[1,b]

(
(logs)υ1+υ2

sµ

)
and µ is a positive constant such that

(
l1

µυ1+υ2
+

l2
µυ1

)
< 1.

Proof. The proof is similar to Theorem 3. □
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4. EXAMPLES

Two illustrative examples are given to show the validity of our results.

Example 1. Consider the equation (2.1) for κ = 0.5, υ1 = 0.5, υ2 = 0.3 b = 2,
f1(σ,φ) = σ3 cos(φ(−κ)) and f2(σ,φ) = σ2 sin(φ(−κ)).

We have

| f1(σ,φ1)− f1(σ,φ2)| ≤ 8∥φ1 −φ2∥, ∀ σ ∈ [1,2], φ1,φ2 ∈C0.5,

and

| f2(σ,φ1)− f2(σ,φ2)| ≤ 4∥φ1 −φ2∥, ∀ σ ∈ [1,2], φ1,φ2 ∈C0.5,

Then l1 = 8 and l2 = 4.
Suppose that z ∈C2 ([0.5,2],R) satisfies

|D0.5[D0.3z(σ)− f2(σ,zσ)]− f1(σ,zσ)| ≤ σ,

for all σ ∈ [1,2].
Here, γ(σ) = σ and ε = 1. Using Theorem 3 there is a solution z∗ of the fractional

differential equations and K > 0 such that

|z(σ)− z∗(σ)| ≤ Kσ, ∀ σ ∈ [1,2].

Example 2. Consider the equation (2.1) for κ = 0.5, υ1 = 0.6, υ2 = 0.3 b = 5,
f1(σ,φ) = sin2 (φ(−κ)) and f2(σ,φ) = σcos(φ(−κ)).

We have

| f1(σ,φ1)− f1(σ,φ2)| ≤ 2∥φ1 −φ2∥, ∀ σ ∈ [1,5], φ1,φ2 ∈C0.5,

and

| f2(σ,φ1)− f2(σ,φ2)| ≤ 5∥φ1 −φ2∥, ∀ σ ∈ [1,2], φ1,φ2 ∈C0.5,

Then l1 = 2 and l2 = 5.
Suppose that z ∈C2 ([0.5,5],R) satisfies

|D0.6[D0.3z(σ)− f2(σ,zσ)]− f1(σ,zσ)| ≤ 0.01,

for all σ ∈ [1,5].
Here, ε = 0.01. Using Theorem 4 there is a solution z∗ of the fractional differential

equations and K > 0 such that

|z(σ)− z∗(σ)| ≤ 0.01K, ∀ σ ∈ [1,5].
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5. CONCLUSION

We managed to use a version of Banach fixed point theorem to prove that under
certain conditions, functions that satisfy some sequential neutral functional differen-
tial equations with Caputo-Hadamard fractional derivative approximately, are close
in some sense to the exact solutions of such problems. In other words, we present sta-
bility results for some fractional differential equations in Ulam-Hyers-Rassias sense.
In order to show the validity of our results, we presented two examples. Potential
future work could be to invent a new method to obtain such stability results or to
investigate the stability of a much more complicated fractional differential equations.
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