MMN-3782

# S-copure submodules of a module

*Faranak Farshadifar*;

## Abstract

Let $R$ be a commutative ring with identity, $S$ be a multiplicatively closed subset of $R$, and $M$ be an $R$-module.
The aim of this paper is to introduce the notion of $S$-copure submodules and investigate some properties of this class of modules.
We say that a submodule $N$ of $M$ is \emph {$S$-copure} if there exists an $s \in S$ such that $s(N:_MI)\subseteq N+(0:_MI)$ for every ideal $I$ of $R$.

Vol. 24 (2023), No. 1, pp. 153-163

DOI: 10.18514/MMN.2023.3782