Miskolc Mathematical Notes

S-COPURE SUBMODULES OF A MODULE

FARANAK FARSHADIFAR

Received 26 March, 2021

Abstract

Let R be a commutative ring with identity, S be a multiplicatively closed subset of R, and M be an R-module. The aim of this paper is to introduce the notion of S-copure submodules and investigate some properties of this class of modules. We say that a submodule N of M is S-copure if there exists an $s \in S$ such that $s\left(N:_{M} I\right) \subseteq N+\left(0:_{M} I\right)$ for every ideal I of R.

2010 Mathematics Subject Classification: 13C13, 13A15
Keywords: Copure submodule, S-copure submodule, fully S-copure module

1. Introduction

Throughout this paper R will denote a commutative ring with identity and \mathbb{Z} will denote the ring of integers.

It is well known that the notions of purity and copurity with their different generalizations play a fundamental role in theory of module categories. In [2], Anderson and Fuller defined a submodule N of an R-module M a pure submodule if $I N=N \cap I M$ for every ideal I of R. In [4], H. Ansari-Toroghy and F. Farshadifar introduced the dual notion of pure submodules (that is copure submodules). A submodule N of an R-module M is said to be copure if $\left(N:_{M} I\right)=N+\left(0:_{M} I\right)$ for every ideal I of R [4], where $\left(N:_{M} I\right)=\{x \in M: I x \subseteq N\}$. An R-module M is said to be fully pure (resp. fully copure) if every submodule of M is pure (resp. copure) [6].

Let S be a multiplicatively closed subset of R. In [7], F. Farshadifar introduced and investigated the concept of S-pure submodules of modules as a generalization of pure submodules. A submodule N of an R-module M is said to be S-pure if there exists an $s \in S$ such that $s(N \cap I M) \subseteq I N$ for every ideal I of R [7]. Also, an R-module M is said to be fully S-pure if every submodule of M is S-pure [7].

Let S be a multiplicatively closed subset of R and M be an R-module. In this paper, we introduce the notion of S-copure submodules of M as a generalisation of copure submodules. Also, this notion can be regarded as a dual notion of S-pure submodules. We provide some useful information concerning the is new class of modules.

2. Main results

Throughout this section, S is a multiplicatively closed subset of R, that is, $1 \in S$ and $s_{1} s_{2} \in S$ for any $s_{1} \in S$ and any $s_{2} \in S$.

Definition 1. We say that a submodule N of an R-module M is S-copure if there exists an $s \in S$ such that $s\left(N:_{M} I\right) \subseteq N+\left(0:_{M} I\right)$ for every ideal I of R.

Definition 2. We say that an R-module M is fully S-copure if every submodule of M is S-copure.

Example 1. Let M be an R-module with $\operatorname{Ann}_{R}(M) \cap S \neq \varnothing$. Then clearly, M is a fully S-copure R-module.

Proposition 1. Every fully copure R-module is a fully S-copure R-module. The converse is true if $S \subseteq U(R)$, where $U(R)$ is the set of units in R.

Proof. This is clear.
The following example shows that the converse of Proposition 1 is not true in general.

Example 2. Clearly, for a prime number p, the submodule $p \mathbb{Z}$ of the \mathbb{Z}-module \mathbb{Z} is not copure. Take the multiplicatively closed subset $S=\left\{p^{n}: n \in \mathbb{N} \cup\{0\}\right\}$ of \mathbb{Z}. Then for each $k \in \mathbb{N}, p(p \mathbb{Z}: \mathbb{Z} k \mathbb{Z}) \subseteq p \mathbb{Z}+\left(0:_{\mathbb{Z}} k \mathbb{Z}\right)$ implies that $p \mathbb{Z}$ is an S-copure submodule of \mathbb{Z}.

Theorem 1. Let M be an R-module, and let N and K be submodules of M such that $N \subseteq K \subseteq M$. Then we have the following.
(a) If K is an S-copure submodule of M and N is a S-copure submodule of K, then N is an S-copure submodule of M.
(b) If N is an S-copure submodule of M, then N is an S-copure submodule of K.
(c) If K is an S-copure submodule of M, then K / N is an S-copure submodule of M / N.
(d) If N is an S-copure submodule of M and K / N is an S-copure submodule of M / N, then K is an S-copure submodule of M.
(e) If N is an S-copure submodule of M, then there is a bijection between the S-copure submodules of M containing N and the S-copure submodules of M / N.

Proof. (a) Let I be an ideal of R. Then since K is an S-copure submodule of M, there exists an $s \in S$ such that

$$
\begin{aligned}
s\left(N:_{M} I\right) & =s\left(N \cap K:_{M} I\right)=s\left(\left(N:_{M} I\right) \cap\left(K:_{M} I\right)\right) \\
& \subseteq\left(N:_{M} I\right) \cap\left(K+\left(0:_{M} I\right)\right)=\left(N:_{K} I\right)+\left(0:_{M} I\right) .
\end{aligned}
$$

Now since N is an S-copure submodule of K, there exists an $t \in S$ such that

$$
s t\left(N:_{M} I\right) \subseteq t\left(N:_{K} I\right)+t\left(0:_{M} I\right) \subseteq N+\left(0:_{K} I\right)+\left(0:_{M} I\right)=N+\left(0:_{M} I\right)
$$

(b) Let I be an ideal of R. Then as N is an S-copure submodule of M, there exists an $s \in S$ such that

$$
\begin{aligned}
s\left(N:_{K} I\right) & =s\left(K \cap\left(N:_{M} I\right)\right) \subseteq K \cap\left(N+\left(0:_{M} I\right)\right) \\
& =K \cap N+K \cap\left(0:_{M} I\right) \subseteq N+\left(0:_{M} I\right) .
\end{aligned}
$$

(c) Let I be an ideal of R. Then there exists an $s \in S$ such that

$$
s\left(K:_{K} I\right) \subseteq K+\left(0:_{M} I\right)
$$

Thus

$$
\begin{aligned}
s\left(K / N:_{M / N} I\right) & =s\left(\left(K:_{M} I\right) / N\right)=s\left(\left(K:_{M} I\right)+K \cap\left(N:_{M} I\right)\right) / N \\
& \subseteq\left(K+\left(0:_{M} I\right)+K \cap\left(N:_{M} I\right)\right) / N \\
& =K / N+\left(\left(N:_{M} I\right) \cap\left(K+\left(0:_{M} I\right)\right) / N\right. \\
& \subseteq K / N+\left(\left(N:_{M} I\right) \cap\left(K:_{M} I\right)\right) / N \\
& =K / N+\left(N:_{M} I\right) / N=K / N+\left(0:_{M / N} I\right)
\end{aligned}
$$

(d) Let I be an ideal of R. Since N is an S-copure submodule of M, there exists an $s \in S$ such that $s\left(N:_{M} I\right) \subseteq N+\left(0:_{M} I\right)$. We have

$$
s\left(0:_{M / N} I\right)=s\left(N:_{M} I\right) / N \subseteq\left(\left(0:_{M} I\right)+N\right) / N
$$

Now since K / N is an S-copure submodule of M / N, there exists an $t \in S$ such that

$$
t\left(K / N:_{M / N} I\right) \subseteq K / N+\left(0:_{M / N} I\right)
$$

Therefore,

$$
\begin{aligned}
\operatorname{st}\left(K:_{M} I\right) / N & =s t\left(K / N:_{M / N} I\right) \subseteq s K / N+s\left(0:_{M / N} I\right) \\
& \subseteq K / N+\left(\left(0:_{M} I\right)+N\right) / N=\left(K+N+\left(0:_{M} I\right)\right) / N \\
& =\left(K+\left(0:_{M} I\right)\right) / N
\end{aligned}
$$

Thus $s t\left(K:_{M} I\right) \subseteq K+\left(0:_{M} I\right)$, as desired.
(e) This follows from parts (c) and (d).

Recall that the saturation S^{*} of S is defined as $S^{*}=\left\{x \in R: x / 1\right.$ is a unit of $\left.S^{-1} R\right\}$. It is obvious that S^{*} is a multiplicatively closed subset of R containing S [9].

A multiplicatively closed subset S of R is said to satisfy the maximal multiple condition if there exists an $s \in S$ such that $t \mid s$ for each $t \in S$.

Proposition 2. Let M be an R-module. Then we have the following.
(a) If $S_{1} \subseteq S_{2}$ are multiplicatively closed subsets of R and M is a fully S_{1}-copure R-module, then M is a fully S_{2}-copure R-module.
(b) M is a fully S-copure R-module if and only if M is a fully S^{*}-copure R-module.
(c) If N is an S-copure submodule of M, then $s N$ is an S-copure submodule of M for each $s \in S$.
(d) If $f: M \rightarrow M$ is an endomorphism and there exists an $s \in S$ such that $\operatorname{sf}(x)=$ $f^{2}(x)$ for each $x \in M$, then $\operatorname{Ker}(f)$ is an S-copure submodule of M.
(e) If N and K are submodules of M such that $N \cap K$ and $N+K$ are S-copure submodules of M. Then N is an S-copure submodule of M.
(f) If S is satisfying the maximal multiple condition (e.g., S is finite or $S \subseteq U(R)$) and $\left\{M_{\lambda}\right\}_{\Lambda}$ is a family of submodules of M with S-copure submodules $N_{\lambda} \subseteq$ M_{λ}, then $\oplus_{\lambda \in \Lambda} N_{\lambda}$ is an S-copure submodule of $\oplus_{\lambda \in \Lambda} M_{\lambda}$.
Proof. (a) This is clear.
(b) Let M be a fully S-copure R-module. Since $S \subseteq S^{*}$, by part (a), M is a fully S^{*}-copure R-module. For the converse, assume that M is a fully S^{*}-copure module, N is a submodule of M, and I is an ideal of R. Then there exists an $x \in S^{*}$ such that $x\left(N:_{M} I\right) \subseteq N+\left(0:_{M} I\right)$. As $x \in S^{*}, x / 1$ is a unit of $S^{-1} R$ and so $(x / 1)(a / s)=1$ for some $a \in R$ and $s \in S$. This yields that $u s=u x a$ for some $u \in S$. Thus we have

$$
u s\left(N:_{M} I\right)=\operatorname{uxa}\left(N:_{M} I\right) \subseteq x\left(N:_{M} I\right) \subseteq N+\left(0:_{M} I\right)
$$

Therefore, M is a fully S-copure R-module.
(c) Let $s \in S$. As N is S-copure, there is an $t \in S$ such that $t\left(N:_{M} I\right) \subseteq N+\left(0:_{M} I\right)$ for each ideal I of R. Therefore,

$$
t s\left(s N:_{M} I\right) \subseteq t s\left(N:_{M} I\right) \subseteq s N+s\left(0:_{M} I\right) \subseteq s N+\left(0:_{M} I\right)
$$

(d) Let I be an ideal of R and $x \in\left(\operatorname{Ker}(f):_{M} I\right)$. Then $x I \subseteq \operatorname{Ker}(f)$. It follows that $f(x) \in\left(0:_{M} I\right)$. As $s f=f^{2}$, we have $s x-f(x) \in \operatorname{Ker}(f)$. Therefore, $s x=$ $s x-f(x)+f(x) \in \operatorname{Ker}(f)+\left(0:_{M} I\right)$. This implies that

$$
s\left(\operatorname{Ker}(f):_{M} I\right) \subseteq \operatorname{Ker}(f)+\left(0:_{M} I\right)
$$

(e) Let I be an ideal of R and let $m \in\left(N:_{M} I\right)$. Since $N+K$ is an S-copure submodule of M, there exists an $s \in S$ such that $s\left(N+K:_{M} I\right) \subseteq N+K+\left(0:_{M} I\right)$. Then Im $\subseteq N+K$ implies that $s m=x+y+t$ for some $x \in N, y \in K$ and $t \in\left(0:_{M} I\right)$. Thus $m s I=x I+y I$. This implies that $y I \subseteq N \cap K$. Since $N \cap K$ is an S-copure submodule of M, there exists an $h \in S$ such that $h\left(N \cap K:_{M} I\right) \subseteq N \cap K+\left(0:_{M} I\right)$. Thus $h y=\dot{x}+\dot{t}$ for some $\dot{x} \in N \cap K$ and $\dot{t} \in\left(0:_{M} I\right)$. It follows that $\operatorname{shm} \in N+\left(0:_{M} I\right)$. Therefore, $\operatorname{sh}\left(N:_{M} I\right) \subseteq N+\left(0:_{M} I\right)$, as desired.
(f) Let I be an ideal of R. Then there exists an $s \in S$ such that $s\left(N_{\lambda}:_{M_{\lambda}} I\right) \subseteq$ $N_{\lambda}+\left(0:_{M_{\lambda}} I\right)$ for each $\lambda \in \Lambda$. Now one can see that $s\left(\oplus_{\lambda \in \Lambda} N_{\lambda}: \oplus_{\lambda \in \Lambda} M_{\lambda} I\right) \subseteq \oplus_{\lambda \in \Lambda} N_{\lambda}+$ $\left(0:_{\dagger} \in{ }^{\prime} M_{\lambda} I\right)$.

Definition 3. We say that a submodule N of an R-module M is an S-direct summand of M if there exist a submodule K of M and $s \in S$ such that $s M=N+K$ (d.s.).

Definition 4. We say that an R-module M is an S-semisimple module if every submodule of M is an S-direct summand of M.

Proposition 3. Let M be an S-semisimple R-module. Then M is a fully S-copure R-module.

Proof. Let N be a submodule of M. Then there exist a submodule K of M and $s \in S$ such that $s M=N+K$ (d.s.). Now for each ideal I of R, we have

$$
s\left(N:_{M} I\right)=\left(N:_{s M} I\right)=\left(N:_{K} I\right)+\left(N:_{N} I\right) \subseteq\left(0:_{K} I\right)+N \subseteq\left(0:_{M} I\right)+N
$$

Proposition 4. Let R be a principal ideal domain and M be an R-module. Then every submodule of M is an S-pure submodule if and only if is an S-copure submodule.

Proof. First suppose that N is an S-pure submodule of M and $r \in R$. Then there exists an $s \in S$ such that $s(N \cap r M) \subseteq r N$. Now let $r m \in N$. Then $s r m=s r n$, for some $n \in N$. Thus, $s m=s(m-n)+s n \in\left(0:_{M} r\right)+N$. So, $s\left(N:_{M} r\right) \subseteq N+\left(0:_{M} r\right)$ and N is S-copure. Now suppose that N is an S-copure submodule of M and $r \in R$.

Then there exists an $s \in S$ such that $s\left(N:_{M} r\right) \subseteq N+\left(0:_{M} r\right)$. Suppose that $r m \in N$. Then $s m=n_{1}+m_{1}$, where $n_{1} \in N$ and $r m_{1}=0$. Thus $s r m=r n_{1} \in r N$. This shows that N is an S-pure submodule of M.

Theorem 2. Let M be a distributive R-module. Then the following hold.
(a) A submodule N of M is S-copure if and only if there exists an $s \in S$ such that for each $a \in R$ we have

$$
s\left(N:_{M} a\right) \subseteq N+\left(0:_{M} a\right) .
$$

(b) A submodule N of M is S-pure if and only if there exists an $s \in S$ such that for each $a \in R$ we have

$$
s(N \cap a M) \subseteq a N
$$

(c) A submodule N of M is an S-pure submodule if and only if it is an S-copure submodule.

Proof. (a) First assume that there exists an $s \in S$ such that for each $a \in R$ we have $s\left(N:_{M} a\right) \subseteq N+\left(0:_{M} a\right)$. Suppose that I is an ideal of R. Then we have

$$
s\left(N:_{M} I\right)=s\left(N:_{M} \sum_{a \in I} R a\right)=s \bigcap_{a \in I}\left(N:_{M} a\right) \subseteq \bigcap_{a \in I}\left(N+\left(0:_{M} a\right)\right) .
$$

Now as M is distributive, we have

$$
\bigcap_{a \in I}\left(N+\left(0:_{M} a\right)\right)=N+\bigcap_{a \in I}\left(0:_{M} a\right)=N+\left(0:_{M} I\right) .
$$

Therefore, N is an S-copure submodule of M. The converse is clear.
(b) First suppose that exists an $s \in S$ such that for each $a \in R$ we have $s(N \cap a M) \subseteq$ $a N$. Let I be an ideal of R. Then as M is a distributive R-module, we have

$$
\begin{aligned}
I N & =\left(\sum_{a \in I} R a\right) N \supseteq \sum_{a \in I} s(R a M \cap N) \supseteq s \sum_{a \in I}(R a M \cap N) \\
& =s\left(\left(\sum_{a \in I} R a\right) M \cap N\right)=s(I M \cap N) .
\end{aligned}
$$

Hence, N is an S-pure submodule of M. The converse is clear.
(c) This follows from parts (a), (b), and Proposition 4.

Proposition 5. Let R be a Noetherian ring and let M be an R-module. Then the following hold.
(a) If N is an S-copure submodule of M, then for each prime ideal \mathfrak{p} of $R, N_{\mathfrak{p}}$ is an $S_{\mathfrak{p}}$-copure submodule of $M_{\mathfrak{p}}$ as an $R_{\mathfrak{p}}$-module.
(b) If $N_{\mathfrak{m}}$ is an $S_{\mathfrak{m}}$-copure submodule of an $R_{\mathfrak{m}}$-module $M_{\mathfrak{m}}$ for each maximal ideal \mathfrak{m} of R, then N is an S-copure submodule of M.

Proof. (a) This follows from the fact that by [10, 9.13], if I is a finitely generated ideal of R, then $\left(N:_{M} I\right)_{\mathfrak{p}}=\left(N_{\mathfrak{p}}:_{M_{\mathfrak{p}}} I_{\mathfrak{p}}\right)$.
(b) Suppose that I is an ideal of R. As R is a Noetherian ring, I is finitely generated ideal of R. Hence by [10, 9.13], for any maximal ideal \mathfrak{m} of $R,\left(N:_{M} I\right)_{\mathfrak{m}}=\left(N_{\mathfrak{m}}:_{M_{\mathfrak{m}}}\right.$ $\left.I_{\mathfrak{m}}\right)$. Thus by assumption, for any maximal ideal \mathfrak{m} of R, there is an $h / a \in S_{\mathfrak{m}}$ such that

$$
\left(h\left(N:_{M} I\right)\right)_{\mathfrak{m}}=h / a\left(N_{\mathfrak{m}}:_{M_{\mathfrak{m}}} I_{\mathfrak{m}}\right) \subseteq N_{\mathfrak{m}}+\left(0:_{M_{\mathfrak{m}}} I_{\mathfrak{m}}\right)=\left(N+\left(0:_{M} I\right)\right)_{\mathfrak{m}}
$$

It follows that

$$
h\left(N:_{M} I\right) \subseteq N+\left(0:_{M} I\right)
$$

Let M be an R-module. M is said to be a comultiplication module if for every submodule N of M there exists an ideal I of R such that $N=\left(0:_{M} I\right)$ [3]. M satisfies the double annihilator conditions (DAC for short) if for each ideal I of R, we have $I=A n n_{R}\left(\left(0:_{M} I\right)\right) . M$ is said to be a strong comultiplication module if M is a comultiplication R-module which satisfies the double annihilator condition [4]. M is said to be an S-comultiplication module if for each submodule N of M, there exist $s \in S$ and an ideal I of R such that $s\left(0:_{M} I\right) \subseteq N \subseteq\left(0:_{M} I\right)$ [1].

Definition 5. We say that an R-module M satisfies the S-double annihilator condition ($S-D A C$ for short) if for each ideal I of R there exists an $s \in S$ such that $\operatorname{sAnn}_{R}\left(\left(0:_{M} I\right)\right) \subseteq I$.

Definition 6. We say that an R-module M is an S-strong comultiplication module if M is an S-comultiplication R-module which satisfies the S-double annihilator condition.

Lemma 1. Let M be an S-strong comultiplication R-module. Then we have the following.
(a) If I and J are ideals of R with $\left(0:_{M} I\right) \subseteq\left(0:_{M} J\right)$, then there exists an $s \in S$ such that $s J \subseteq I$.
(b) For ideals I and Jof R there exists an $t \in S$ such that

$$
t\left(0:_{M} I \cap J\right) \subseteq\left(0:_{M} I\right)+\left(0:_{M} J\right)
$$

Proof. (a) Let I and J be ideals of R with $\left(0:_{M} I\right) \subseteq\left(0:_{M} J\right)$. Then $A n n_{R}\left(\left(0:_{M}\right.\right.$ $J)) \subseteq A n n_{R}\left(\left(0:_{M} I\right)\right)$. As M satisfies the S-double annihilator conditions, there exists an $s \in S$ such that $s A n n_{R}\left(\left(0:_{M} I\right)\right) \subseteq I$. Thus $s J \subseteq s A n n_{R}\left(\left(0:_{M} J\right)\right) \subseteq I$.
(b) As M satisfies the S-double annihilator condition, there exist $s, t, \in S$ such that $s A n n_{R}\left(\left(0:_{M} I\right)\right) \subseteq I$ and $t A n n_{R}\left(\left(0:_{M} J\right)\right) \subseteq J$. Thus $\operatorname{sAnn}_{R}\left(\left(0:_{M} I\right)\right) \cap t A n n_{R}\left(\left(0:_{M}\right.\right.$ $J)) \subseteq I \cap J$. It follows that

$$
\left(0:_{M} I \cap J\right) \subseteq\left(0:_{M} \operatorname{st}\left(\operatorname{Ann}_{R}\left(\left(0:_{M} I\right)\right) \cap \operatorname{Ann}_{R}\left(\left(0:_{M} J\right)\right)\right) .\right.
$$

Since M is an S-comultiplication module, there exists an $h \in S$ such that

$$
h\left(0:_{M} A n n_{R}\left(\left(0:_{M} I\right)+\left(0:_{M} J\right)\right)\right) \subseteq\left(0:_{M} I\right)+\left(0:_{M} J\right)
$$

Therefore, we have

$$
h s t\left(0:_{M} I \cap J\right) \subseteq h\left(0:_{M} A n n_{R}\left(\left(0:_{M} I\right)+\left(0:_{M} J\right)\right)\right) \subseteq\left(0:_{M} I\right)+\left(0:_{M} J\right)
$$

Theorem 3. Let M ba an S-strong comultiplication R-module. Then we have the following.
(a) N is an S-copure submodule of M if and only if $\operatorname{Ann}_{R}(N)$ is an S-pure ideal of R.
(b) An ideal I of R is S-pure if and only if $\left(0:_{M} I\right)$ is an S-copure submodule of M.

Proof. (a) Let N be an S-copure submodule of M and let I be an ideal of R. As M is an S-comultiplication R-module, there exists an $t \in S$ such that $t\left(0:_{M} A n n_{R}(N)\right) \subseteq N$ and so $\left(0:_{M} A n n_{R}(N)\right) \subseteq\left(N:_{M} t\right)$. It follows that

$$
\left(0:_{M} A n n_{R}(N) I\right)=\left(\left(0:_{M} A n n_{R}(N)\right):_{M} I\right) \subseteq\left(N:_{M} t I\right) .
$$

Since N is an S-copure submodule of M, there exists an $s \in S$ such that

$$
s\left(N:_{M} t I\right) \subseteq N+\left(0:_{M} t I\right) \subseteq\left(0:_{M} A n n_{R}(N)\right)+\left(0:_{M} t I\right) \subseteq\left(0:_{M} A n n_{R}(N) \cap t I\right)
$$

Therefore, $\left(0:_{M} A n n_{R}(N) I\right) \subseteq\left(0:_{M}\left(s\left(A n n_{R}(N) \cap t I\right)\right)\right.$. This in turn implies that $h s t\left(A n n_{R}(N) \cap I\right) \subseteq A n n_{R}(N) I$ for some $h \in S$ by using Lemma 1 (a). Conversely, assume that N is a submodule of M such that $\operatorname{Ann}_{R}(N)$ is an S-pure ideal of R and I be an ideal of R. Then there exists an $s \in S$ such that $s\left(A n n_{R}(N) \cap I\right) \subseteq A n n_{R}(N) I$. Now we have

$$
\left(N:_{M} I\right) \subseteq\left(0:_{M} A n n_{R}(N) I\right) \subseteq\left(0:_{M} s\left(\operatorname{Ann}_{R}(N) \cap I\right)\right)=\left(\left(0:_{M} A n n_{R}(N) \cap I\right):_{M} s\right)
$$

This implies that $s\left(N:_{M} I\right) \subseteq\left(0:_{M} A n n_{R}(N) \cap I\right)$. By Lemma 1 (b), there exists an $t \in S$ such that $t\left(0:_{M} A n n_{R}(N) \cap I\right) \subseteq\left(0:_{M} A n n_{R}(N)\right)+\left(0:_{M} I\right)$. As M is an S-comultiplication R-module, there exists an $h \in S$ such that $h\left(0:_{M} A n n_{R}(N) \subseteq N\right.$. Therefore, we have

$$
\operatorname{tsh}\left(N:_{M} I\right) \subseteq \operatorname{th}\left(0:_{M} A n n_{R}(N) \cap I\right) \subseteq h\left(0:_{M} A n n_{R}(N)\right)+h\left(0:_{M} I\right) \subseteq N+\left(0:_{M} I\right)
$$

as desired.
(b) Let I be an S-pure ideal of R. Then there is an $s \in S$ such that $s(I \cap J) \subseteq I J$ for each ideal J of R. Now we have

$$
\left(\left(0:_{M} I\right):_{M} J\right)=\left(0:_{M} I J\right) \subseteq\left(0:_{M} s(I \cap J)\right) .
$$

It follows that $s\left(\left(0:_{M} I\right):_{M} J\right) \subseteq\left(0:_{M} I \cap J\right)$. By Lemma 1 (b), there exists an $t \in S$ such that $t\left(0:_{M} I \cap J\right) \subseteq\left(0:_{M} I\right)+\left(0:_{M} J\right)$. Therefore,

$$
t s\left(\left(0:_{M} I\right):_{M} J\right) \subseteq\left(0:_{M} I\right)+\left(0:_{M} J\right) .
$$

Conversely, assume that $\left(0:_{M} I\right)$ is an S-copure submodule of M and J is an ideal of R. Then by part (a), $A n n_{R}\left(\left(0:_{M}\right)\right)$ is an S-pure ideal of R. Thus there exists an $s \in S$ such that $s\left(A n n_{R}\left(\left(0:_{M} I\right)\right) \cap I ́\right) \subseteq A n n_{R}\left(\left(0:_{M} I\right)\right) I ́$ for each ideal $I ́$ of R. Hence we have

$$
s(I \cap J)=s\left(I \cap A n n_{R}\left(\left(0:_{M} I\right)\right) \cap J\right) \subseteq \operatorname{Ann}_{R}\left(\left(0:_{M} I\right)\right)(I \cap J)
$$

As M satisfies the S-double annihilator condition, there exists an $t \in S$ such that $t \operatorname{Ann}_{R}\left(\left(0:_{M} I\right)\right) \subseteq I$. Hence, $s t(I \cap J) \subseteq I(I \cap J) \subseteq I^{2} \cap I J \subseteq I J$, as needed.

A proper submodule N of an R-module M is said to be completely irreducible if $N=\bigcap_{i \in I} N_{i}$, where $\left\{N_{i}\right\}_{i \in I}$ is a family of submodules of M, implies that $N=N_{i}$ for some $i \in I$. It is easy to see that every submodule of M is an intersection of completely irreducible submodules of M [8].

Remark 1. Let N and K be two submodules of an R-module M. To prove $N \subseteq K$, it is enough to show that if L is a completely irreducible submodule of M such that $K \subseteq L$, then $N \subseteq L[5]$.

A family $\left\{N_{i}\right\}_{i \in I}$ of submodules of an R-module M is said to be an inverse family of submodules of M if the intersection of two of its submodules again contains a module in $\left\{N_{i}\right\}_{i \in I}$. Also, M satisfies the property $A B 5^{*}$ if for every submodule K of M and every inverse family $\left\{N_{i}\right\}_{i \in I}$ of submodules of $M, K+\cap_{i \in I} N_{i}=\cap_{i \in I}\left(K+N_{i}\right)$ [11].

Theorem 4. Let S be a multiplicatively closed subset of R which satisfies the maximal multiple condition (e.g., S is finite or $S \subseteq U(R)$) and M be an R-module which satisfies the property AB5*. Then we have the following.
(a) If $\left\{N_{\lambda}\right\}_{\lambda \in \Lambda}$ is a chain of S-copure submodules of M, then $\cap_{\lambda \in \Lambda} N_{\lambda}$ is S-copure.
(b) If N is a submodule of M, then there is a submodule K of M minimal with respect to $N \subseteq K$ and K is an S-copure submodule of M.
Proof. (a) Let I be an ideal of R. Let L be a completely irreducible submodule of M such that $\cap_{\lambda \in \Lambda} N_{\lambda}+\left(0:_{M} I\right) \subseteq L$. Then $\cap_{\lambda \in \Lambda} N_{\lambda}+\left(0:_{M} I\right)+L=L$. Since M satisfies the property $A B 5^{*}$, we have

$$
\cap_{\lambda \in \Lambda}\left(N_{\lambda}+\left(0:_{M} I\right)+L\right)=L .
$$

Now as L is a completely irreducible submodule of M, there exists an $\alpha \in \Lambda$ such that $N_{\alpha}+\left(0:_{M} I\right)+L=L$. Now as S satisfies the maximal multiple condition, there exists
an $s \in S$ such that $s\left(N_{\alpha}:_{M} I\right)+L \subseteq L$ since N_{α} is an S-copure submodule of M. Thus $s\left(N_{\alpha}:_{M} I\right) \subseteq L$. Hence, $s\left(\cap_{\lambda \in \Lambda} N_{\lambda}:_{M} I\right) \subseteq L$. This implies that

$$
s\left(\cap_{\lambda \in \Lambda} N_{\lambda}:_{M} I\right) \subseteq \cap_{\lambda \in \Lambda} N_{\lambda}+\left(0:_{M} I\right)
$$

by Remark 1.
(b) Let

$$
\Sigma=\{N \leq H \mid H \text { is a } S \text {-copure submodule of } M\}
$$

Then $M \in \Sigma \neq \varnothing$. Let $\left\{N_{\lambda}\right\}_{\lambda \in \Lambda}$ be a totally ordered subset of Σ. Then $N \leq \cap_{\lambda \in \Lambda} N_{\lambda}$ and by part (a), $\cap_{\lambda \in \Lambda} N_{\lambda}$ is an S-copure submodule of M. Thus by using Zorn's Lemma, one can see that Σ has a minimal element, K say as needed.

Let R_{i} be a commutative ring with identity and M_{i} be an R_{i}-module, for $i=1,2$. Let $R=R_{1} \times R_{2}$. Then $M=M_{1} \times M_{2}$ is an R-module. Clearly, every submodule of M is in the form of $N=N_{1} \times N_{2}$ for some submodules N_{1} of M_{1} and N_{2} of M_{2}. Also, if S_{i} is a multiplicatively closed subset of R_{i} for each $i=1,2$, then $S=S_{1} \times S_{2}$ is a multiplicatively closed subset of R.

Theorem 5. Let M_{i} be an R_{i}-module and $S_{i} \subseteq R_{i}$ be a multiplicatively closed subset for $i=1,2$. Assume that $M=M_{1} \times M_{2}, R=R_{1} \times R_{2}$, and $S=S_{1} \times S_{2}$. Then M is a fully S-copure module if and only if M_{i} is a fully S_{i}-copure module for $i=1,2$.

Proof. For only if part, without loss of generality we will show M_{1} is a fully S_{1-} copure R_{1}-module. Take a submodule N_{1} of M_{1} and ideal I_{1} of R_{1}. Then $N_{1} \times\{0\}$ is a submodule of M and $I_{1} \times\{0\}$ is an ideal of R. Since M is a fully S-copure R-module, there exists $s=\left(s_{1}, s_{2}\right) \in S_{1} \times S_{2}$ such that

$$
\left(s_{1}, s_{2}\right)\left(N_{1} \times\{0\}:_{M} I_{1} \times\{0\}\right) \subseteq N_{1} \times\{0\}+\left(0:_{M} I_{1} \times\{0\}\right)
$$

By focusing on first coordinate, we have $s_{1}\left(N_{1}:_{M_{1}} I_{1}\right) \subseteq N_{1}+\left(0:_{M_{1}} I_{1}\right)$. So M_{1} is a fully S_{1}-copure R_{1}-module. Now assume that M_{1} is a fully S_{1}-copure module and M_{2} is a fully S_{2}-copure module. Take a submodule N of M and ideal I of R. Then N must be in the form of $N_{1} \times N_{2}$ and $I=I_{1} \times I_{2}$, where $N_{1} \subseteq M_{1}, N_{2} \subseteq M_{2}$ and $I_{1} \subseteq R_{1}, I_{2} \subseteq R_{2}$. Since M_{1} is a fully S_{1}-copure R_{1}-module, there exists an $s_{1} \in S_{1}$ such that $s_{1}\left(N_{1}:_{M_{1}} I_{1}\right) \subseteq N_{1}+\left(0:_{M_{1}} I_{1}\right)$. Similarly, there exists an element $s_{2} \in S_{2}$ such that $s_{2}\left(N_{2}:_{M_{2}} I_{2}\right) \subseteq N_{2}+\left(0:_{M_{2}} I_{2}\right)$. Now, put $s=\left(s_{1}, s_{2}\right) \in S$. Then we get

$$
\begin{aligned}
\left(s_{1}, s_{2}\right)\left(N:_{M} I\right) & =\left(s_{1}, s_{2}\right)\left(N_{1} \times N_{2}:_{M_{1} \times M_{2}} I_{1} \times I_{2}\right) \\
& =s_{1}\left(N_{1}:_{M_{1}} I_{1}\right) \times s_{2}\left(N_{2}:_{M_{2}} I_{2}\right) \\
& \subseteq\left(N_{1}+\left(0:_{M_{1}} I_{1}\right)\right) \times\left(N_{2}+\left(0:_{M_{2}} I_{2}\right)\right) \\
& =N_{1} \times N_{2}+\left(0:_{M_{1} \times M_{2}} I_{1} \times I_{2}\right)=N+\left(0:_{M} I\right)
\end{aligned}
$$

Hence, M is a fully S-copure R-module.
In the following theorem, we characterize the fully copure R-modules.
Theorem 6. Let M be an R-module. Then the following statements are equivalent:
(a) M is a fully copure R-module;
(b) M is a fully $(R-\mathfrak{p})$-copure R-module for each prime ideal \mathfrak{p} of R;
(c) M is a fully $(R-\mathfrak{m})$-copure R-module for each maximal ideal \mathfrak{m} of R;
(d) M is a fully $(R-\mathfrak{m})$-copure R-module for each maximal ideal \mathfrak{m} of R with $M_{\mathfrak{m}} \neq 0_{\mathfrak{m}}$.

Proof. $(a) \Rightarrow(b)$ Let M be a fully copure R-module and \mathfrak{p} be a prime ideal of R. Then $R-\mathfrak{p}$ is multiplicatively closed set of R and so M is a fully $(R-\mathfrak{p})$-copure R-module by Proposition 1.
$(b) \Rightarrow(c)$ Since every maximal ideal is a prime ideal, the result follows from the part (b).
$(c) \Rightarrow(d)$ This is clear.
$(d) \Rightarrow(a)$ Let N be a submodule of M and I be an ideal of R. Take a maximal ideal \mathfrak{m} of R with $M_{\mathfrak{m}} \neq 0_{\mathfrak{m}}$. As M is a fully $(R-\mathfrak{m})$-copure module, there exists an $s \notin \mathfrak{m}$ such that $s\left(N:_{M} I\right) \subseteq N+\left(0:_{M} I\right)$. This implies that

$$
\left(N:_{M} I\right)_{\mathfrak{m}}=\left(s\left(N:_{M} I\right)\right)_{\mathfrak{m}} \subseteq N_{\mathfrak{m}}+\left(0:_{M} I\right)_{\mathfrak{m}}
$$

Now we have $\left(N:_{M} I\right)_{\mathfrak{m}} \subseteq N_{\mathfrak{m}}+\left(0:_{M} I\right)_{\mathfrak{m}}$ for each maximal ideal \mathfrak{m} of R. It follows that $\left(N:_{M} I\right) \subseteq N+\left(0:_{M} I\right)$, as needed.

3. Acknowledgement

The author would like to thank the referee for his/her helpful comments.

REFERENCES

[1] D. D. Anderson, T. Arabaci, U. Tekir, and S. Koç, "On S-multiplication modules," Comm. Algebra, vol. 48, no. 8, pp. 3398-3407, 2020, doi: 10.1080/00927872.2020.1737873. [Online]. Available: https://doi.org/10.1080/00927872.2020.1737873
[2] F. W. Anderson and K. R. Fuller, Rings and categories of modules, 2nd ed., ser. Graduate Texts in Mathematics. Springer-Verlag, New York, 1992, vol. 13. [Online]. Available: https://doi.org/10.1007/978-1-4612-4418-9. doi: 10.1007/978-1-4612-4418-9
[3] H. Ansari-Toroghy and F. Farshadifar, "The dual notion of multiplication modules," Taiwanese J. Math., vol. 11, no. 4, pp. 1189-1201, 2007, doi: 10.11650/twjm/1500404812. [Online]. Available: https://doi.org/10.11650/twjm/1500404812
[4] H. Ansari-Toroghy and F. Farshadifar, "Strong comultiplication modules," CMU. J. Nat. Sci., vol. 8, no. 1, pp. 105-113, 2009.
[5] H. Ansari-Toroghy and F. Farshadifar, "The dual notions of some generalizations of prime submodules," Comm. Algebra, vol. 39, no. 7, pp. 2396-2416, 2011, doi: 10.1080/00927872.2010.488684. [Online]. Available: https://doi.org/10.1080/00927872.2010. 488684
[6] H. Ansari-Toroghy and F. Farshadifar, "Fully idempotent and coidempotent modules," Bull. Iranian Math. Soc., vol. 38, no. 4, pp. 987-1005, 2012.
[7] F. Farshadifar, "A generalization of pure submodules," Journal of Algebra and Related Topics, vol. 8, no. 2, pp. 1-8, 2020.
[8] L. Fuchs, W. Heinzer, and B. Olberding, "Commutative ideal theory without finiteness conditions: irreducibility in the quotient field," in Abelian groups, rings, modules, and homological algebra, ser. Lect. Notes Pure Appl. Math. Chapman \& Hall/CRC, Boca Raton, FL, 2006, vol. 249, pp. 121-145. [Online]. Available: https://doi.org/10.1201/9781420010763.ch12. doi: 10.1201/9781420010763.ch12
[9] R. Gilmer, Multiplicative ideal theory, ser. Queen's Papers in Pure and Applied Mathematics. Queen's University, Kingston, ON, 1992, vol. 90, corrected reprint of the 1972 edition.
[10] R. Y. Sharp, Steps in commutative algebra, 2nd ed., ser. London Mathematical Society Student Texts. Cambridge University Press, Cambridge, 2000, vol. 51.
[11] R. Wisbauer, Foundations of module and ring theory, german ed., ser. Algebra, Logic and Applications. Gordon and Breach Science Publishers, Philadelphia, PA, 1991, vol. 3, a handbook for study and research.

Author's address

Faranak Farshadifar

Department of Mathematics, Farhangian University, Tehran, Iran
E-mail address: f.farshadifar@cfu.ac.ir

