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Abstract. Let R be a commutative ring with identity, S be a multiplicatively closed subset of R,
and M be an R-module. The aim of this paper is to introduce the notion of S-copure submodules
and investigate some properties of this class of modules. We say that a submodule N of M is
S-copure if there exists an s € S such that s(N :3y I) C N + (0 7 I) for every ideal I of R.
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1. Introduction

Throughout this paper R will denote a commutative ring with identity and Z will
denote the ring of integers.

It is well known that the notions of purity and copurity with their different general-
izations play a fundamental role in theory of module categories. In [2], Anderson and
Fuller defined a submodule N of an R-module M a pure submodule if IN = N NIM
for every ideal I of R. In [4], H. Ansari-Toroghy and F. Farshadifar introduced the
dual notion of pure submodules (that is copure submodules). A submodule N of an
R-module M is said to be copure if (N :ps I) = N+ (0 :p I) for every ideal I of R [4],
where (N iy I) = {x € M : Ix C N}. An R-module M is said to be fully pure (resp.
fully copure) if every submodule of M is pure (resp. copure) [6].

Let S be a multiplicatively closed subset of R. In [7], F. Farshadifar introduced and
investigated the concept of S-pure submodules of modules as a generalization of pure
submodules. A submodule N of an R-module M is said to be S-pure if there exists an
s € § such that s(NNIM) C IN for every ideal I of R [7]. Also, an R-module M is
said to be fully S-pure if every submodule of M is S-pure [7].

Let S be a multiplicatively closed subset of R and M be an R-module. In this paper,
we introduce the notion of S-copure submodules of M as a generalisation of copure
submodules. Also, this notion can be regarded as a dual notion of S-pure submodules.
We provide some useful information concerning the is new class of modules.
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2. Main results

Throughout this section, S is a multiplicatively closed subset of R, thatis, 1 € §
and 5157 € S for any 51 € S and any s, € S.

Definition 1. We say that a submodule N of an R-module M is S-copure if there
exists an s € S such that s(N :3 I) C N+ (0 :p I) for every ideal I of R.

Definition 2. We say that an R-module M is fully S-copure if every submodule of
M is S-copure.

Example 1. Let M be an R-module with Anng(M)NS # &. Then clearly, M is a
fully S-copure R-module.

Proposition 1. Every fully copure R-module is a fully S-copure R-module. The
converse is true if S C U(R), where U (R) is the set of units in R.

Proof. This is clear. O

The following example shows that the converse of Proposition 1 is not true in
general.

Example 2. Clearly, for a prime number p, the submodule pZ of the Z-module Z
is not copure. Take the multiplicatively closed subset S = {p" : n € NU{0}} of Z.
Then for each k € N, p(pZ :7 kZ) C pZ + (0 :z kZ) implies that pZ is an S-copure
submodule of Z.

Theorem 1. Let M be an R-module, and let N and K be submodules of M such
that N C K C M. Then we have the following.

(a) If K is an S-copure submodule of M and N is a S-copure submodule of K,
then N is an S-copure submodule of M.

(b) If N is an S-copure submodule of M, then N is an S-copure submodule of K.

(¢) IfK is an S-copure submodule of M, then K /N is an S-copure submodule of
M/N.

(d) If N is an S-copure submodule of M and K /N is an S-copure submodule of
M/N, then K is an S-copure submodule of M.

(e) If N is an S-copure submodule of M, then there is a bijection between the
S-copure submodules of M containing N and the S-copure submodules of
M/N.

Proof. (a) Let I be an ideal of R. Then since K is an S-copure submodule of M,
there exists an s € S such that
SNy ) =s(NNK iy I) =s(N:yy )N (K i 1))
CINyDN(K+0:p1)=(N:x )+ (0:p 1).
Now since N is an S-copure submodule of K, there exists an ¢ € S such that
st(N oy I) Ct(N:g I)+t(0:pg ) CN+(0:x 1)+ (0:p 1) =N+ (0 1).
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(b) Let I be an ideal of R. Then as N is an S-copure submodule of M, there exists
an s € S such that

sS(N:igk)=s(KN(N:y 1)) CKN(N+(0:p1))
=KNN+KNO:y ) CN+0:p ).
(c) Let I be an ideal of R. Then there exists an s € S such that
s(K:gI) CK+(0:p1).
Thus
S(K/N :yyn 1) =s((K:m I)/N) =s((K:y I) + KN (N I))/N
CK+O:uy)+KN(N:y1I))/N
=K/N+((N:yI)Nn(K+(0:y1))/N
CK/N+((N:yI)N(K :p1))/N
=K/N+(N:yI)/N=K/N+(0:pnI).

(d) Let I be an ideal of R. Since N is an S-copure submodule of M, there exists an
s € Ssuch that s(N :p ) C N+ (0:p I). We have

s(0:yyn 1) =s(N iy I)/N C ((0: 1) +N)/N.
Now since K /N is an S-copure submodule of M /N, there exists an ¢ € S such that
t(K/N v I) SK/N+ (0w I).
Therefore,
st(K iy I)/N = st(K/N :pn 1) € sK/N+5(0 5 1)

CK/N+((0:yI)+N)/N=(K+N+(0:p1))/N
=(K+(0:p1))/N.

Thus st(K i I) € K+ (0:p 1), as desired.

(e) This follows from parts (c) and (d). ]

Recall that the saturation S* of S is defined as $* = {x € R: x/1 is a unit of S™'R}.
It is obvious that $* is a multiplicatively closed subset of R containing S [9].

A multiplicatively closed subset S of R is said to satisfy the maximal multiple
condition if there exists an s € S such that 7 | s for each t € S.

Proposition 2. Let M be an R-module. Then we have the following.

(a) If S1 C S, are multiplicatively closed subsets of R and M is a fully Si-copure
R-module, then M is a fully S>-copure R-module.

(b) M is afully S-copure R-module if and only if M is a fully S*-copure R-module.

(c) If N is an S-copure submodule of M, then sN is an S-copure submodule of M
foreach s € S.
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(d) If f : M — M is an endomorphism and there exists an s € S such that sf(x) =
f?(x) for each x € M, then Ker(f) is an S-copure submodule of M.

(e) If N and K are submodules of M such that NN K and N + K are S-copure
submodules of M. Then N is an S-copure submodule of M.

(f) If S is satisfying the maximal multiple condition (e.g., S is finite or S CU(R))
and {My } A is a family of submodules of M with S-copure submodules N C
M, then @BycaN,, is an S-copure submodule of ®ycaM).

Proof. (a) This is clear.

(b) Let M be a fully S-copure R-module. Since S C S*, by part (a), M is a fully
S*-copure R-module. For the converse, assume that M is a fully S*-copure module,
N is a submodule of M, and [ is an ideal of R. Then there exists an x € S* such that
X(N:yy I) SN+ (0:p I). Asx € S*, x/11s aunit of S™'R and so (x/1)(a/s) = 1 for
some a € R and s € S. This yields that us = uxa for some u € S. Thus we have

us(N:y I) =uxa(N 1) Cx(N oy I) SN+ (02 1).
Therefore, M is a fully S-copure R-module.

(c)Lets € S. As N is S-copure, there is an ¢ € S such that (N ;s I) TN+ (0:p 1)
for each ideal I of R. Therefore,

ts(sN iy 1) Cts(Ney 1) CsN+s(0:y 1) CsN+ (0 1).

(d) Let I be an ideal of R and x € (Ker(f) :p I). Then xI C Ker(f). It follows
that f(x) € (0 I). As sf = f2, we have sx — f(x) € Ker(f). Therefore, sx =
sx— f(x)+ f(x) € Ker(f)+ (0 :p I). This implies that

s(Ker(f):m 1) C Ker(f)+(0:p1).

(e) Let I be an ideal of R and let m € (N :p I). Since N + K is an S-copure sub-
module of M, there exists an s € S such that s(N+K s I) CN+ K+ (0:pI). Then
Im C N+ K implies that sm = x+y+1¢ forsomex € N,y € K and € (0:p ). Thus
msl = xI 4+ yl. This implies that y/ C NN K. Since NN K is an S-copure submodule
of M, there exists an i € S such that A(NNK :ps [) CNNK+(0:pI). Thus hy = X +7
for some ¥ € NNK and 7 € (0:p I). It follows that shm € N + (0 :ps I). Therefore,
sh(N iy I) CN+(0:p 1), as desired.

(f) Let I be an ideal of R. Then there exists an s € S such that s(Ny, 1, 1) C
Ny + (0, 1) for each A € A. Now one can see that s(DacaNy i@, 5 1) S PrcalNy, +
(0 ‘OpeaMy, 1). ]

Definition 3. We say that a submodule N of an R-module M is an S-direct sum-
mand of M if there exist a submodule K of M and s € S such that sM = N+ K (d.s.).

Definition 4. We say that an R-module M is an S-semisimple module if every
submodule of M is an S-direct summand of M.

Proposition 3. Let M be an S-semisimple R-module. Then M is a fully S-copure
R-module.



S-COPURE SUBMODULES OF A MODULE 157

Proof. Let N be a submodule of M. Then there exist a submodule K of M and
s € S such that sM = N + K (d.s.). Now for each ideal I of R, we have

SNy ) =Ny ) =(N:xg )+ (N:nI) C(0:x I)+NC(0:p )+ N.
O

Proposition 4. Let R be a principal ideal domain and M be an R-module. Then
every submodule of M is an S-pure submodule if and only if is an S-copure submodule.

Proof. First suppose that N is an S-pure submodule of M and r € R. Then there
exists an s € S such that s(NNrM) C rN. Now let rm € N. Then srm = srn, for some
n€N. Thus, sm=s(m—n)+sn€ (0:pr)+N. So,s(N:pyr) CN+(0:pr)and N
is S-copure. Now suppose that N is an S-copure submodule of M and r € R.

Then there exists an s € S such that s(N :3 r) C N+ (0 :p ). Suppose that rm € N.
Then sm = ny +m;, where ny € N and rmy = 0. Thus srm = rn; € rN. This shows
that NV is an S-pure submodule of M. g

Theorem 2. Let M be a distributive R-module. Then the following hold.

(a) A submodule N of M is S-copure if and only if there exists an s € S such that
for each a € R we have

S(N:ya) CN+(0:y a).

(b) A submodule N of M is S-pure if and only if there exists an s € S such that for
each a € R we have
s(NNaM) CaN.
(c) A submodule N of M is an S-pure submodule if and only if it is an S-copure
submodule.

Proof. (a) First assume that there exists an s € S such that for each a € R we have
S(N :pra) CN+(0:p a). Suppose that [ is an ideal of R. Then we have

sS(NoyI)=5(N:y Y Ra)=s((N:ya) C[\(N+(0:pa)).
acl acl acl

Now as M is distributive, we have

ﬂ(N-f—(O :Ma)) :N+m(0 :Ma) :N+(0 2MI).

acl acl
Therefore, N is an S-copure submodule of M. The converse is clear.

(b) First suppose that exists an s € S such that for each a € R we have s(NNaM) C

aN. Let I be an ideal of R. Then as M is a distributive R-module, we have

IN = (Y Ra)N2 Y s(RaMNN)DsY (RaMNN)

acl acl acl
=s((}, Ra)MNN) = s(IMNN).

acl
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Hence, N is an S-pure submodule of M. The converse is clear.
(c) This follows from parts (a), (b), and Proposition 4. ]

Proposition 5. Let R be a Noetherian ring and let M be an R-module. Then the
following hold.
(@) If N is an S-copure submodule of M, then for each prime ideal p of R, N, is
an Sy-copure submodule of My, as an Ry-module.
(b) If Ny is an Sy-copure submodule of an Ry-module My, for each maximal
ideal m of R, then N is an S-copure submodule of M.

Proof. (a) This follows from the fact that by [10, 9.13], if I is a finitely generated
ideal of R, then (N :p7 1)y = (Np :m, Ip)-

(b) Suppose that / is an ideal of R. As R is a Noetherian ring, / is finitely generated
ideal of R. Hence by [10, 9.13], for any maximal ideal m of R, (N :p ) = (Nm ',
Iy). Thus by assumption, for any maximal ideal m of R, there is an i/a € Sy, such
that

(h(N M I))m = h/a(Nm ‘Mp Im) C Ny + (0 My Im) = (N—|— (0 M I))m.
It follows that
O

Let M be an R-module. M is said to be a comultiplication module if for every
submodule N of M there exists an ideal I of R such that N = (0:), I) [3]. M satisfies
the double annihilator conditions (DAC for short) if for each ideal I of R, we have
I=Anng((0:p1)). M is said to be a strong comultiplication module if M is a comul-
tiplication R-module which satisfies the double annihilator condition [4]. M is said
to be an S-comultiplication module if for each submodule N of M, there exist s € §
and an ideal 7 of R such that s(0:p 1) CN C (0:p 1) [1].

Definition 5. We say that an R-module M satisfies the S-double annihilator con-
dition (S — DAC for short) if for each ideal I of R there exists an s € S such that
sAnng((0:p 1)) C I

Definition 6. We say that an R-module M is an S-strong comultiplication mod-
ule if M is an S-comultiplication R-module which satisfies the S-double annihilator
condition.

Lemma 1. Let M be an S-strong comultiplication R-module. Then we have the
following.
(a) If I and J are ideals of R with (0 :p I) C (0 :p J), then there exists an s € S
such that sJ C I.
(b) Forideals I and Jof R there exists ant € S such that

I(O ZMIﬂJ) C (0 IMI)—I—(O :MJ).



S-COPURE SUBMODULES OF A MODULE 159

Proof. (a) Let I and J be ideals of R with (0 :y I) C (0 :ps J). Then Anng((0 :py
J)) CAnng((0:p1)). As M satisfies the S-double annihilator conditions, there exists
an s € S such that sAnng((0:p 1)) C 1. Thus sJ C sAnng((0:p J)) C 1.

(b) As M satisfies the S-double annihilator condition, there exist s,¢, € S such that
sAnng((0 :p 1)) C I and tAnng((0 :pr J)) C J. Thus sAnng((0 :p 1)) NtAnng((0 @y
J)) CINJ. It follows that

(0:p INT) C(0:py st(Anng((0:ps 1)) NARnng((0:p1 J))).-
Since M is an S-comultiplication module, there exists an 4 € S such that
h(0:p Anng((0:pr 1)+ (0:pr J))) C(0:pr )+ (0230 J).
Therefore, we have
hst(0:p INT) Ch(0 :p0 Anng((0 iy 1)+ (0:p J))) C(0:pr 1)+ (0 2pg J).
g
Theorem 3. Let M ba an S-strong comultiplication R-module. Then we have the
following.

(a) N is an S-copure submodule of M if and only if Anng(N) is an S-pure ideal
of R.

(b) An ideal I of R is S-pure if and only if (0 :p I) is an S-copure submodule of
M.

Proof. (a) Let N be an S-copure submodule of M and let / be an ideal of R. As M is
an S-comultiplication R-module, there exists an ¢ € S such that #(0 :y; Anng(N)) C N
and so (0 :py Anng(N)) C (N :p t). It follows that

(0 :MAnnR(N)I) = ((0 MAnnR(N)) M 1) - (N M ll).
Since N is an S-copure submodule of M, there exists an s € S such that
S(N ‘M l‘I) CN+ (0 M II) - (0 :MAnnR(N)) + (0 M ll) - (0 :MAnnR(N) ﬁtl).

Therefore, (0 :py Anng(N)I) C (0 :p (s(Anng(N) NtI)). This in turn implies that
hst(Anng(N)N1I) C Anng(N)I for some h € S by using Lemma 1 (a). Conversely,
assume that N is a submodule of M such that Anng(N) is an S-pure ideal of R and /
be an ideal of R. Then there exists an s € S such that s(Anng(N)NI) C Anng(N)I.
Now we have

(N :p I) C(0:p0 Anng(N)I) C (0 :pr s(Anng(N)NI)) = ((0:pr Anng(N) NI) :p1 5).

This implies that s(N :p I) C (0 :p Anng(N)N1I). By Lemma 1 (b), there exists
an ¢ € S such that 7(0 :p Anng(N)N1I) C (0 :p Anng(N)) + (0 :p I). As M is an
S-comultiplication R-module, there exists an & € S such that h(0 :py Anng(N) C N.
Therefore, we have

tSh(N M I) - th(O :MAnnR(N)ﬂI) - h(O MAnnR(N))—I—h(O M I) §N+(O M I),
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as desired.
(b) Let I be an S-pure ideal of R. Then there is an s € S such that s(/NJ) C 1J for
each ideal J of R. Now we have

((0 ZMI) ZMJ) = (0 ‘M IJ) C (0 M S(Iﬂ])).

It follows that s((0:ps 1) :pr J) C (0:p INJ). By Lemma 1 (b), there exists an t € S
such that #(0 :py INJ) C (0:pr 1) + (0 :pr J). Therefore,
ZS((O M I) M J) - (O M I) + (0 M J)
Conversely, assume that (0 :j I) is an S-copure submodule of M and J is an ideal of
R. Then by part (a), Anng((0 :p)) is an S-pure ideal of R. Thus there exists an s € §
such that s(Anng((0 :p7 1)) NI) € Anng((0 :py I))I for each ideal [ of R. Hence we
have
s(INJ) =s(INAnng((0: 1)) NJ) C Anng((0:p 1))(INJ)

As M satisfies the S-double annihilator condition, there exists an r € S such that
tAnng((0:p 1)) C I. Hence, st(INJ) CI(INJ) CI?N1J C 1J, as needed. O

A proper submodule N of an R-module M is said to be completely irreducible if
N = Nier Ni, where {N;}ics is a family of submodules of M, implies that N = N; for
some i € [. Itis easy to see that every submodule of M is an intersection of completely
irreducible submodules of M [&].

Remark 1. Let N and K be two submodules of an R-module M. To prove N C K,
it is enough to show that if L is a completely irreducible submodule of M such that
K CL,then N CL[5].

A family {N;};c; of submodules of an R-module M is said to be an inverse family of
submodules of M if the intersection of two of its submodules again contains a module
in {N;}ic;. Also, M satisfies the property AB5* if for every submodule K of M and
every inverse family {N;};c; of submodules of M, K + Nie;N; = Nic/(K+N;) [11].

Theorem 4. Let S be a multiplicatively closed subset of R which satisfies the max-
imal multiple condition (e.g., S is finite or S C U(R)) and M be an R-module which
satisfies the property AB5*. Then we have the following.

(@) If {N).}ren is a chain of S-copure submodules of M, then My Ny, is S-copure.
(b) If N is a submodule of M, then there is a submodule K of M minimal with
respect to N C K and K is an S-copure submodule of M.

Proof. (a) Let I be an ideal of R. Let L be a completely irreducible submodule
of M such that My ANy + (0:p I) € L. Then MyepaNy+ (0:p 1)+ L = L. Since M
satisfies the property AB5*, we have

Mear+(0:m 1) +L) =L.

Now as L is a completely irreducible submodule of M, there exists an o € A such that
No+(0:pI)+ L= L. Now as S satisfies the maximal multiple condition, there exists
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an s € S such that s(Ng :p 1) + L C L since Ny is an S-copure submodule of M. Thus
$(Ng :m I) C L. Hence, s(MyeaNy :p I) € L. This implies that
s(MaeaN tm 1) © MeaNp+ (021 1),
by Remark 1.
(b) Let
Y={N<H|H isaS— copure submodule of M}.
Then M € £ # @. Let {N, }ca be a totally ordered subset of £. Then N < My AN,

and by part (a), NycadVy, is an S-copure submodule of M. Thus by using Zorn’s
Lemma, one can see that ¥ has a minimal element, K say as needed. O

Let R; be a commutative ring with identity and M; be an R;-module, for i = 1,2.
Let R=R; X Ry. Then M = M| x M; is an R-module. Clearly, every submodule of
M is in the form of N = N; x N, for some submodules Ny of M; and N, of M,. Also,
if S; is a multiplicatively closed subset of R; for each i = 1,2, then S =S| xSy is a
multiplicatively closed subset of R.

Theorem 5. Let M; be an R;-module and S; C R; be a multiplicatively closed subset
fori=1,2. Assume that M = M; X M, R=R| X Ry, and S = 851 X S. Then M is a
fully S-copure module if and only if M; is a fully S;-copure module for i = 1,2.

Proof. For only if part, without loss of generality we will show M is a fully S;-
copure R;-module. Take a submodule N; of M| and ideal I; of R;. Then N; x {0} is a
submodule of M and I; x {0} is an ideal of R. Since M is a fully S-copure R-module,
there exists s = (s1,52) € S1 X S7 such that

(Sl,Sz)(Nl X {0} M 11 X {0}) - Nl X {0}—|— (0 ‘M 11 X {0})
By focusing on first coordinate, we have s1(N; :p, 1) € N1+ (0 :pr, I1). So M is
a fully Sy-copure Rj-module. Now assume that M is a fully Sj-copure module and
M, is a fully S>-copure module. Take a submodule N of M and ideal I of R. Then
N must be in the form of Ny X N, and I = I} x I, where N C M;,N, C M, and
Iy CRy,I, CR, . Since M| is a fully Si-copure Ri-module, there exists an s; € S}
such that s1 (N7 :p, 1) € N1+ (0 :p, I1). Similarly, there exists an element s, € S,
such that s3(N2 :p, 1) € Na+ (0 :pr, I). Now, put s = (s1,52) € S. Then we get
(S],Sz)(N ‘M I) = (S],Sz)(N] X Nz My xM> 11 X 12)

= S](N1 M, 11) X SQ(NQ ‘M, 12)

C N+ 0y, 1)) X (N2+(0:p, 1))

=N XN2+(0 Myxm, 1 XIQ) :N+(0 :MI).
Hence, M is a fully S-copure R-module. O

In the following theorem, we characterize the fully copure R-modules.

Theorem 6. Let M be an R-module. Then the following statements are equivalent:
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(a) M is a fully copure R-module;

(b) M is a fully (R — p)-copure R-module for each prime ideal p of R;

(c) M is a fully (R —wm)-copure R-module for each maximal ideal m of R;

(d) M is a fully (R —m)-copure R-module for each maximal ideal m of R with
My, # O,

Proof. (a) = (b) Let M be a fully copure R-module and p be a prime ideal of
R. Then R — p is multiplicatively closed set of R and so M is a fully (R — p)-copure
R-module by Proposition 1.

(b) = (c) Since every maximal ideal is a prime ideal, the result follows from the
part (b).

(c¢) = (d) This is clear.

(d) = (a) Let N be a submodule of M and I be an ideal of R. Take a maximal
ideal m of R with My, # Oy,. As M is a fully (R — m)-copure module, there exists an
s ¢ m such that s(N :py I) € N+ (0 :p I). This implies that

(N st D = (5N 231 1))n © Nen+ (0 237 D

Now we have (N :p I)m € N+ (0 :p1 I ) for each maximal ideal m of R. It follows
that (N :p I) C N+ (0:p ), as needed. O
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