
Miskolc Mathematical Notes HU e-ISSN 1787-2413
Vol. 24 (2023), No. 1, pp. 153–163 DOI: 10.18514/MMN.2023.3782
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Abstract. Let R be a commutative ring with identity, S be a multiplicatively closed subset of R,
and M be an R-module. The aim of this paper is to introduce the notion of S-copure submodules
and investigate some properties of this class of modules. We say that a submodule N of M is
S-copure if there exists an s ∈ S such that s(N :M I)⊆ N +(0 :M I) for every ideal I of R.
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1. Introduction

Throughout this paper R will denote a commutative ring with identity and Z will
denote the ring of integers.

It is well known that the notions of purity and copurity with their different general-
izations play a fundamental role in theory of module categories. In [2], Anderson and
Fuller defined a submodule N of an R-module M a pure submodule if IN = N ∩ IM
for every ideal I of R. In [4], H. Ansari-Toroghy and F. Farshadifar introduced the
dual notion of pure submodules (that is copure submodules). A submodule N of an
R-module M is said to be copure if (N :M I) = N +(0 :M I) for every ideal I of R [4],
where (N :M I) = {x ∈ M : Ix ⊆ N}. An R-module M is said to be fully pure (resp.
fully copure) if every submodule of M is pure (resp. copure) [6].

Let S be a multiplicatively closed subset of R. In [7], F. Farshadifar introduced and
investigated the concept of S-pure submodules of modules as a generalization of pure
submodules. A submodule N of an R-module M is said to be S-pure if there exists an
s ∈ S such that s(N ∩ IM) ⊆ IN for every ideal I of R [7]. Also, an R-module M is
said to be fully S-pure if every submodule of M is S-pure [7].

Let S be a multiplicatively closed subset of R and M be an R-module. In this paper,
we introduce the notion of S-copure submodules of M as a generalisation of copure
submodules. Also, this notion can be regarded as a dual notion of S-pure submodules.
We provide some useful information concerning the is new class of modules.
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2. Main results

Throughout this section, S is a multiplicatively closed subset of R, that is, 1 ∈ S
and s1s2 ∈ S for any s1 ∈ S and any s2 ∈ S.

Definition 1. We say that a submodule N of an R-module M is S-copure if there
exists an s ∈ S such that s(N :M I)⊆ N +(0 :M I) for every ideal I of R.

Definition 2. We say that an R-module M is fully S-copure if every submodule of
M is S-copure.

Example 1. Let M be an R-module with AnnR(M)∩ S ̸= ∅. Then clearly, M is a
fully S-copure R-module.

Proposition 1. Every fully copure R-module is a fully S-copure R-module. The
converse is true if S ⊆U(R), where U(R) is the set of units in R.

Proof. This is clear. □

The following example shows that the converse of Proposition 1 is not true in
general.

Example 2. Clearly, for a prime number p, the submodule pZ of the Z-module Z
is not copure. Take the multiplicatively closed subset S = {pn : n ∈ N∪{0}} of Z.
Then for each k ∈ N, p(pZ :Z kZ) ⊆ pZ+(0 :Z kZ) implies that pZ is an S-copure
submodule of Z.

Theorem 1. Let M be an R-module, and let N and K be submodules of M such
that N ⊆ K ⊆ M. Then we have the following.

(a) If K is an S-copure submodule of M and N is a S-copure submodule of K,
then N is an S-copure submodule of M.

(b) If N is an S-copure submodule of M, then N is an S-copure submodule of K.
(c) If K is an S-copure submodule of M, then K/N is an S-copure submodule of

M/N.
(d) If N is an S-copure submodule of M and K/N is an S-copure submodule of

M/N, then K is an S-copure submodule of M.
(e) If N is an S-copure submodule of M, then there is a bijection between the

S-copure submodules of M containing N and the S-copure submodules of
M/N.

Proof. (a) Let I be an ideal of R. Then since K is an S-copure submodule of M,
there exists an s ∈ S such that

s(N :M I) = s(N ∩K :M I) = s((N :M I)∩ (K :M I))

⊆ (N :M I)∩ (K +(0 :M I)) = (N :K I)+(0 :M I).

Now since N is an S-copure submodule of K, there exists an t ∈ S such that

st(N :M I)⊆ t(N :K I)+ t(0 :M I)⊆ N +(0 :K I)+(0 :M I) = N +(0 :M I).
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(b) Let I be an ideal of R. Then as N is an S-copure submodule of M, there exists
an s ∈ S such that

s(N :K I) = s(K ∩ (N :M I))⊆ K ∩ (N +(0 :M I))

= K ∩N +K ∩ (0 :M I)⊆ N +(0 :M I).

(c) Let I be an ideal of R. Then there exists an s ∈ S such that

s(K :K I)⊆ K +(0 :M I).

Thus

s(K/N :M/N I) = s((K :M I)/N) = s((K :M I)+K ∩ (N :M I))/N

⊆ (K +(0 :M I)+K ∩ (N :M I))/N

= K/N +((N :M I)∩ (K +(0 :M I))/N

⊆ K/N +((N :M I)∩ (K :M I))/N

= K/N +(N :M I)/N = K/N +(0 :M/N I).

(d) Let I be an ideal of R. Since N is an S-copure submodule of M, there exists an
s ∈ S such that s(N :M I)⊆ N +(0 :M I). We have

s(0 :M/N I) = s(N :M I)/N ⊆ ((0 :M I)+N)/N.

Now since K/N is an S-copure submodule of M/N, there exists an t ∈ S such that

t(K/N :M/N I)⊆ K/N +(0 :M/N I).

Therefore,

st(K :M I)/N = st(K/N :M/N I)⊆ sK/N + s(0 :M/N I)

⊆ K/N +((0 :M I)+N)/N = (K +N +(0 :M I))/N

= (K +(0 :M I))/N.

Thus st(K :M I)⊆ K +(0 :M I), as desired.
(e) This follows from parts (c) and (d). □

Recall that the saturation S∗ of S is defined as S∗ = {x ∈ R : x/1 is a unit o f S−1R}.
It is obvious that S∗ is a multiplicatively closed subset of R containing S [9].

A multiplicatively closed subset S of R is said to satisfy the maximal multiple
condition if there exists an s ∈ S such that t | s for each t ∈ S.

Proposition 2. Let M be an R-module. Then we have the following.
(a) If S1 ⊆ S2 are multiplicatively closed subsets of R and M is a fully S1-copure

R-module, then M is a fully S2-copure R-module.
(b) M is a fully S-copure R-module if and only if M is a fully S∗-copure R-module.
(c) If N is an S-copure submodule of M, then sN is an S-copure submodule of M

for each s ∈ S.
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(d) If f : M → M is an endomorphism and there exists an s ∈ S such that s f (x) =
f 2(x) for each x ∈ M, then Ker( f ) is an S-copure submodule of M.

(e) If N and K are submodules of M such that N ∩K and N +K are S-copure
submodules of M. Then N is an S-copure submodule of M.

(f) If S is satisfying the maximal multiple condition (e.g., S is finite or S ⊆U(R))
and {Mλ}Λ is a family of submodules of M with S-copure submodules Nλ ⊆
Mλ, then ⊕λ∈ΛNλ is an S-copure submodule of ⊕λ∈ΛMλ.

Proof. (a) This is clear.
(b) Let M be a fully S-copure R-module. Since S ⊆ S∗, by part (a), M is a fully

S∗-copure R-module. For the converse, assume that M is a fully S∗-copure module,
N is a submodule of M, and I is an ideal of R. Then there exists an x ∈ S∗ such that
x(N :M I)⊆ N +(0 :M I). As x ∈ S∗, x/1 is a unit of S−1R and so (x/1)(a/s) = 1 for
some a ∈ R and s ∈ S. This yields that us = uxa for some u ∈ S. Thus we have

us(N :M I) = uxa(N :M I)⊆ x(N :M I)⊆ N +(0 :M I).

Therefore, M is a fully S-copure R-module.
(c) Let s ∈ S. As N is S-copure, there is an t ∈ S such that t(N :M I)⊆ N +(0 :M I)

for each ideal I of R. Therefore,

ts(sN :M I)⊆ ts(N :M I)⊆ sN + s(0 :M I)⊆ sN +(0 :M I).

(d) Let I be an ideal of R and x ∈ (Ker( f ) :M I). Then xI ⊆ Ker( f ). It follows
that f (x) ∈ (0 :M I). As s f = f 2, we have sx − f (x) ∈ Ker( f ). Therefore, sx =
sx− f (x)+ f (x) ∈ Ker( f )+(0 :M I). This implies that

s(Ker( f ) :M I)⊆ Ker( f )+(0 :M I).

(e) Let I be an ideal of R and let m ∈ (N :M I). Since N +K is an S-copure sub-
module of M, there exists an s ∈ S such that s(N +K :M I)⊆ N +K +(0 :M I). Then
Im ⊆ N +K implies that sm = x+ y+ t for some x ∈ N, y ∈ K and t ∈ (0 :M I). Thus
msI = xI + yI. This implies that yI ⊆ N ∩K. Since N ∩K is an S-copure submodule
of M, there exists an h ∈ S such that h(N∩K :M I)⊆ N∩K+(0 :M I). Thus hy = x́+ t́
for some x́ ∈ N ∩K and t́ ∈ (0 :M I). It follows that shm ∈ N +(0 :M I). Therefore,
sh(N :M I)⊆ N +(0 :M I), as desired.

(f) Let I be an ideal of R. Then there exists an s ∈ S such that s(Nλ :Mλ
I) ⊆

Nλ+(0 :Mλ
I) for each λ∈Λ. Now one can see that s(⊕λ∈ΛNλ :⊕λ∈ΛMλ

I)⊆⊕λ∈ΛNλ+
(0 :⊕λ∈ΛMλ

I). □

Definition 3. We say that a submodule N of an R-module M is an S-direct sum-
mand of M if there exist a submodule K of M and s ∈ S such that sM = N +K (d.s.).

Definition 4. We say that an R-module M is an S-semisimple module if every
submodule of M is an S-direct summand of M.

Proposition 3. Let M be an S-semisimple R-module. Then M is a fully S-copure
R-module.
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Proof. Let N be a submodule of M. Then there exist a submodule K of M and
s ∈ S such that sM = N +K (d.s.). Now for each ideal I of R, we have

s(N :M I) = (N :sM I) = (N :K I)+(N :N I)⊆ (0 :K I)+N ⊆ (0 :M I)+N.

□

Proposition 4. Let R be a principal ideal domain and M be an R-module. Then
every submodule of M is an S-pure submodule if and only if is an S-copure submodule.

Proof. First suppose that N is an S-pure submodule of M and r ∈ R. Then there
exists an s ∈ S such that s(N∩ rM)⊆ rN. Now let rm ∈ N. Then srm = srn, for some
n ∈ N. Thus, sm = s(m−n)+ sn ∈ (0 :M r)+N. So, s(N :M r)⊆ N +(0 :M r) and N
is S-copure. Now suppose that N is an S-copure submodule of M and r ∈ R.

Then there exists an s ∈ S such that s(N :M r)⊆ N+(0 :M r). Suppose that rm ∈ N.
Then sm = n1 +m1, where n1 ∈ N and rm1 = 0. Thus srm = rn1 ∈ rN. This shows
that N is an S-pure submodule of M. □

Theorem 2. Let M be a distributive R-module. Then the following hold.
(a) A submodule N of M is S-copure if and only if there exists an s ∈ S such that

for each a ∈ R we have

s(N :M a)⊆ N +(0 :M a).

(b) A submodule N of M is S-pure if and only if there exists an s ∈ S such that for
each a ∈ R we have

s(N ∩aM)⊆ aN.

(c) A submodule N of M is an S-pure submodule if and only if it is an S-copure
submodule.

Proof. (a) First assume that there exists an s ∈ S such that for each a ∈ R we have
s(N :M a)⊆ N +(0 :M a). Suppose that I is an ideal of R. Then we have

s(N :M I) = s(N :M ∑
a∈I

Ra) = s
⋂
a∈I

(N :M a)⊆
⋂
a∈I

(N +(0 :M a)).

Now as M is distributive, we have⋂
a∈I

(N +(0 :M a)) = N +
⋂
a∈I

(0 :M a) = N +(0 :M I).

Therefore, N is an S-copure submodule of M. The converse is clear.
(b) First suppose that exists an s ∈ S such that for each a ∈ R we have s(N∩aM)⊆

aN. Let I be an ideal of R. Then as M is a distributive R-module, we have

IN = (∑
a∈I

Ra)N ⊇ ∑
a∈I

s(RaM∩N)⊇ s ∑
a∈I

(RaM∩N)

= s((∑
a∈I

Ra)M∩N) = s(IM∩N).
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Hence, N is an S-pure submodule of M. The converse is clear.
(c) This follows from parts (a), (b), and Proposition 4. □

Proposition 5. Let R be a Noetherian ring and let M be an R-module. Then the
following hold.

(a) If N is an S-copure submodule of M, then for each prime ideal p of R, Np is
an Sp-copure submodule of Mp as an Rp-module.

(b) If Nm is an Sm-copure submodule of an Rm-module Mm for each maximal
ideal m of R, then N is an S-copure submodule of M.

Proof. (a) This follows from the fact that by [10, 9.13], if I is a finitely generated
ideal of R, then (N :M I)p = (Np :Mp Ip).

(b) Suppose that I is an ideal of R. As R is a Noetherian ring, I is finitely generated
ideal of R. Hence by [10, 9.13], for any maximal ideal m of R, (N :M I)m = (Nm :Mm

Im). Thus by assumption, for any maximal ideal m of R, there is an h/a ∈ Sm such
that

(h(N :M I))m = h/a(Nm :Mm Im)⊆ Nm+(0 :Mm Im) = (N +(0 :M I))m.

It follows that
h(N :M I)⊆ N +(0 :M I).

□

Let M be an R-module. M is said to be a comultiplication module if for every
submodule N of M there exists an ideal I of R such that N = (0 :M I) [3]. M satisfies
the double annihilator conditions (DAC for short) if for each ideal I of R, we have
I = AnnR((0 :M I)). M is said to be a strong comultiplication module if M is a comul-
tiplication R-module which satisfies the double annihilator condition [4]. M is said
to be an S-comultiplication module if for each submodule N of M, there exist s ∈ S
and an ideal I of R such that s(0 :M I)⊆ N ⊆ (0 :M I) [1].

Definition 5. We say that an R-module M satisfies the S-double annihilator con-
dition (S −DAC for short) if for each ideal I of R there exists an s ∈ S such that
sAnnR((0 :M I))⊆ I.

Definition 6. We say that an R-module M is an S-strong comultiplication mod-
ule if M is an S-comultiplication R-module which satisfies the S-double annihilator
condition.

Lemma 1. Let M be an S-strong comultiplication R-module. Then we have the
following.

(a) If I and J are ideals of R with (0 :M I) ⊆ (0 :M J), then there exists an s ∈ S
such that sJ ⊆ I.

(b) For ideals I and Jof R there exists an t ∈ S such that

t(0 :M I ∩ J)⊆ (0 :M I)+(0 :M J).
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Proof. (a) Let I and J be ideals of R with (0 :M I) ⊆ (0 :M J). Then AnnR((0 :M
J))⊆ AnnR((0 :M I)). As M satisfies the S-double annihilator conditions, there exists
an s ∈ S such that sAnnR((0 :M I))⊆ I. Thus sJ ⊆ sAnnR((0 :M J))⊆ I.

(b) As M satisfies the S-double annihilator condition, there exist s, t,∈ S such that
sAnnR((0 :M I)) ⊆ I and tAnnR((0 :M J)) ⊆ J. Thus sAnnR((0 :M I))∩ tAnnR((0 :M
J))⊆ I ∩ J. It follows that

(0 :M I ∩ J)⊆ (0 :M st(AnnR((0 :M I))∩AnnR((0 :M J))).

Since M is an S-comultiplication module, there exists an h ∈ S such that

h(0 :M AnnR((0 :M I)+(0 :M J)))⊆ (0 :M I)+(0 :M J).

Therefore, we have

hst(0 :M I ∩ J)⊆ h(0 :M AnnR((0 :M I)+(0 :M J)))⊆ (0 :M I)+(0 :M J).

□

Theorem 3. Let M ba an S-strong comultiplication R-module. Then we have the
following.

(a) N is an S-copure submodule of M if and only if AnnR(N) is an S-pure ideal
of R.

(b) An ideal I of R is S-pure if and only if (0 :M I) is an S-copure submodule of
M.

Proof. (a) Let N be an S-copure submodule of M and let I be an ideal of R. As M is
an S-comultiplication R-module, there exists an t ∈ S such that t(0 :M AnnR(N))⊆ N
and so (0 :M AnnR(N))⊆ (N :M t). It follows that

(0 :M AnnR(N)I) = ((0 :M AnnR(N)) :M I)⊆ (N :M tI).

Since N is an S-copure submodule of M, there exists an s ∈ S such that

s(N :M tI)⊆ N +(0 :M tI)⊆ (0 :M AnnR(N))+(0 :M tI)⊆ (0 :M AnnR(N)∩ tI).

Therefore, (0 :M AnnR(N)I) ⊆ (0 :M (s(AnnR(N)∩ tI)). This in turn implies that
hst(AnnR(N)∩ I) ⊆ AnnR(N)I for some h ∈ S by using Lemma 1 (a). Conversely,
assume that N is a submodule of M such that AnnR(N) is an S-pure ideal of R and I
be an ideal of R. Then there exists an s ∈ S such that s(AnnR(N)∩ I) ⊆ AnnR(N)I.
Now we have

(N :M I)⊆ (0 :M AnnR(N)I)⊆ (0 :M s(AnnR(N)∩ I)) = ((0 :M AnnR(N)∩ I) :M s).

This implies that s(N :M I) ⊆ (0 :M AnnR(N)∩ I). By Lemma 1 (b), there exists
an t ∈ S such that t(0 :M AnnR(N)∩ I) ⊆ (0 :M AnnR(N)) + (0 :M I). As M is an
S-comultiplication R-module, there exists an h ∈ S such that h(0 :M AnnR(N) ⊆ N.
Therefore, we have

tsh(N :M I)⊆ th(0 :M AnnR(N)∩ I)⊆ h(0 :M AnnR(N))+h(0 :M I)⊆ N +(0 :M I),



160 F. FARSHADIFAR

as desired.
(b) Let I be an S-pure ideal of R. Then there is an s ∈ S such that s(I ∩ J)⊆ IJ for

each ideal J of R. Now we have

((0 :M I) :M J) = (0 :M IJ)⊆ (0 :M s(I ∩ J)).

It follows that s((0 :M I) :M J) ⊆ (0 :M I ∩ J). By Lemma 1 (b), there exists an t ∈ S
such that t(0 :M I ∩ J)⊆ (0 :M I)+(0 :M J). Therefore,

ts((0 :M I) :M J)⊆ (0 :M I)+(0 :M J).

Conversely, assume that (0 :M I) is an S-copure submodule of M and J is an ideal of
R. Then by part (a), AnnR((0 :M)) is an S-pure ideal of R. Thus there exists an s ∈ S
such that s(AnnR((0 :M I))∩ Í) ⊆ AnnR((0 :M I))Í for each ideal Í of R. Hence we
have

s(I ∩ J) = s(I ∩AnnR((0 :M I))∩ J)⊆ AnnR((0 :M I))(I ∩ J)
As M satisfies the S-double annihilator condition, there exists an t ∈ S such that
tAnnR((0 :M I))⊆ I. Hence, st(I ∩ J)⊆ I(I ∩ J)⊆ I2 ∩ IJ ⊆ IJ, as needed. □

A proper submodule N of an R-module M is said to be completely irreducible if
N =

⋂
i∈I Ni, where {Ni}i∈I is a family of submodules of M, implies that N = Ni for

some i∈ I. It is easy to see that every submodule of M is an intersection of completely
irreducible submodules of M [8].

Remark 1. Let N and K be two submodules of an R-module M. To prove N ⊆ K,
it is enough to show that if L is a completely irreducible submodule of M such that
K ⊆ L, then N ⊆ L [5].

A family {Ni}i∈I of submodules of an R-module M is said to be an inverse family of
submodules of M if the intersection of two of its submodules again contains a module
in {Ni}i∈I . Also, M satisfies the property AB5∗ if for every submodule K of M and
every inverse family {Ni}i∈I of submodules of M, K +∩i∈INi = ∩i∈I(K +Ni) [11].

Theorem 4. Let S be a multiplicatively closed subset of R which satisfies the max-
imal multiple condition (e.g., S is finite or S ⊆ U(R)) and M be an R-module which
satisfies the property AB5∗. Then we have the following.

(a) If {Nλ}λ∈Λ is a chain of S-copure submodules of M, then ∩λ∈ΛNλ is S-copure.
(b) If N is a submodule of M, then there is a submodule K of M minimal with

respect to N ⊆ K and K is an S-copure submodule of M.

Proof. (a) Let I be an ideal of R. Let L be a completely irreducible submodule
of M such that ∩λ∈ΛNλ +(0 :M I) ⊆ L. Then ∩λ∈ΛNλ +(0 :M I)+L = L. Since M
satisfies the property AB5∗, we have

∩λ∈Λ(Nλ +(0 :M I)+L) = L.

Now as L is a completely irreducible submodule of M, there exists an α ∈ Λ such that
Nα+(0 :M I)+L = L. Now as S satisfies the maximal multiple condition, there exists
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an s ∈ S such that s(Nα :M I)+L ⊆ L since Nα is an S-copure submodule of M. Thus
s(Nα :M I)⊆ L. Hence, s(∩λ∈ΛNλ :M I)⊆ L. This implies that

s(∩λ∈ΛNλ :M I)⊆ ∩λ∈ΛNλ +(0 :M I),

by Remark 1.
(b) Let

Σ = {N ≤ H|H is a S− copure submodule o f M}.
Then M ∈ Σ ̸= ∅. Let {Nλ}λ∈Λ be a totally ordered subset of Σ. Then N ≤ ∩λ∈ΛNλ

and by part (a), ∩λ∈ΛNλ is an S-copure submodule of M. Thus by using Zorn’s
Lemma, one can see that Σ has a minimal element, K say as needed. □

Let Ri be a commutative ring with identity and Mi be an Ri-module, for i = 1,2.
Let R = R1 ×R2. Then M = M1 ×M2 is an R-module. Clearly, every submodule of
M is in the form of N = N1 ×N2 for some submodules N1 of M1 and N2 of M2. Also,
if Si is a multiplicatively closed subset of Ri for each i = 1,2, then S = S1 × S2 is a
multiplicatively closed subset of R.

Theorem 5. Let Mi be an Ri-module and Si ⊆Ri be a multiplicatively closed subset
for i = 1,2. Assume that M = M1 ×M2, R = R1 ×R2, and S = S1 ×S2. Then M is a
fully S-copure module if and only if Mi is a fully Si-copure module for i = 1,2.

Proof. For only if part, without loss of generality we will show M1 is a fully S1-
copure R1-module. Take a submodule N1 of M1 and ideal I1 of R1. Then N1×{0} is a
submodule of M and I1 ×{0} is an ideal of R. Since M is a fully S-copure R-module,
there exists s = (s1,s2) ∈ S1 ×S2 such that

(s1,s2)(N1 ×{0} :M I1 ×{0})⊆ N1 ×{0}+(0 :M I1 ×{0}).
By focusing on first coordinate, we have s1(N1 :M1 I1) ⊆ N1 +(0 :M1 I1). So M1 is
a fully S1-copure R1-module. Now assume that M1 is a fully S1-copure module and
M2 is a fully S2-copure module. Take a submodule N of M and ideal I of R. Then
N must be in the form of N1 ×N2 and I = I1 × I2, where N1 ⊆ M1,N2 ⊆ M2 and
I1 ⊆ R1, I2 ⊆ R2 . Since M1 is a fully S1-copure R1-module, there exists an s1 ∈ S1
such that s1(N1 :M1 I1) ⊆ N1 +(0 :M1 I1). Similarly, there exists an element s2 ∈ S2
such that s2(N2 :M2 I2)⊆ N2 +(0 :M2 I2). Now, put s = (s1,s2) ∈ S. Then we get

(s1,s2)(N :M I) = (s1,s2)(N1 ×N2 :M1×M2 I1 × I2)

= s1(N1 :M1 I1)× s2(N2 :M2 I2)

⊆ (N1 +(0 :M1 I1))× (N2 +(0 :M2 I2))

= N1 ×N2 +(0 :M1×M2 I1 × I2) = N +(0 :M I).

Hence, M is a fully S-copure R-module. □

In the following theorem, we characterize the fully copure R-modules.

Theorem 6. Let M be an R-module. Then the following statements are equivalent:
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(a) M is a fully copure R-module;
(b) M is a fully (R−p)-copure R-module for each prime ideal p of R;
(c) M is a fully (R−m)-copure R-module for each maximal ideal m of R;
(d) M is a fully (R−m)-copure R-module for each maximal ideal m of R with

Mm ̸= 0m.

Proof. (a) ⇒ (b) Let M be a fully copure R-module and p be a prime ideal of
R. Then R− p is multiplicatively closed set of R and so M is a fully (R− p)-copure
R-module by Proposition 1.

(b)⇒ (c) Since every maximal ideal is a prime ideal, the result follows from the
part (b).

(c)⇒ (d) This is clear.
(d) ⇒ (a) Let N be a submodule of M and I be an ideal of R. Take a maximal

ideal m of R with Mm ̸= 0m. As M is a fully (R−m)-copure module, there exists an
s ̸∈m such that s(N :M I)⊆ N +(0 :M I). This implies that

(N :M I)m = (s(N :M I))m ⊆ Nm+(0 :M I)m.

Now we have (N :M I)m ⊆ Nm+(0 :M I)m for each maximal ideal m of R. It follows
that (N :M I)⊆ N +(0 :M I), as needed. □
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