MMN-2877

Efficient estimate of the remainder for the Dirichlet function $\eta(p)$ for $p\in \mathbb{R}^+$

V. Lampret;

Abstract

For any $k,n,q\in\N$, where $n\ge 2k+1\ge3$, and $p\in\R^+$ the $n$th remainder $\rho(n,p)$ of the Dirichlet eta function $\eta(p)$, known also as the alternating Riemann zeta function, \[ \eta(p):=\sum_{i=1}^{\infty}(-1)^{i+1}\frac{1}{i^p}, \] is given in the form \[ \rho(n,p)=\Delta_q(n,p)+\delta_q(k,p), \] where $k$ and $q$ are parameters controlling the magnitude of the error term $\delta_q(k,p)$. The function $\Delta_q(n,p)$ consists of $\lfloor q/2\rfloor +1$ simple summands and $\delta_q(k,n,p)$ is estimated as \begin{equation*} \big|\delta_q(k,p)\big| < \frac{2}{3}\cdot\frac{p^{(q-1)}}{\pi^{q-2}}\cdot \frac{1}{(2k)^{p+q-1}} \,, \end{equation*} where $p^{(q-1)}$ is the rising Pochhammer product.


Vol. 21 (2020), No. 1, pp. 241-247
DOI: https://doi.org/10.18514/MMN.2020.2877


Download: MMN-2877