MMN-2821

A note on lattices with many sublattices

Gábor Czédli; Eszter K. Horváth;

Abstract

For every natural number $n\geq 5$, we prove that the number of subuniverses of an $n$-element lattice is $2^n$, $13\cdot 2^{n-4}$, $23\cdot 2^{n-5}$, or less than $23\cdot 2^{n-5}$. By a subuniverse, we mean a sublattice or the emptyset. Also, we describe the $n$-element lattices with exactly $2^n$, $13\cdot 2^{n-4}$, or $23\cdot 2^{n-5}$ subuniverses.


Vol. 20 (2019), No. 2, pp. 839-848
DOI: https://doi.org/10.18514/MMN.2019.2821


Download: MMN-2821