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Abstract. For every natural number n � 5, we prove that the number of subuniverses of an n-
element lattice is 2n, 13 �2n�4, 23 �2n�5, or less than 23 �2n�5. Also, we describe the n-element
lattices with exactly 2n, 13 �2n�4, or 23 �2n�5 subuniverses.
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1. INTRODUCTION AND OUR RESULT

For a lattice L, Sub.L/ will denote its sublattice lattice. In spite of this standard
terminology, Sub.L/ consists of all subuniverses of L. That is, a subset X of L is in
Sub.L/ iff X is closed with respect to join and meet. In particular, ¿ 2 Sub.L/. All
lattices occurring in this paper will be assumed to be finite even if this is not always
emphasized. For a natural number n 2NC WD f1;2;3; : : :g, let

NS.n/ WD fjSub.L/j W L is a lattice of size jLj D ng:

That is, k 2 NS.n/ if and only if some n-element lattice has exactly k subuniverses.
Although the acronym NS comes from Number of Sublattices,L has only jSub.L/j�
1 sublattices. If K and L are finite lattices, then their glued sum KCgluL is the
ordinal sum of the posets K n1K , the singleton lattice, and Ln f0Lg, in this order. In
other words, we put L atopK and identify the elements 1K and 0L; see Figure 1. For
example, if each of K and L is the two-element chain, then KCgluL is the three-
element chain. Note that Cglu is an associative but not a commutative operation.

The following fact is trivial:

The largest number in NS.n/ is 2n D 32 � 2n�5.
Furthermore, an n-element lattice L has exactly 2n

subuniverses if an only if L is a chain.
(1.1)
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FIGURE 1. The glued sum KCgluL of K and L

The four-element boolean lattice B4 and the pentagon (lattice) N5 are given in Fig-
ure 2, together with other important lattices. For k 2 NC, the k-element chain will
be denoted by C .k/. Our goal is to prove the following result:

Theorem 1. If 5� n 2NC, then the following three assertions hold.
(1) The second largest number in NS.n/ is 26 �2n�5. Furthermore, an n-element

lattice L has exactly 26 � 2n�5 subuniverses if and only if L Š C1CgluB4

CgluC2, where C1 and C2 are chains.
(2) The third largest number in NS.n/ is 23 � 2n�5. Furthermore, an n-element

lattice L has exactly 23 � 2n�5 subuniverses if and only if L Š C0CgluN5

CgluC1, where C0 and C1 are chains.

FIGURE 2. Lattices for Theorem 1 and Lemma 2

Since NS.n/ D f2ng for n 2 f1;2;3g and NS.4/ D f13;16g, we have formulated
this theorem only for n� 5. To make the comparison of the numbers occurring in the
paper easier, we often give jSub.L/j as a multiple of 2jLj�5. Next, we repeat the first
sentence of the Abstract, which is a trivial consequence of Theorem 1.

Corollary 1. For 5� n 2NC, the number of subuniverses of an n-element lattice
is 2n, 13 �2n�4, 23 �2n�5, or less than 23 �2n�5.

Remark 1. Let Con.L/ and NC.n/ stand for the lattice of congruences of a lat-
tice L and fjCon.L/j W L is a lattice with jLj D ng, respectively. For n � 5, the five
largest numbers in NC.n/ are 16 �2n�5, 8 �2n�5, 5 �2n�5, 4 �2n�5, and 3:5 �2n�5 by
Freese [4], Czédli [2] and, mainly, Kulin and Mureşan [6].
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Remark 2. Interestingly, the first three of the five numbers mentioned in Remark 1
are witnessed exactly by the same lattices that occur in Theorem 1 and (1.1). How-
ever, we will show at the end of Section 2 that

jSub.N5CgluC
.3//j D 23 �27�5 > 21:25 �27�5

D jSub.B4CgluB4/j> 19 �2
7�5

D jSub..C .2/
�C .3//CgluC

.2//j; (1.2)

which indicates that jSub..C .2/ �C .3//CgluC
.2//j is not the fourth largest num-

ber in NS.7/, although we know from Kulin and Mureşan [6] that jCon..C .2/ �

C .3//CgluC
.2//j is the fourth largest number in NC.7/.

While there are powerful tools to determine the first few large numbers in NC.n/,
see the above-mentioned papers and, for additional tools, Czédli [3], the analogous
task for NS.n/ seems to be more tedious. This together with Remark 2 are our ex-
cuses that we do not determine the fourth and fifth largest numbers in NS.n/.

The rest of the paper is devoted to the proof of Theorem 1.

2. TWO PREPARATORY LEMMAS

Our notation and terminology is standard, see, for example, Grätzer [5]. However,
we recall some notation and introduce some auxiliary concepts. For elements u;v
in a lattice L, the interval Œu;v� WD fx 2 L W u � x � vg is defined only if u � v,
but the sublattice Œfu;vg� generated by fu;vg always makes sense. In order to avoid
confusion, the curly brackets are never omitted from Œfa1; : : : ;akg� when a generated
sublattice is mentioned. For u 2 L, the principal ideal and the principal filter gener-
ated by u are #u WD fx 2L W x � ug and "u WD fx 2L W u� xg, respectively. We can
also write #Lu and "Lv to specify the lattice L. For u;v 2L, we write u k v if u and
v are incomparable, that is, u 6� v and v 6� u. We say that u is join-irreducible if u
has at most one lower cover; note that 0D 0L is join-irreducible by our convention.
Meet-irreducibility is defined dually, and an element is doubly irreducible if it is both
join-irreducible and meet-irreducible. Next, let us call an element u 2L isolated if u
is doubly irreducible and LD #u["u. That is, if u is doubly irreducible and x k u
holds for no x 2 L. Finally, an interval Œu;v� will be called an isolated edge if it is a
prime interval, that is, u� v, and LD #u["v.

Lemma 1. If K is a sublattice and H is a subset of a finite lattice L, then the
following three assertions hold.

(1) With the notation t WD jfH \ S W S 2 Sub.L/gj, we have that jSub.L/j �
t �2jLj�jH j.

(2) jSub.L/j � jSub.K/j �2jLj�jKj.
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(3) Assume, in addition, that K has neither an isolated element, nor an isolated
edge. Then jSub.L/j D jSub.K/j � 2jLj�jKj if and only if L is (isomorphic
to) C0CgluKCgluC1 for some chains C0 and C1.

Proof. With respect to the map 'WSub.L/! fH \S W S 2 Sub.L/g, defined by
X 7!H \X , each Y 2 fH \S W S 2 Sub.L/g has at most 2jLj�jH j preimages. This
yields part (1). Clearly, (1) implies (2). The argument above yields a bit more than
stated in (1) and (2); namely, for later reference, note the following.

If jSub.L/j D jSub.K/j � 2jLj�jKj, then for every
S 2 Sub.K/ and every subset X of LnK, we have
that S [X 2 Sub.L/.

(2.1)

Next, we claim that for an element u 2 L,
u is isolated if and only if for every X 2 Sub.L/, we have
that X [fug 2 Sub.L/ and X n fug 2 Sub.L/. (2.2)

Assume that u is isolated and X 2 Sub.L/. Since u is doubly irreducible, X n fug 2
Sub.L/. Since u is comparable with all elements of X , X [fug 2 Sub.L/, proving
the “only if” part of (2.2). To show the converse, assume that u is not isolated. If u is
not doubly irreducible, then uD a_b with a;b < u or dually, and X WD fa;b;u;a^
bg 2 Sub.L/ but X n fug … Sub.L/. If u k v for some v 2 L, then fvg 2 Sub.L/ but
fvg[fug … Sub.L/. This proves the “if” part, and (2.2) has been verified.

Next, to prove part (3), assume that K has neither an isolated element, nor an
isolated edge. First, let LD C1CgluKCgluC2. Since every u in LnK is clearly an
isolated element of L, it follows from a repeated application of (2.2) that whenever
X �LnK and S 2 Sub.K/, then S[X 2 Sub.L/. SinceLnK has 2jLj�jKj subsets,
jSub.L/j � jSub.K/j �2jLj�jKj, and we obtain the required equality by the converse
inequality given in part (2).

Conversely, assume the equality given in (3). Let x be an arbitrary element of
L nK. Applying (2.1) to f0Kg 2 Sub.K/ and f1Kg 2 Sub.K/, we obtain that both
f0K ;xg and f1K ;xg are in Sub.L/, whence neither x k 0K , nor x k 1K . So exactly
one of the cases 0K < x < 1K , x < 0K , and 1K < x holds; we are going to exclude
the first one. Suppose for a contradiction that 0K < x < 1K . Then x is comparable to
every y 2K, because otherwise S WD fyg and fxg would violate (2.1). By finiteness,
we can take u WD

W
.K\#x/ and v WD

V
.K\"x/. Now if y 2K, then either y > x

and so y 2 "Kv, or y < x and so y 2 #Ku, which means that K D #Ku["Kv.
Hence, Œu;v�K is a prime interval of K, and so it is an isolated edge of K. This is a
contradiction, which excludes that 0K < x < 1K . Therefore, with the notation C0 WD

#L0K and C1 WD "L1K , we obtain that L is (isomorphic to) C0CgluKCgluC1.
Consequently, in order to show that C0 and C1 are chains and to complete the proof,
it suffices to show that every u 2 L nK is an isolated element of L. Suppose the
contrary. Then (2.2) yields a subuniverse Y 2 Sub.L/ such that

Y [fug … Sub.L/ or Y n fug … Sub.L/: (2.3)
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Since u …K, we have that Y \K D .Y [fug/\K D .Y n fug/\K; we denote this
set by S . Then S 2 Sub.K/ since Y 2 Sub.L/. It follows from (2.1) that

Y [fug D S [ ..Y [fug/nK/ 2 Sub.L/ and

Y n fug D S [ ..Y n fug/nK/ 2 Sub.L/;

which contradicts (2.3) and completes the proof of Lemma 1 �

The following lemma is easier and even a computer program could prove it. For
the reader’s convenience, we give its short proof.

Lemma 2. For the lattices given in Figure 2, the following seven assertions hold.

(1) jSub.B4/j D 13D 26 �2
4�5.

(2) jSub.N5/j D 23D 23 �2
5�5.

(3) jSub.C .2/�C .3//j D 38D 19 �26�5.
(4) jSub.B4CgluB4/j D 85D 21:25 �2

7�5.
(5) jSub.B4CgluC

.2/CgluB4/j D 169D 21:125 �2
8�5.

(6) jSub.M3/j D 20D 20 �2
5�5.

(7) jSub.B8/j D 74D 9:25 �2
8�5.

Proof. The notation given by Figure 2 will extensively be used.
Among all subsets of B4, only fa;bg, fa;b;0g, and fa;b;1g are not subuniverses;

this proves (1). Implicitly, Lemma 1(3) will often be used below. Observe that

jfS 2 Sub.N5/ W fa;cg\S D¿gj D 8; by (1.1),

jfS 2 Sub.N5/ W fa;cg\S ¤¿; b … Sgj D 3 �4D 12; and

jfS 2 Sub.N5/ W fa;cg\S ¤¿; b 2 Sgj D 3;

whereby jSub.N5/j D 8 C 12 C 3 D 23 proves (2). Next, S will belong to
Sub.C .2/�C .3// even if this is not indicated. Let us compute:

jfS W a … Sgj D 26; by Lemmas 1(3) and 2(1),

jfS W a;b 2 Sgj D 3; since 0;d 2 S and c 2 S) 1 2 S;

jfS W a 2 S; b … S; c 2 Sgj D 1; since 0;1 2 S and d … S;

jfS W a 2 S; b … S; c … Sgj D 8;by (1.1):

Hence, 26C 3C 1C 8 D 38 proves (3). Next, S will automatically belong to
Sub.B4CgluB4/. We have that jfS W fa;bg � S jg D 7, because then fc;dg � S )
1 2 S and 0;e 2 S . Also, jfS W fa;bg 6� S jg D 13 � 3 � 2 D 78, because Lemma 2(1)
applies to the upper B4, there are 3 possibilities for a and b, and two for 0. Hence,
78+7=85 proves (4). For S 2 Sub.B4CgluC

.2/CgluB4/, the intersection of S with
the lower B4 and that with the upper B4 can independently be chosen. Therefore, (5)
follows from (1).
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Next, we count the subuniverses S ofM3. There are 4 with the property jfa;b;cg\
S j � 2, because they contain 0 and 1. There are 3 � 4D 12 with jfa;b;cg\S j D 1,
and 4 with jfa;b;cg\S j D 0. Thus, jSub.M3/j D 4C12C4D 20, proving (6).

The argument for B8 is more tedious. It has 9 at most one-element subuniverses.
There are 12 edges. We have 6 two-element subuniverses in which the heights of
the two elements differ by two and 1 in which this difference is three. We have 12
three-element covering chains and 6 non-covering ones. The number of four-element
(necessarily covering) chains is 3 �2D 6, B4 is embedded in 6 cover-preserving ways
and (thinking of pairs of complementary elements) in 3 additional ways. The five-
element sublattices are obtained from cover-preserving B4-sublattices by adding the
unique one of 0B8

or 1B8
that is missing; their number is 6. To each of the B4-

sublattices at the bottom we can glue a B4-sublattice at the top in two ways, whence
there are exactly 6 six-element subuniverses. In absence of doubly irreducible ele-
ments, there is no seven-element sublattice, and there is 1 eight-element one. The
sum of the numbers we have listed is 74, proving (7) and Lemma 2 �

Now, we are in the position to prove (1.2), mentioned in Remark 2.

Proof of Remark 2. We obtain the statement by combining Lemma 1(3) with parts
(2), (3), and (4) of Lemma 2. �

3. THE REST OF THE PROOF

For brevity, a k-element antichain will be called a k-antichain. First, we recall two
well-known facts from the folklore.

Lemma 3. For every join-semilattice S generated by fa;b;cg, there is a unique
surjective homomorphism ' from the free join-semilattice Fjsl. Qa; Qb; Qc/, given in Fig-
ure 3, onto S such that '. Qa/D a, '. Qb/D b, and '. Qc/D c.

FIGURE 3. Fjsl. Qa; Qb; Qc/ and Flat. Qa; Qb; Qc/

Lemma 4 (Rival and Wille [7, Figure 2]). For every latticeK generated by fa;b;cg
such that a < c, there is a unique surjective homomorphism ' from the finitely presen-
ted lattice Flat. Qa; Qb; Qc/, given in Figure 3, onto K such that '. Qa/D a, '. Qb/D b, and
'. Qc/D c.
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The subscripts in the notations are explained by the facts that Fjsl. Qa; Qb; Qc/ is the
free join-semilattice on 3 generators, while Flat. Qa; Qb; Qc/ is the free lattice generated
by its subposet fa;b;cg:

We are going to use the two lemmas above in the proof of the following lemma.
Implicitly, we will often use the well-known Homomorphism Theorem; see, e.g.,
Burris and Sankappanavar [1, Theorem 6.12].

Lemma 5. If an n-element lattice L has a 3-antichain, then we have that
jSub.L/j � 20 �2n�5.

Proof. Let fa;b;cg be a 3-antichain in L. Lemma 3 yields a unique join-homo-
morphism from Fjsl.. Qa; Qb; Qc// to S WD fa;b;c;a_b;a_ c;b_ c;a_b_ cg such that
' maps to Qa, Qb, and Qc to a, b, and c, respectively. Since fa;b;cg is an antichain, none
of the six lower edges of Fjsl.. Qa; Qb; Qc// is collapsed by the kernel � WD ker.'/ of '.
Hence, there are only four cases for the join-subsemilattice S Š Fjsl.. Qa; Qb; Qc//=� of
L, depending on the number the upper edges collapsed by �.

Case 1: [none of the three upper edges is collapsed by�] Then S is isomorphic
toFjsl.. Qa; Qb; Qc//, whereby fa_b;a_c;b_cg is a 3-antichain. We know from,
say, Grätzer [5, Lemma 73], that this 3-antichain generates a sublattice iso-
morphic to B8. Hence, jSub.L/j � 9:25 �2n�5 � 20 �2n�5 by Lemmas 1(2)
and 2(7), as required.

FIGURE 4. Cases 2 and 3

Case 2: [� collapses exactly one upper edge] Apart from notation, we have that
d WD a_b < a_ c DW i and e WD b_ c < i ; see Figure 4 on the left. Letting
b0 WD d ^e, we have that a_b0 D d and b0_ c D e. Since b � b0 and b 6� a,
we have that b0 6� a. If we had a� b0, then i D d _eD a_b0_eD b0_eD e
would be a contradiction. Hence, a k b0, and fa;b0; cg is a 3-antichain by a–c
symmetry. We can count the subuniverses T of the join-semilattice H WD
fa;b0; c;d;e; ig as follows. We have that jfT W b0 … T gj � 3 �7D 21, because
fd;eg 6� T allows only three possibilities for T \fd;eg and a_cD i at most
seven possibilities for T \fa;c; ig. Similarly,

jfT W b0 2 T;a … T;c … T gj � 7; because fd;eg � T ) i 2 T;

jfT W b0 2 T;a 2 T;c … T gj � 3; since d 2 T; so e 2 T ) i 2 T;
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jfT W b0 2 T;a … T;c 2 T gj � 3; by a–c symmetry, and

jfT W b0 2 T;a 2 T;c 2 T gj D 1; because T DH:

Note that some of the inequalities above are equalities, but we do not need
this fact. Forming the sum of the above numbers, the join-semilattice H
has at most 35 D 17:5 � 26�5 subuniverses. Hence, Lemma 1(1) yields that
Sub.L/� 17:5 �2n�5 � 20 �2n�5, as required.

Case 3: [� collapses two of the upper edges] Apart from notation, we have
that d WD a_b < a_ c D b_ c DW i . Let u WD a^b; see Figure 4. We focus
on possible intersections of subuniverses of L with H WD fa;b;c;d;u; ig.
Denoting such an intersection by S , we can compute as follows.

jfS W c … Sgj � 26; by Lemmas 1(2) and 2(1),

jfS W c 2 S;a 2 S;b 2 Sgj � 1 since H � Œfa;b;cg�;

jfS W c 2 S;a 2 S;b … Sgj � 4 since i 2 Œfa;cg�;

jfS W c 2 S;a … S;b 2 Sgj � 4; by a–b-symmetry,

jfS W c 2 S;a … S;b … S;d 2 Sgj � 2; because i 2 S;

jfS W c 2 S;a … S;b … S;d … Sgj � 3 since u 2 S) i 2 S:

Since the sum of these numbers is 40, we obtain from Lemma 1(1) that
jSub.L/j � 40 �2n�6 D 20 �2n�5, as required.

Case 4: [all the three upper edges are collapsed] Clearly, a_ b D a_ c D b_
cD a_b_cDW i . If a^bD a^cD b^cD a^b^c failed, then the dual of
one of the previous three cases would apply. Hence, we can assume that the
sublattice Œfa;b;cg� generated by fa;b;cg is isomorphic to M3; see Figure 2.
Therefore, jSub.L/j � 20 � 2n�5 by Lemmas 1(2) and 2(6), completing the
proof of Case 4 and that of Lemma 5. �

Proof of Theorem 1. From Lemmas 1 and 2(1), we conclude part (1). So, we are
left only with part (2).

In what follows, let L be an n-element lattice. We obtain from Lemmas 1(3) and
2(2) that if

LŠ C0CgluN5CgluC1 for finite chains C0 and C1, (3.1)

then jSub.L/j D 23 �2n�5. In order the complete the proof of Theorem 1, it suffices
to exclude the existence of a lattice L such that

jLj D n, 23 � 2n�5 � jSub.L/j < 26 � 2n�5, but L is
not of the form given in (3.1).

(3.2)

Suppose, for a contradiction, that L is a lattice satisfying (3.2). Then, by (1.1) and
Theorem 1 (1) and Lemma 5,

L has at least two 2-antichains but it has no 3-antichain. (3.3)
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We claim that

L cannot have two non-disjoint 2-antichains. (3.4)

Suppose the contrary. Then we can pick two distinct antichains fa;bg and fc;bg inL.
Since there is no 3-antichain in L, we can assume that a < c. With K WD Œfa;b;cg�,
let 'WFlat. Qa; Qb; Qc/!K be the unique lattice homomorphism from Lemma 4, and let
� be the kernel of '. We claim that � collapses e1; see Figure 3. Suppose to the
contrary that � does not collapse e1. Since e1 generates the monolith congruence,
that is, the smallest nontrivial congruence of the N5 sublattice of Flat. Qa; Qb; Qc/, no
other edge of this N5 sublattice is collapsed. Hence, N5 is a sublattice of L, and it
follows from Lemmas 1(2) and 2(2) that jSub.L/j � 23 �2n�5. Thus, (3.2) yields that
jSub.L/j D 23 � 2n�5. Applying Lemma 1(3) for K WD N5 and L, we obtain that L
is of the form (3.1). This contradicts (3.2), and we have shown that � does collapse
e1. On the other hand, since a k b and c k b, none of the thick edges e8; : : : ; e11

is collapsed by �. Observe that at least one of e4 and e6 is not collapsed by �,
since otherwise h Qa; Qci would belong to � D ker.'/ by transitivity and a D c would
be a contradiction. By duality, we can assume that e4 is not collapsed by �. Since
e2, e3, and e5 are perspective to e10, e9, and e4, respectively, these edges are not
collapsed either. So, with the exception of e1, no edge among the “big” elements
in Figure 3 is collapsed. Thus, the '-images of the elements denoted by big circles
form a sublattice (isomorphic to) C .2/�C .3/ in L. Hence, jSub.L/j � 19 �2n�5 by
Lemmas 1(2) and 2(3), which contradicts our assumption that L satisfies (3.2). This
proves (3.4).

To provide a convenient tool to exploit (3.3) and (3.4), we claim that

if x;y;´ 2L such that jfx;y;´gj D 3 and x k y, then either
fx;yg � #´, or fx;yg � "´. (3.5)

To see this, assume the premise. Since L has no 3-antichain, ´ is comparable to one
of x and y. By duality and symmetry, we can assume that x < ´. Since ´ < y would
imply x < y and ´ k y together with x k y would contradict (3.4), we have that y < ´.
This proves (3.5).

Next, by (3.3) and (3.4), we have a four-element subset fa;b;c;dg of L such that
a k b and c k d . By duality and (3.5), we can assume that fa;bg � #c. Applying (3.5)
also to fa;b;dg, we obtain that fa;bg is included either in "d , or in #d . Since the
first alternative would lead to d < a < c and so it would contradict c k d , we have that
fa;bg � #d . Thus, fa;bg � #c\#d D #.c ^d/, and we obtain that u WD a_ b �
c^d DW v. Let S WD fa^b;a;b;u;v;c;d;c_dg. Depending on uD v or u < v, S
is a sublattice isomorphic to B4CgluB4 or B4CgluC

.2/CgluB4. Using Lemma 2.1
together with (4) and (5) of Lemma 2, we obtain that jSub.L/j � 21:25 �2n�5. This
inequality contradicts (3.2) and completes the proof of Theorem 1. �



848 GÁBOR CZÉDLI AND ESZTER K. HORVÁTH
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E-mail address: horeszt@math.u-szeged.hu

http://www.math.uwaterloo.ca/~{}snburris/htdocs/ualg.html
http://dx.doi.org/10.1080/00029890.1984.11971342
http://actamath.savbb.sk/pdf/oacta2018003.pdf
http://dx.doi.org/10.1007/s00012-019-0589-1
http://dx.doi.org/10.1090/S0002-9939-97-04332-3
tinyurl.com/lattices101
http://dx.doi.org/10.1007/978-3-0348-0018-1
https://arxiv.org/pdf/1801.05282
http://dx.doi.org/10.1515/crll.1979.310.56

	1. Introduction and our result
	2. Two preparatory lemmas
	3. The rest of the proof
	References

