MMN-2450

On Lie ideals and symmetric generalized (α, β)-biderivation in prime ring

Nadeem ur Rehman; Shuliang Huang;

Abstract

Let $\mathfrak{R}$ be a prime ring with char$\mathfrak{R} \neq 2$. A biadditive symmetric map $\Delta : \mathfrak{R} \times \mathfrak{R} \to \mathfrak{R}$ is called symmetric $(\alpha, \beta)$-biderivation if, for any fixed $y \in \mathfrak{R}$, the map $x \mapsto \Delta(x, y)$ is a $(\alpha, \beta)$-derivation. A symmetric biadditive map $\Gamma : \mathfrak{R} \times \mathfrak{R} \to \mathfrak{R}$ is a symmetric generalized $(\alpha, \beta)$-biderivation if for any fixed $y \in \mathfrak{R}$, the map $x\mapsto \Gamma(x, y)$ is a generalized $(\alpha, \beta)$-derivation of $R$ associated with the $(\alpha, \beta)$-derivation $\Delta(., y)$. In the present paper, we investigate the commutativity of a ring having a generalized $(\alpha, \beta)$-biderivation satisfying certain algebraic conditions.


Vol. 20 (2019), No. 2, pp. 1175-1183
DOI: https://doi.org/10.18514/MMN.2019.2450


Download: MMN-2450