ON LIE IDEALS AND SYMMETRIC GENERALIZED (α, β)-BIDERIVATION IN PRIME RING

NADEEM UR REHMAN AND SHULIANG HUANG

Received 17 November, 2017

Abstract

Let \mathfrak{R} be a prime ring with $\operatorname{char}(\mathfrak{R}) \neq 2$. A biadditive symmetric map $\Delta: \mathfrak{R} \times \mathfrak{R} \rightarrow \mathfrak{R}$ is called symmetric (α, β)-biderivation if, for any fixed $y \in \mathfrak{R}$, the map $x \mapsto \Delta(x, y)$ is a (α, β) derivation. A symmetric biadditive map $\Gamma: \mathfrak{R} \times \mathfrak{R} \rightarrow \mathfrak{R}$ is a symmetric generalized (α, β) biderivation if for any fixed $y \in \mathfrak{R}$, the map $x \mapsto \Gamma(x, y)$ is a generalized (α, β)-derivation of \mathfrak{R} associated with the (α, β)-derivation $\Delta(., y)$. In the present paper, we investigate the commutativity of a ring having a generalized (α, β)-biderivation satisfying certain algebraic conditions.

2010 Mathematics Subject Classification: 16N60; 16U80; 16W25
Keywords: Lie ideals, symmetric biderivations, generalized (α, β)-biderivations

1. Introduction

Throughout this article \mathfrak{R} denotes an associative ring with center Z. An additive subgroup \mathfrak{L} of R is said to be a Lie ideal of \mathfrak{R} if $[l, r] \in \mathfrak{L}, \forall l \in \mathfrak{L}$ and $r \in \mathfrak{R}$. A Lie ideal \mathfrak{L} is called square closed if $u^{2} \in \mathfrak{L} \forall u \in \mathfrak{L}$. And it is easy to check that $2 u v \in \mathfrak{L} \forall u, v \in \mathfrak{L}$.

A derivation $\mathfrak{d}: \mathfrak{R} \rightarrow \mathfrak{R}$ is an additive map such that $\mathfrak{d}(x y)=\mathfrak{d}(x) y+x \mathfrak{d}(y) \forall$ $x, y \in R$. An additive map $\mathbb{F}: \mathfrak{R} \rightarrow \mathfrak{R}$ is a generalized derivation if there exists a derivation $\mathfrak{d}: \mathfrak{R} \rightarrow \mathfrak{R}$ such that $\mathbb{F}(x y)=\mathbb{F}(x) y+x \mathfrak{d}(y)$ holds $\forall x, y \in \mathfrak{R}$. If $\varphi: \mathfrak{R} \times \mathfrak{R} \rightarrow \mathfrak{R}$ is a symmetric map $(\varphi(x, y)=\varphi(y, x) \forall x, y \in \mathfrak{R})$ the map τ : $\mathfrak{R} \rightarrow \mathfrak{R}$ defined by $\tau(x)=\varphi(x, x)$ is the trace of φ. If φ is also biadditive (i.e., additive in both arguments), its trace τ satisfies $\tau(x+y)=\tau(x)+\tau(y)+2 \varphi(x, y), \forall$ $x, y \in \mathfrak{R}$. A symmetric biadditive map $\varphi: \mathfrak{R} \times \mathfrak{R} \rightarrow \mathfrak{R}$ is a symmetric biderivation if $\varphi(x y, z)=\varphi(x, z) y+x \varphi(y, z) \forall x, y, z \in \mathfrak{R}$. The concept of symmetric biderivation was introduced by G. Maksa [9]. A symmetric biadditive map $\zeta: \mathfrak{R} \times \mathfrak{R} \rightarrow \mathfrak{R}$ is a symmetric left bicentralizer if $\zeta(x y, z)=\zeta(x, z) y$ (and consequently $\zeta(x, y z)=$ $\zeta(x, y) z) \forall x, y, z \in \mathfrak{R}$.

Symmetric biderivations were proved to be related to the general solution of some functional equations (see [11]). The maps $(u, v) \mapsto \Psi[u, v], \Psi \in \mathscr{C}$, are typical examples of biderivations and they were called inner biderivations. Here \leftharpoonup is the extended centroid of \mathfrak{R}, that is, the center of the two-sided Martindale quotient ring \mathbb{Q} (we
refer the reader to [3] for more details). In [7], it is shown that every biderivation of a noncommutative prime ring \mathfrak{R} is inner. In [5], this result is extended to semiprime. In [14], it is proved that if φ is a nonzero symmetric biderivation, where \mathfrak{R} is a prime ring of $\operatorname{char}(\Re) \neq 2$, with the property:

$$
\begin{equation*}
\varphi(x, x) x=x \varphi(x, x), x \in \Re \tag{1.1}
\end{equation*}
$$

then \mathfrak{R} is commutative. He also proved that if φ_{1}, φ_{2} are nonzero biderivations on $\mathfrak{R}, \mathfrak{D}$ is a symmetric biadditive map and $\tau_{1}\left(\tau_{2}(x)\right)=\mathfrak{d}(x)$ holds $\forall x \in \mathfrak{R}$, where τ_{1}, τ_{2}, and \mathfrak{d} are the traces of φ_{1}, φ_{2}, and \mathfrak{D}, respectively, then either $\varphi_{1}=0$ or $\varphi_{2}=0$. Let's mention two results proved in [15]. The first one states that if φ_{1} and φ_{2} are symmetric biderivations on a prime ring \Re, $\operatorname{char}(\Re) \neq 2,3$, such that $\varphi_{1}(x, x) \varphi_{2}(x, x)=0$ holds $\forall x \in \mathfrak{R}$, then either $\varphi_{1}=0$ or $\varphi_{2}=0$. The second result says that if $[[\varphi(x, x), x], x] \in Z \forall x \in \Re$, then \mathfrak{R} is commutative. In [16] the authors extended the results in [14] assuming condition (1.1) over a nonzero ideal and a nonzero Lie ideal of a prime ring respectively.

The notion of generalized biderivation was introduced in [6]. A biadditive map $\Gamma: \mathfrak{R} \times \mathfrak{R} \rightarrow \mathfrak{R}$ is a generalized biderivation associated with a biderivation $\Delta: \mathfrak{R} \times$ $\mathfrak{R} \rightarrow \mathfrak{R}$ if for every $x, y \in \mathfrak{R}$, the maps $y \mapsto \Gamma(x, y)$ and $y \mapsto \Gamma(y, x)$ are generalized derivations of \mathfrak{R} associated with $\Delta(x,$.$) and \Delta(., x)$. That is, $\Gamma(x y, z)=\Gamma(x, z) y+$ $x \Delta(y, z)$ and $\Gamma(x, y z)=\Gamma(x, y) z+y \Delta(x, z)$ hold $\forall x, y, z \in \mathfrak{R}$. Brešar shown that every generalized biderivation Γ of an ideal $I(\Gamma: I \times I \rightarrow \mathfrak{R})$ of a prime ring \mathfrak{R} with $\operatorname{char}(\mathfrak{R}) \neq 2$, is of the form $\Gamma(x, y)=x a y+y b x$ for some $a, b \in \mathfrak{Q}$, where \mathfrak{Q} is Martindale quotient ring of \mathfrak{R} (see [8] and [10] for details). In [1] authors extended some results of $[14,15]$ to generalized biderivations on prime and semiprime rings. Recently, in [2], symmetric generalized (θ, ϕ)-biderivations of a prime ring \mathfrak{R} with $\operatorname{char}(\Re) \neq 2$ have been considered. Notice that a symmetric left bicentralizer is a symmetric generalized biderivation associated with the biderivation $T=0$.

2. Preliminaries

Lemma 1 ([12, Lemma 3]). If the prime ring \mathfrak{R} contains a commutative nonzero right ideal I, then \mathfrak{R} is commutative.

Lemma 2 ([13, Lemma 2.6]). Let \mathfrak{R} be a prime ring with char $(\mathfrak{R}) \neq 2$. If \mathfrak{L} is a commutative Lie ideal of \mathfrak{R}, then $\mathfrak{L} \subseteq Z$.

Lemma 3 ([4, Lemma 4]). Let \mathfrak{R} be a prime ring with $\operatorname{char}(\mathfrak{R}) \neq 2$. If $\mathfrak{L} \nsubseteq Z$ is a Lie ideal of \mathfrak{R} and $a \mathfrak{L} b=(0)$, then either $a=0$ or $b=0$.

Lemma 4. Let \mathfrak{R} be a prime ring, $\operatorname{char}(\mathfrak{R}) \neq 2, \mathfrak{L}$ a Lie ideal of \mathfrak{R} and α is automorphism. If $T: \mathfrak{R} \times \mathfrak{R} \rightarrow \mathfrak{R}$ is a symmetric left α-centralizer such that $T\left(\alpha\left(x_{1}\right), \alpha\left(x_{1}\right)\right)=0 \forall x_{1} \in \mathfrak{L}$, then either $\mathfrak{L} \subseteq Z$ or $T=0$.

Proof. Assume that $\mathfrak{L} \nsubseteq Z$. We have

$$
\begin{equation*}
T\left(x_{1}, x_{1}\right)=0 \forall x_{1} \in \mathfrak{L} \tag{2.1}
\end{equation*}
$$

Linearizing (2.1), we get

$$
\begin{equation*}
T\left(\alpha\left(x_{1}\right), \alpha\left(x_{2}\right)\right)=0 \forall x_{1}, x_{2} \in \mathfrak{L} . \tag{2.2}
\end{equation*}
$$

Let us replace x_{1} by $x_{1} s-s x_{1} \forall s \in \mathfrak{R}$ in (2.2), to obtain

$$
T\left(\alpha(s), \alpha\left(x_{2}\right)\right) \alpha^{2}\left(x_{1}\right)=0 \forall x_{1}, x_{2} \in \mathfrak{L}, s \in \mathfrak{R}
$$

That is, $\alpha^{-2}\left(T\left(\alpha(s), \alpha\left(x_{2}\right)\right)\right) \mathfrak{L} \alpha^{-2}\left(T\left(\alpha(r), \alpha\left(x_{2}\right)\right)\right)=(0) \forall x_{2} \in \mathfrak{L}, s \in \mathfrak{R}$. By Lemma 3, $\alpha^{-2}\left(T\left(\alpha(r), \alpha\left(x_{2}\right)\right)\right)=0 \forall x_{2} \in \mathfrak{L}, r \in \mathfrak{R}$ that is, $T\left(\alpha(s), \alpha\left(x_{2}\right)\right)=0$. Now we replace x_{2} by $\left[x_{2}, r\right] \forall r \in \mathfrak{R}$, we get $T(\alpha(s), \alpha(r)) \alpha^{2}\left(x_{2}\right)=0$, that is $\alpha^{-2}(T(\alpha(s), \alpha(r))) \mathfrak{L} \alpha^{-2}(T(\alpha(s), \alpha(r)))=(0)$ and hence again by Lemma 3 gives that $\alpha^{-2}(T(\alpha(s), \alpha(r)))=0 \forall r, s \in \Re$ i.e., $T(\alpha(s), \alpha(r))=0 \forall r, s \in \Re$. Now, replacing s by $\alpha^{-1}\left(t_{1}\right)$ and r by $\alpha^{-1}\left(t_{2}\right)$, we get $T\left(t_{1}, t_{2}\right)=0 \forall t_{1}, t_{2} \in \Re$, that is $T=0$.

Lemma 5. Let \mathfrak{R} be a ring and α, β automorphisms. If Γ is a symmetric generalized (α, β)-biderivation associated with a symmetric (α, β)-biderivation Δ, then the map $\Gamma-\Delta: \Re \times \Re \rightarrow \Re$ is a symmetric left α-bicentralizer.

Proof. The map $\Omega=\Gamma-\Delta$, is clearly biadditive. For all $x_{1}, x_{2}, x_{3} \in \mathfrak{R}$,

$$
\begin{aligned}
\Gamma\left(x_{1} x_{2}, x_{3}\right)= & (\Gamma-\Delta)\left(x_{1} x_{2}, x_{3}\right) \\
= & \Gamma\left(x_{1} x_{2}, x_{3}\right)-\Delta\left(x_{1} x_{2}, x_{3}\right) \\
= & \Gamma\left(x_{1}, x_{3}\right) \alpha\left(x_{2}\right)+\beta\left(x_{1}\right) \Delta\left(x_{2}, x_{3}\right) \\
& -\Delta\left(x_{1}, x_{3}\right) \alpha\left(x_{2}\right)-\beta\left(x_{1}\right) \Delta\left(x_{2}, x_{3}\right) \\
= & \Gamma\left(x_{1}, x_{3}\right) \alpha\left(x_{2}\right)-\Delta\left(x_{1}, x_{3}\right) \alpha\left(x_{2}\right) \\
= & \Omega\left(x_{1}, x_{3}\right) \alpha\left(x_{2}\right) .
\end{aligned}
$$

Therefore, Ω is a symmetric left α-centralizer of \mathfrak{R}.

3. MAIN RESULTS

Proposition 1. Let \mathfrak{R} be a prime ring, $\operatorname{char}(\Re) \neq 2$, \mathfrak{L} a nonzero Lie ideal of \Re, α, β automorphisms, and $\Delta: \mathfrak{R} \times \mathfrak{R} \rightarrow \mathfrak{R}$ a symmetric (α, β)-biderivation with trace δ. If $\delta\left(x_{1}\right)=0 \forall x_{1} \in \mathfrak{L}$, then either $\mathfrak{L} \subseteq Z$ or $\Delta=0$.

Proof. By our hypothesis

$$
\begin{equation*}
\delta(u)=0 \forall x_{1} \in \mathfrak{L} . \tag{3.1}
\end{equation*}
$$

Linearizing (3.1) and using (3.1), we get

$$
\begin{equation*}
2 \Delta\left(x_{1}, x_{2}\right)=0 \forall x_{1}, x_{2} \in \mathfrak{L} \tag{3.2}
\end{equation*}
$$

If we replace x_{1} by $x_{1} r-r x_{1}$ in (3.2), to get

$$
\begin{equation*}
\beta\left(x_{1}\right) \Delta\left(r, x_{2}\right)-\delta\left(r, x_{2}\right) \alpha\left(x_{1}\right)=0 \tag{3.3}
\end{equation*}
$$

Again replacing r by $r x_{3}$ and using (3.2), we find that

$$
\begin{equation*}
\beta\left(x_{1}\right) \Delta\left(r, x_{2}\right) \alpha\left(x_{3}\right)-\Delta\left(r, x_{2}\right) \alpha\left(x_{3} x_{1}\right)=0 \tag{3.4}
\end{equation*}
$$

Multiplying (3.3) from left by x_{3}, we get

$$
\begin{equation*}
\beta\left(x_{1}\right) \Delta\left(r, x_{2}\right) \alpha\left(x_{3}\right)-\Delta\left(r, x_{2}\right) \alpha\left(x_{1} x_{3}\right)=0 \tag{3.5}
\end{equation*}
$$

From (3.4), (3.5) it follows that $\Delta\left(r, x_{2}\right) \alpha\left(\left[x_{1}, x_{3}\right]\right)=0 \forall x_{1}, x_{2}, x_{3} \in \mathfrak{L}$ and $r \in \mathfrak{R}$. If we replace r by $r s, s \in \mathfrak{R}$, we obtain $\Delta\left(r, x_{2}\right) \alpha(s) \alpha\left(\left[x_{1}, x_{3}\right]\right)=0$ and hence $\alpha^{-1}\left(\Delta\left(r, x_{2}\right)\right) \mathfrak{R}\left[x_{1}, x_{3}\right]=(0)$ Thus by primeness of \mathfrak{R} it follows that either $\left[x_{1}, x_{3}\right]=$ 0 for $x_{1}, x_{3} \in \mathfrak{L}$ or $\alpha^{-1}\left(\Delta\left(r, x_{2}\right)\right)=0$. If $\left[x_{1}, x_{3}\right]=0 \forall x_{1}, x_{3} \in \mathfrak{L}$, then $\mathfrak{L} \subseteq Z$ by Lemma 2. In other case, $\alpha^{-1}\left(\Delta\left(r, x_{2}\right)\right)=0 \forall x_{2} \in \mathfrak{L}, r \in \mathfrak{R}$, that is, $\Delta\left(r, x_{2}\right)=0$. Replacing x_{2} by $x_{2} s-s x_{2}$, we get

$$
\begin{equation*}
\beta\left(x_{2}\right) \Delta(r, s)-\Delta(r, s) \alpha\left(x_{2}\right)=0 \tag{3.6}
\end{equation*}
$$

Now, replacing s by $s x_{3}$ in (3.6), we get

$$
\begin{equation*}
\beta\left(x_{2}\right) \Delta(r, s) \alpha\left(x_{3}\right)-\Delta(r, s) \alpha\left(x_{3} x_{2}\right)=0 \tag{3.7}
\end{equation*}
$$

If we multiply (3.6) by x_{3} to the right, and subtract (3.7) we get

$$
\Delta(r, s) \alpha\left(\left[x_{2}, x_{3}\right]\right)=0 \forall x_{2}, x_{3} \in \mathfrak{L}, r, s \in \mathfrak{R} .
$$

Replace r by $t r$, to get $\Delta(t, s) \alpha(t) \alpha\left(\left[x_{2}, x_{3}\right]\right)=0$, that is $\alpha^{-1}(\Delta(t, s)) T\left[x_{2}, x_{3}\right]=$ (0). So by primeness of \mathfrak{R} either $\Delta=0$ or \mathfrak{L} is commutative. Hence, Lemma 2 gives the required conclusion.

Theorem 1. Let \mathfrak{R} be a prime ring, $\operatorname{char}(\mathfrak{R}) \neq 2, \mathfrak{L}$ a nonzero Lie ideal of $\mathfrak{R}, \alpha, \beta$ automorphisms and $\Delta: \mathfrak{R} \times \mathfrak{R} \rightarrow \mathfrak{R}$ a symmetric (α, β)-biderivation with trace δ. If $\delta\left(x_{1}\right) \in Z \forall x_{1} \in \mathfrak{L}$, then either $\mathfrak{L} \subseteq Z$ or $\Delta=0$.

Proof. By Assumption we have

$$
\begin{equation*}
\delta\left(x_{1}\right) \in Z \forall x_{1} \in \mathfrak{L} \tag{3.8}
\end{equation*}
$$

The linearizing (3.8), we find that

$$
\begin{equation*}
2 \Delta\left(x_{1}, x_{2}\right) \in Z \forall x_{1}, x_{2} \in \mathfrak{L} \tag{3.9}
\end{equation*}
$$

Replace x_{1} by $2 x_{1}^{2}$ in (3.9), to get

$$
\begin{equation*}
4 \Delta\left(x_{1}, x_{2}\right) \alpha\left(x_{1}\right)+\beta\left(x_{1}\right) \Delta\left(x_{1}, x_{2}\right) \in Z \tag{3.10}
\end{equation*}
$$

Therefore, in particular $\alpha\left(x_{1}\right) \delta\left(x_{1}\right)+\beta\left(x_{1}\right) \delta\left(x_{1}\right) \in Z \forall x_{1} \in \mathfrak{L}$. Then we have

$$
\begin{equation*}
0=\left[\alpha\left(x_{1}\right) \delta\left(x_{1}\right)+\beta\left(x_{1}\right) \delta\left(x_{1}\right), r\right]=\left[\alpha\left(x_{1}\right)+\beta\left(x_{1}\right), r\right] \delta\left(x_{1}\right) \tag{3.11}
\end{equation*}
$$

For every $r, s \in \mathfrak{R}$, we have

$$
\left[\alpha\left(x_{1}\right)+\beta\left(x_{1}\right), r s\right] \delta\left(x_{1}\right)=0=\left[\alpha\left(x_{1}\right)+\beta\left(x_{1}\right), r\right] s \delta\left(x_{1}\right)=0
$$

By primeness of \mathfrak{R}, given an arbitrary element $x_{1} \in \mathfrak{L}$, we have either $\delta\left(x_{1}\right)=0$ or $\alpha\left(x_{1}\right)+\beta\left(x_{1}\right) \in Z$. If $(\alpha+\beta)\left(x_{1}\right) \in Z$ then $x_{1} \in Z$. If $Z \cap \mathfrak{L}=0$, then $\delta\left(x_{1}\right)=0$
$\forall x_{1} \in \mathfrak{L}$. Assume that $Z \cap \mathfrak{L} \neq 0$. If $\mathfrak{L} \nsubseteq Z$, then there exists $x_{2} \in \mathfrak{L} \backslash Z$. Then $\forall x_{1} \in Z \cap \mathfrak{L}$, the element $x_{1}+x_{2}, x_{1}-x_{2} \in \mathfrak{L} \backslash Z$. Hence $\delta\left(x_{1}+x_{2}\right)=0$ and $\delta\left(x_{1}-x_{2}\right)=0$ and hence $\delta\left(x_{1}\right)=0$. In conclusion we prove that $\delta\left(x_{1}\right)=0 \forall x_{1} \in$ $Z \cap \mathfrak{L}$ and above we already know that $\delta\left(x_{1}\right)=0 \forall x_{1} \in \mathfrak{L} \backslash Z$. That is, $\delta\left(x_{1}\right)=0$ $\forall x_{1} \in \mathfrak{L}$.

Theorem 2. Let \mathfrak{R} be a prime ring, char $(\mathfrak{R}) \neq 2, \mathfrak{L}$ a nonzero square closed Lie ideal of $\mathfrak{R}, \alpha, \beta$ automorphisms and $\Gamma_{1}, \Gamma_{2}: \mathfrak{R} \times \mathfrak{R} \rightarrow \mathfrak{R}$ be two symmetric generalized (α, β)-biderivations associated with symmetric (α, β)-biderivations Δ_{1}, Δ_{2} : $\mathfrak{R} \times \mathfrak{R} \rightarrow \mathfrak{R}$, respectively. If $\Gamma_{1}\left(x_{1}, x_{1}\right) \alpha\left(x_{1}\right)=\beta\left(x_{1}\right) \Gamma_{2}\left(x_{1}, x_{1}\right) \forall x_{1} \in \mathfrak{L}$, then either $\mathfrak{L} \subseteq Z$ or $\Delta_{2}=0$.

Proof. Assume that $\mathfrak{L} \nsubseteq Z$. Suppose that $\gamma_{1}, \gamma_{2}, \delta_{1}, \delta_{2}$ are traces of $\Gamma_{1}, \Gamma_{2}, \Delta_{1}, \Delta_{2}$, respectively. We have

$$
\begin{equation*}
\gamma_{1}\left(x_{1}\right) \alpha\left(x_{1}\right)=\beta\left(x_{1}\right) \gamma_{2}\left(x_{1}\right) \forall x_{1} \in \mathfrak{L} . \tag{3.12}
\end{equation*}
$$

Replacing x_{1} by $x_{1}+x_{2}$ in (3.12), we get

$$
\begin{align*}
& \gamma_{1}\left(x_{1}\right) \alpha\left(x_{2}\right)+\gamma_{1}\left(x_{2}\right) \alpha\left(x_{1}\right)+2 \Gamma_{1}\left(x_{1}, x_{2}\right) \alpha\left(x_{1}\right)+2 \Gamma_{1}\left(x_{1}, x_{2}\right) \alpha\left(x_{2}\right) \\
& =\beta\left(x_{1}\right) \gamma_{2}\left(x_{2}\right)+\beta\left(x_{2}\right) \gamma_{2}\left(x_{1}\right)+2 \beta\left(x_{1}\right) \Gamma_{1}\left(x_{1}, x_{2}\right)+2 \beta\left(x_{2}\right) \Gamma_{2}\left(x_{1}, x_{2}\right) \tag{3.13}
\end{align*}
$$

Substituting x_{1} by $-x_{1}$ in (3.13), we get

$$
\begin{align*}
& \gamma_{1}\left(x_{1}\right) \alpha\left(x_{2}\right)-\gamma_{1}\left(x_{2}\right) \alpha\left(x_{1}\right)+2 \Gamma_{1}\left(x_{1}, x_{2}\right) \alpha\left(x_{1}\right)-2 \Gamma_{1}\left(x_{1}, x_{2}\right) \alpha\left(x_{2}\right) \\
& =-\beta\left(x_{1}\right) \gamma_{2}\left(x_{2}\right)+\beta\left(x_{2}\right) \gamma_{2}\left(x_{1}\right)+2 \beta\left(x_{1}\right) \Gamma_{1}\left(x_{1}, x_{2}\right)-2 \beta\left(x_{2}\right) \Gamma_{2}\left(x_{1}, x_{2}\right) . \tag{3.14}
\end{align*}
$$

Comparing (3.13) and (3.14) and using the fact that $\operatorname{char}(\mathfrak{R}) \neq 2$, we obtain

$$
\begin{equation*}
\gamma_{1}\left(x_{1}\right) \alpha\left(x_{2}\right)+2 \Gamma_{1}\left(x_{1}, x_{2}\right) \alpha\left(x_{1}\right)=\beta\left(x_{2}\right) \gamma_{2}\left(x_{1}\right)+2 \beta\left(x_{1}\right) \Gamma_{2}\left(x_{1}, x_{2}\right) \tag{3.15}
\end{equation*}
$$

Replacing x_{2} by $2 x_{2} x_{1}$ in (3.15), we have

$$
\begin{align*}
& \gamma_{1}\left(x_{1}\right) \alpha\left(x_{2} x_{1}\right)+2 \Gamma_{1}\left(x_{1}, x_{2}\right) \alpha\left(x_{1}^{2}\right)+2 \beta\left(x_{2}\right) \delta_{1}\left(x_{1}\right) \alpha\left(x_{1}\right) \\
& \quad=\beta\left(x_{2} x_{1}\right) \gamma_{2}\left(x_{1}\right)+2 \beta\left(x_{1}\right) \Gamma_{2}\left(x_{1}, x_{2}\right) \alpha\left(x_{1}\right)+2 \beta\left(x_{1}\right) \beta\left(x_{2}\right) \delta_{2}\left(x_{1}\right) \tag{3.16}
\end{align*}
$$

That is,

$$
\begin{array}{r}
\left(\gamma_{1}\left(x_{1}\right) \alpha\left(x_{2}\right)+2 \Gamma_{1}\left(x_{1}, x_{2}\right) \alpha\left(x_{1}\right)-2 \beta\left(x_{1}\right) \Gamma_{2}\left(x_{1}, x_{2}\right)\right) \alpha\left(x_{1}\right)+2 \beta\left(x_{2}\right) \delta_{1}\left(x_{1}\right) \alpha\left(x_{1}\right) \\
=\beta\left(x_{2} x_{1}\right) \gamma_{2}\left(x_{1}\right)+2 \beta\left(x_{1}\right) \beta\left(x_{2}\right) \delta_{2}\left(x_{1}\right) \tag{3.17}
\end{array}
$$

Using (3.15) in (3.17), we find that

$$
\begin{equation*}
\beta\left(x_{2}\right) \gamma_{2}\left(x_{1}\right) \alpha\left(x_{1}\right)+2 \beta\left(x_{2}\right) \delta\left(x_{1}\right) \alpha\left(x_{1}\right)=\beta\left(x_{2} x_{1}\right) \gamma_{2}\left(x_{1}\right)+2 \beta\left(x_{1} x_{2}\right) \delta_{2}\left(x_{1}\right) \tag{3.18}
\end{equation*}
$$

Replacing x_{2} by $2 x_{3} x_{2}$ in (3.18) and using $\operatorname{char}(R) \neq 2$, we get

$$
\begin{align*}
& \beta\left(x_{2} x_{3}\right) \gamma_{2}\left(x_{1}\right) \alpha\left(x_{1}\right)+2 \beta\left(x_{3} x_{2}\right) \delta\left(x_{1}\right) \alpha\left(x_{1}\right) \\
&=\beta\left(x_{3} x_{2} x_{1}\right) \gamma_{2}\left(x_{1}\right)+2 \beta\left(x_{1} x_{3} x_{2}\right) \delta_{2}\left(x_{1}\right) \tag{3.19}
\end{align*}
$$

Now, subtracting (3.19) from (3.18) multiplied by x_{3} to the left, we get

$$
\begin{equation*}
\beta\left(\left[x_{3}, x_{1}\right]\right) \beta\left(x_{2}\right) \delta_{2}\left(x_{1}\right) \forall x_{1}, x_{2}, x_{3} \in \mathfrak{L} . \tag{3.20}
\end{equation*}
$$

This implies that $\left[x_{3}, x_{1}\right] \mathfrak{L} \beta^{-1}\left(\delta_{2}\left(x_{1}\right)\right)=(0)$. By Lemma 3, gives that for an arbitrary element $x_{1} \in \mathfrak{L}$ either $x_{1} \in Z(\mathfrak{L})$ or $\delta_{2}\left(x_{1}\right)=0$. If $Z(\mathfrak{L})=0$, then $\delta_{2}\left(x_{1}\right)=$ 0 . If $\mathfrak{L}=Z(\mathfrak{L})$, then $\mathfrak{L} \subseteq Z$, by Lemma 2 , a contradiction. Let us assume that $\mathfrak{L} \neq Z(\mathfrak{L}) \neq 0$. Then there exists $x_{1} \in \mathfrak{L} \backslash Z(\mathfrak{L})$. So $\delta_{2}\left(x_{1}\right)=0$ since $\delta_{2}\left(x_{2}\right)=0$ $\forall x_{2} \in \mathfrak{L} \backslash Z(\mathfrak{L})$. Take $0 \neq x_{3} \in Z(\mathfrak{L})$. Then $x_{1}+x_{3}, x_{1}-x_{3} \in \mathfrak{L} \backslash Z(\mathfrak{L})$ and so $\Delta\left(x_{1}+x_{3}, x_{1}+x_{3}\right)=0=\Delta\left(x_{1}-x_{3}, x_{1}-x_{3}\right)$, that is

$$
\Delta_{2}\left(x_{1}, x_{1}\right)+2 \Delta_{2}\left(x_{1}, x_{3}\right)+\Delta_{2}\left(x_{3}, x_{3}\right)=0
$$

and

$$
\Delta_{2}\left(x_{1}, x_{1}\right)-2 \Delta_{2}\left(x_{1}, x_{3}\right)+\Delta_{2}\left(x_{3}, x_{3}\right)=0
$$

Adding the above two expression, we find that $2 \delta_{2}\left(x_{3}\right)=0$. Since $\operatorname{char}(\mathfrak{R}) \neq 2$, we have $\delta_{2}\left(x_{3}\right)=0 \forall x_{3} \in \mathfrak{L}$. Using Proposition 1, we get the required result.

Using the same technique with necessary variation one can prove the following theorem.

Theorem 3. Let \mathfrak{R} be a prime ring, char $(\mathfrak{R}) \neq 2$, \mathfrak{L} a nonzero square closed Lie ideal of R, α, β automorphisms and $\Gamma_{1}, \Gamma_{2}: \mathfrak{R} \times \mathfrak{R} \rightarrow \mathfrak{R}$ be two symmetric generalized (α, β)-biderivations associated with symmetric (α, β)-biderivations Δ_{1}, Δ_{2} : $\mathfrak{R} \times \mathfrak{R} \rightarrow \mathfrak{R}$, respectively. If $\Gamma_{1}\left(x_{1}, x_{1}\right) \alpha\left(x_{1}\right)+\beta\left(x_{1}\right) \Gamma_{2}\left(x_{1}, x_{1}\right)=0 \forall x_{1} \in \mathfrak{L}$, then either $\mathfrak{L} \subseteq Z$ or $\Delta_{2}=0$.

It is immediately to get the following corollaries from Theorems 2, 3 and Lemma 1.

Corollary 1. Let \mathfrak{R} be a prime ring, char $(\mathfrak{R}) \neq 2$, I a nonzero ideal of \mathfrak{R}, and $\Gamma_{1}, \Gamma_{2}: \mathfrak{R} \times \mathfrak{R} \rightarrow \mathfrak{R}$ be two symmetric generalized (α, β)-biderivations associated with symmetric (α, β)-biderivations $\Delta_{1}, \Delta_{2}: \Re \times \Re \rightarrow \Re$, respectively. If $\Gamma_{1}(x, x) \alpha(x)= \pm \beta(x) \Gamma_{2}(x, x) \forall x \in I$, then \mathfrak{R} is commutative.

Corollary 2. Let \mathfrak{R} be a prime ring, char $(\mathfrak{R}) \neq 2$, \mathfrak{L} a nonzero square closed Lie ideal of $\mathfrak{R}, \alpha, \beta$ automorphisms and $\Gamma: \mathfrak{R} \times \mathfrak{R} \rightarrow \mathfrak{R}$ be a symmetric generalized (α, β)-biderivation associated with a symmetric (α, β)-biderivation $\Delta: \mathfrak{R} \times \mathfrak{R} \rightarrow \mathfrak{R}$. If $[\Gamma(x, x), x]_{\alpha, \beta}=0 \forall x \in I$, then either $\mathfrak{L} \subseteq Z$ or $\Delta=0$.

Corollary 3. Let \mathfrak{R} be a prime ring, $\operatorname{char}(\mathfrak{R}) \neq 2$, I a nonzero ideal of $\mathfrak{R}, \alpha, \beta$ automorphisms and $\Gamma: \mathfrak{R} \times \mathfrak{R} \rightarrow \mathfrak{R}$ be a symmetric generalized (α, β)-biderivation associated with a symmetric (α, β)-biderivation $\Delta: \mathfrak{R} \times \mathfrak{R} \rightarrow \mathfrak{R}$. If $\Gamma(x, x) \alpha(x)=$ $\pm \beta(x) \Delta(x, x) \forall x \in I$, then \Re is commutative or Γ is a left α-bicentralizer.

Theorem 4. Let R be a prime ring, char $(\Re) \neq 2,3, \mathfrak{L}$ a nonzero Lie ideal of \Re, $\Gamma: \Re \times \Re \rightarrow \Re$ a symmetric generalized biderivation associated with a symmetric biderivation Δ. If

$$
\begin{aligned}
\Gamma\left(\Gamma\left(x_{1}, x_{1}\right), \Gamma\left(x_{1}, x_{1}\right)\right) & -\Delta\left(\Delta\left(x_{1}, x_{1}\right), \Delta\left(x_{1}, x_{1}\right)\right) \\
& =\Delta\left(\Gamma\left(x_{1}, x_{1}\right), \Gamma\left(x_{1}, x_{1}\right)\right)-\Gamma\left(\Delta\left(x_{1}, x_{1}\right), \Delta\left(x_{1}, x_{1}\right)\right)
\end{aligned}
$$

$\forall x_{1} \in \mathfrak{L}$, then either $\mathfrak{L} \subseteq Z$ or $\Delta=\Gamma$ or $\Delta=0$.
Proof. Let γ, δ be the traces of Γ and Δ, respectively. By our hypothesis we have

$$
\begin{equation*}
\gamma^{2}\left(x_{1}\right)-\delta^{2}\left(x_{1}\right)=\delta\left(\gamma\left(x_{1}\right)\right)-\gamma\left(\delta\left(x_{1}\right)\right) \tag{3.21}
\end{equation*}
$$

The substitution of x_{1} by $x_{1}+x_{2}$ in (3.21), gives that

$$
\begin{align*}
& 4 \gamma\left(\Gamma\left(x_{1}, x_{2}\right)\right)+2 \Gamma\left(\gamma\left(x_{1}\right), \gamma\left(x_{2}\right)\right)+4 \Gamma\left(\gamma\left(x_{1}\right), \Gamma\left(x_{1}, x_{2}\right)\right) \\
& \quad+4 \Gamma\left(\gamma\left(x_{2}\right), \Gamma\left(x_{1}, x_{2}\right)\right)-\delta\left(\Delta\left(x_{1}, x_{2}\right)\right)-2 \Delta\left(\delta\left(x_{1}\right), \delta\left(x_{2}\right)\right) \\
& \quad-4 \Delta\left(\delta\left(x_{1}\right), \Delta\left(x_{1}, x_{2}\right)\right)-4 \Delta\left(\delta\left(x_{2}\right), \Delta\left(x_{1}, x_{2}\right)\right) \\
&= 4 \delta\left(\Gamma\left(x_{1}, x_{2}\right)\right)+2 \Delta\left(\gamma\left(x_{1}\right), \gamma\left(x_{2}\right)\right)+4 \Delta\left(\gamma\left(x_{1}\right), \Gamma\left(x_{1}, x_{2}\right)\right) \\
& \quad+4 \Delta\left(\gamma\left(x_{2}\right), \Gamma\left(x_{1}, x_{2}\right)\right)-4 \gamma\left(\Delta\left(x_{1}, x_{2}\right)\right)-2 \Gamma\left(\delta\left(x_{1}\right), \delta\left(x_{2}\right)\right) \\
& \quad-4 \Gamma\left(\delta\left(x_{1}\right), \Delta\left(x_{1}, x_{2}\right)\right)-4 \Gamma\left(\delta\left(x_{2}\right), \Delta\left(x_{1}, x_{2}\right)\right) \tag{3.22}
\end{align*}
$$

Now, substituting x_{2} by $-x_{2}$ in the above expression, we find that

$$
\begin{align*}
4 \gamma & \left(\Gamma\left(x_{1}, x_{2}\right)\right)+2 \Gamma\left(\gamma\left(x_{1}\right), \gamma\left(x_{2}\right)\right)-4 \Gamma\left(\gamma\left(x_{1}\right), \Gamma\left(x_{1}, x_{2}\right)\right) \\
& -4 \Gamma\left(\gamma\left(x_{2}\right), \Gamma\left(x_{1}, x_{2}\right)\right)-\delta\left(\Delta\left(x_{1}, x_{2}\right)\right)-2 \delta\left(\delta\left(x_{1}\right), \delta\left(x_{2}\right)\right) \\
& +4 \Delta\left(\delta\left(x_{1}\right), \Delta\left(x_{1}, x_{2}\right)\right)+4 \Delta\left(\delta\left(x_{2}\right), \Delta\left(x_{1}, x_{2}\right)\right) \\
= & 4 \delta\left(\Gamma\left(x_{1}, x_{2}\right)\right)+2 \Delta\left(\gamma\left(x_{1}\right), \gamma\left(x_{2}\right)\right)-4 \Delta\left(\gamma\left(x_{1}\right), \Gamma\left(x_{1}, x_{2}\right)\right) \\
& -4 \Delta\left(\gamma\left(x_{2}\right), \Gamma\left(x_{1}, x_{2}\right)\right)-4 \gamma\left(\Delta\left(x_{1}, x_{2}\right)\right)-2 \Gamma\left(\delta\left(x_{1}\right), \delta\left(x_{2}\right)\right) \\
& +4 \Gamma\left(\delta\left(x_{1}\right), \Delta\left(x_{1}, x_{2}\right)\right)+4 \Gamma\left(\delta\left(x_{2}\right), \Delta\left(x_{1}, x_{2}\right)\right) . \tag{3.23}
\end{align*}
$$

Comparing (3.22) and (3.23) and using the fact that $\operatorname{char}(\Re) \neq 2$, we get

$$
\begin{align*}
& 2 \gamma\left(\Gamma\left(x_{1}, x_{2}\right)\right)+\Gamma\left(\gamma\left(x_{1}\right), \gamma\left(x_{2}\right)\right)-2 \delta\left(\Delta\left(x_{1}, x_{2}\right)\right)-\Delta\left(\delta\left(x_{1}\right), \delta\left(x_{2}\right)\right) \\
& =2 \delta\left(\Delta\left(x_{1}, x_{2}\right)\right)+\Delta\left(\gamma\left(x_{1}\right), \gamma\left(x_{2}\right)\right)-2 \gamma\left(\Delta\left(x_{1}, x_{2}\right)\right)-\Gamma\left(\delta\left(x_{1}\right), \delta\left(x_{2}\right)\right) . \tag{3.24}
\end{align*}
$$

Now, substituting x_{2} by $x_{2}+x_{3} \operatorname{in}(3.24)$, gives that

$$
\begin{align*}
2 \Gamma & \Gamma\left(\Gamma\left(x_{1}, x_{2}\right), \Gamma\left(x_{1}, x_{3}\right)\right)+\Gamma\left(\gamma\left(x_{1}\right), \Gamma\left(x_{2}, x_{3}\right)\right) \\
& -2 \Delta\left(\Delta\left(x_{1}, x_{2}\right), \Delta\left(x_{1}, x_{3}\right)\right)-\Delta\left(\delta\left(x_{1}\right), \Delta\left(x_{2}, x_{3}\right)\right) \\
= & 2 \delta\left(\Delta\left(x_{1}, x_{2}\right), \Delta\left(x_{2}, x_{3}\right)\right)+\Delta\left(\gamma\left(x_{1}\right), \Gamma\left(x_{2}, x_{3}\right)\right) \\
& -2 \gamma\left(\Delta\left(x_{1}, x_{2}\right)\right)-\Gamma\left(\delta\left(x_{1}\right), \Delta\left(x_{2}, x_{3}\right)\right) . \tag{3.25}
\end{align*}
$$

Let us take $T=\Gamma-\Delta$, and denote $k=\gamma+\delta$ the trace of $K=\Gamma+\Delta$. By Lemma $5 T$ is a left bicentralizer of \mathfrak{R}. Then (3.24), reduces to

$$
\begin{align*}
& 2 T\left(\Gamma\left(x_{1}, x_{2}\right) \Gamma\left(x_{1}, x_{3}\right)\right)+T\left(\gamma\left(x_{1}\right), \Gamma\left(x_{2}, x_{3}\right)\right) \\
& \quad+2 T\left(\Delta\left(x_{1}, x_{2}\right), \Delta\left(x_{1}, x_{3}\right)\right)+T\left(\delta\left(x_{1}\right), \Delta\left(x_{2}, x_{3}\right)\right)=0 \tag{3.26}
\end{align*}
$$

Replacing x_{3} by $2 x_{3} z$ in (3.26)and using (3.26), we obtain

$$
\begin{align*}
2 T\left(\Gamma\left(x_{1}, x_{2}\right),\right. & \left.x_{3}\right) \Delta\left(x_{1}, z\right)+T\left(\gamma\left(x_{1}\right), x_{3}\right) \Delta\left(x_{2}, z\right) \\
& +2 T\left(\Delta\left(x_{1}, x_{2}\right), x_{3}\right) \Delta\left(x_{1}, z\right)+T\left(\delta\left(x_{1}\right), x_{3}\right) \Delta\left(x_{2}, z\right)=0 \tag{3.27}
\end{align*}
$$

That is,

$$
\begin{equation*}
2 T\left(K\left(x_{1}, x_{2}\right), x_{3}\right) \Delta\left(x_{1}, z\right)+T\left(k\left(x_{1}\right), x_{3}\right) \Delta\left(x_{2}, z\right)=0 \tag{3.28}
\end{equation*}
$$

Choosing $x_{2}=x_{1}$ in (3.28), and using $\operatorname{char}(\Re) \neq 3$, we get

$$
\begin{equation*}
T\left(k\left(x_{1}\right), x_{3}\right) \Delta\left(x_{1}, z\right)=0 \tag{3.29}
\end{equation*}
$$

Choosing $z=x_{1}$ in (3.28), we obtain

$$
\begin{equation*}
2 T\left(K\left(x_{1}, x_{2}\right), x_{3}\right) \delta\left(x_{1}\right)+T\left(k\left(x_{1}\right), x_{3}\right) \Delta\left(x_{2}, x_{1}\right)=0 \tag{3.30}
\end{equation*}
$$

Comparing (3.29) and (3.30) and using the fact that $\operatorname{char}(\mathfrak{R}) \neq 2$, gives that

$$
\begin{equation*}
T\left(K\left(x_{1}, x_{2}\right), x_{3}\right) \delta\left(x_{1}\right)=0 \tag{3.31}
\end{equation*}
$$

Replacing x_{2} by $2 x_{2} x$ in (3.31), we find that

$$
\begin{equation*}
T\left(K\left(x_{1}, x_{2}\right), x_{3}\right) x \delta\left(x_{1}\right)+2 T\left(x_{2}, x_{3}\right) \Delta\left(x_{1}, x\right) \delta\left(x_{1}\right)=0 \tag{3.32}
\end{equation*}
$$

By replacing x_{3} by $2 x_{3} x$ in (3.31), we find that

$$
\begin{equation*}
T\left(K\left(x_{1}, x_{2}\right), x_{3}\right) x \delta\left(x_{1}\right)=0 \tag{3.33}
\end{equation*}
$$

From (3.32) and (3.33) and using the fact that $\operatorname{char}(R) \neq 2$, we find that

$$
\begin{equation*}
T\left(x_{2}, x_{3}\right) \Delta\left(x_{1}, x\right) \delta\left(x_{1}\right)=0 \tag{3.34}
\end{equation*}
$$

Replace x_{3} by $2 x_{3} w_{1}$, to get $\left(T\left(x_{2}, x_{3}\right) \mathfrak{L} \Delta\left(x_{1}, x\right) \Delta\left(x_{1}\right)=0 \forall x_{1}, x_{2}, x, x_{3} \in \mathfrak{L}\right.$. Lemma 3, gives that either $\left(T\left(x_{2}, x_{3}\right)=0\right.$ or $\Delta\left(x_{1}, x\right) \delta\left(x_{1}\right)=0$. In the first case $T\left(x_{2}, x_{3}\right)=0 \forall x_{2}, x_{3} \in \mathfrak{L}$ and hence by Lemma 4, proves that $T=0$. Therefore $\Gamma=\Delta$. On the other hand, if $\Delta\left(x_{1}, x\right) \delta\left(x_{1}\right)=0 \forall x_{1}, x \in \mathfrak{L}$, then replacing x by $2 x_{1} x$, we have $\delta\left(x_{1}\right) x \delta\left(x_{1}\right)=0$, that is, $\delta\left(x_{1}\right) \mathfrak{L} \delta\left(x_{1}\right)=0$. Again, by Lemma 3, $\delta\left(x_{1}\right)=0$ and hence $\delta\left(x_{1}\right)=0$ for al $x_{1} \in \mathfrak{L}$. Proposition 1 , gives that $\mathfrak{L} \subseteq Z$ or $\Delta=0$.

Corollary 4. Let \mathfrak{R} be a prime ring, $\operatorname{char}(\Re) \neq 2$, I a nonzero ideal of \mathfrak{R}, α an automorphism, and $\Gamma: \mathfrak{R} \times \mathfrak{R} \rightarrow \mathfrak{R}$ a symmetric generalized (α, α)-biderivation associated with a symmetric (α, α)-biderivation Δ. If

$$
\begin{aligned}
\Gamma\left(\Gamma\left(x_{1}, x_{1}\right), \Gamma\left(x_{1}, x_{1}\right)\right) & -\Delta\left(\Delta\left(x_{1}, x_{1}\right), \Delta\left(x_{1}, x_{1}\right)\right) \\
& =\Delta\left(\Gamma\left(x_{1}, x_{1}\right), \Gamma\left(x_{1}, x_{1}\right)\right)-\Gamma\left(\Delta\left(x_{1}, x_{1}\right), \Delta\left(x_{1}, x_{1}\right)\right)
\end{aligned}
$$

$\forall x_{1} \in I$, then either R is commutative or $\Delta=\Gamma$ or Δ is a left α-bicentralizer.

Acknowledgement

The authors are greatly indebted to the referee for his/her valuable suggestions which have improved the paper immensely.

References

[1] A. Ali, V. D. Filippis, and F. Shujat, " Results concerning symmetric generalized biderivations of prime and semiprime rings." Matematicki Vesnik, vol. 66, no. 4, pp. 410-417, 2004.
[2] M. Ashraf, N. Rehman, S. Ali, and M. R. Mozumder, "On generalized (σ, τ)-biderivations in rings." Asian-European Journal of Mathematics, vol. 4, no. 3, pp. 389-402, 2011, doi: 10.1142/S1793557111000319.
[3] K. Beidar, M. S. Martindale, and A. Mikhalev, Rings with Generalized Identities. New York: Marcel Dekker Inc., 1996.
[4] J. Bergen, I. N. Herstein, and J. W. Kerr, "Lie ideals and derivations of prime rings." J. Algebra, vol. 7, pp. 259-267, 1981, doi: 10.1016/0021-8693(81)90120-4.
[5] M. Brešar, "On certain pairs of functions of semiprime rings." Proc. Amer. Math. Soc., vol. 3, no. 120, pp. 709-713, 1994, doi: 10.2307/2160460.
[6] M. Brešar, "On generalized biderivations and related maps." J.Algebra, vol. 172, pp. 764-786, 1995, doi: 10.1006/jabr.1995.1069.
[7] M. Brešar, M. S. Martindale, and C. Miers, "Centralizing maps in prime rings with involution." J.Algebra, vol. 161, no. 2, pp. 342-357, 1993, doi: 10.1006/jabr.1993.1223.
[8] I. Herstein, "Rings with involution." The Universtity Chicago Press, Chicago, 1976.
[9] G. Maksa, "On the trace of symmetric biderivations." C. R. Math. Rep. Acad. Sci. Canada, vol. 9, pp. 303-307, 1987.
[10] W. S. Martindale III, "Prime rings satisfying a generalized polynomial identity." J. of Algebra, vol. 12, pp. 576-584, 1969, doi: 10.1016/0021-8693(69)90029-5.
[11] G. Maska, "A remark on symmetric biadditive functions having non-negative diagonalization." Glasnik. Mat., vol. 15, no. 35, pp. 279-282, 1980.
[12] J. H. Mayne, "Centralizing mappings of prime rings." Canad. Math. Bull., vol. 27, no. 1, pp. 122-126, 1984, doi: $10.4153 / C M B-1984-018-2$.
[13] N. Rehman, "On Commutativity of prime rings with generalized derivations." Math. J. Okayama Univ., vol. 44, pp. 43-49, 2002.
[14] J. Vukman, "Symmetric biderivations on prime and semiprime rings." Aequationes Math., vol. 38, pp. 245-254, 1989, doi: 10.1007/BF01840009.
[15] J. Vukman, "Two results concerning symmetric biderivations on prime rings." Aequationes Math., vol. 40, pp. 181-189, 1990, doi: 10.1007/BF02112294.
[16] M. Yenigul and N. Argac, "Ideals and symmetric biderivations on prime and semiprime rings." Math. J. Okayama Univ., vol. 35, no. 9, pp. 189-192, 1993.

Authors' addresses

Nadeem ur Rehman

Department of Mathematics, Aligarh Muslim University, 202002, Aligarh, India
E-mail address: nu.rehman.mm@amu.ac.in
Shuliang Huang
Shuliang Huang, Department of Mathematics, Chuzhou University, Chuzhou 239012, China
E-mail address: shulianghuang@sina.com

