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Abstract. Let R be a prime ring with char.R/¤ 2. A biadditive symmetric map� WR�R!R
is called symmetric .˛;ˇ/-biderivation if, for any fixed y 2R, the map x 7!�.x;y/ is a .˛;ˇ/-
derivation. A symmetric biadditive map � W R�R! R is a symmetric generalized .˛;ˇ/-
biderivation if for any fixed y 2R, the map x 7! � .x;y/ is a generalized .˛;ˇ/-derivation of R
associated with the .˛;ˇ/-derivation �.:;y/. In the present paper, we investigate the commut-
ativity of a ring having a generalized .˛;ˇ/-biderivation satisfying certain algebraic conditions.
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1. INTRODUCTION

Throughout this article R denotes an associative ring with center Z. An additive
subgroup L of R is said to be a Lie ideal of R if Œl; r� 2 L, 8 l 2 L and r 2 R. A
Lie ideal L is called square closed if u2 2 L 8 u 2 L. And it is easy to check that
2uv 2 L 8 u;v 2 L.

A derivation d W R! R is an additive map such that d.xy/ D d.x/yCxd.y/ 8
x;y 2 R. An additive map F W R! R is a generalized derivation if there exists
a derivation d W R! R such that F .xy/ D F .x/yC xd.y/ holds 8 x;y 2 R. If
' W R�R! R is a symmetric map .'.x;y/ D '.y;x/ 8 x;y 2 R) the map � W
R! R defined by �.x/ D '.x;x/ is the trace of '. If ' is also biadditive (i.e.,
additive in both arguments), its trace � satisfies �.xCy/D �.x/C�.y/C2'.x;y/, 8
x;y 2R. A symmetric biadditive map ' WR�R!R is a symmetric biderivation if
'.xy;´/D'.x;´/yCx'.y;´/8 x;y;´2R. The concept of symmetric biderivation
was introduced by G. Maksa [9]. A symmetric biadditive map � W R�R! R is a
symmetric left bicentralizer if �.xy;´/ D �.x;´/y ( and consequently �.x;y´/ D
�.x;y/´/ 8 x;y;´ 2R.

Symmetric biderivations were proved to be related to the general solution of some
functional equations (see [11]). The maps .u;v/ 7! 	Œu;v�;	 2 C , are typical ex-
amples of biderivations and they were called inner biderivations. Here C is the exten-
ded centroid of R, that is, the center of the two-sided Martindale quotient ring Q (we
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refer the reader to [3] for more details). In [7], it is shown that every biderivation of
a noncommutative prime ring R is inner. In [5], this result is extended to semiprime.
In [14], it is proved that if ' is a nonzero symmetric biderivation, where R is a prime
ring of char.R/¤ 2, with the property:

'.x;x/x D x'.x;x/;x 2R: (1.1)

then R is commutative. He also proved that if '1;'2 are nonzero biderivations on
R, D is a symmetric biadditive map and �1.�2.x// D d.x/ holds 8 x 2 R, where
�1; �2, and d are the traces of '1;'2, and D, respectively, then either '1 D 0 or
'2 D 0. Let’s mention two results proved in [15]. The first one states that if '1
and '2 are symmetric biderivations on a prime ring R, char.R/ ¤ 2;3, such that
'1.x;x/'2.x;x/ D 0 holds 8 x 2 R, then either '1 D 0 or '2 D 0. The second
result says that if ŒŒ'.x;x/;x�;x� 2 Z 8 x 2R, then R is commutative. In [16] the
authors extended the results in [14] assuming condition (1.1) over a nonzero ideal
and a nonzero Lie ideal of a prime ring respectively.

The notion of generalized biderivation was introduced in [6]. A biadditive map
� WR�R!R is a generalized biderivation associated with a biderivation � WR�
R!R if for every x;y 2R, the maps y 7!� .x;y/ and y 7!� .y;x/ are generalized
derivations of R associated with�.x; :/ and�.:;x/. That is, � .xy;´/D � .x;´/yC
x�.y;´/ and � .x;y´/D� .x;y/´Cy�.x;´/ hold8 x;y;´2R. BreLsar shown that
every generalized biderivation � of an ideal I (� W I � I ! R) of a prime ring R
with char.R/¤ 2, is of the form � .x;y/D xayCybx for some a;b 2Q, where Q
is Martindale quotient ring of R ( see [8] and [10] for details). In [1] authors extended
some results of [14, 15] to generalized biderivations on prime and semiprime rings.
Recently, in [2], symmetric generalized .�;�/-biderivations of a prime ring R with
char.R/ ¤ 2 have been considered. Notice that a symmetric left bicentralizer is a
symmetric generalized biderivation associated with the biderivation T D 0.

2. PRELIMINARIES

Lemma 1 ([12, Lemma 3]). If the prime ring R contains a commutative nonzero
right ideal I , then R is commutative.

Lemma 2 ([13, Lemma 2.6]). Let R be a prime ring with char.R/¤ 2. If L is a
commutative Lie ideal of R, then L�Z.

Lemma 3 ([4, Lemma 4]). Let R be a prime ring with char.R/¤ 2. If L 6� Z is
a Lie ideal of R and aLb D .0/, then either aD 0 or b D 0.

Lemma 4. Let R be a prime ring, char.R/ ¤ 2, L a Lie ideal of R and ˛
is automorphism. If T W R�R! R is a symmetric left ˛-centralizer such that
T .˛.x1/;˛.x1//D 0 8 x1 2 L, then either L�Z or T D 0.

Proof. Assume that L 6�Z. We have

T .x1;x1/D 0 8 x1 2 L: (2.1)
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Linearizing (2.1), we get

T .˛.x1/;˛.x2//D 0 8 x1;x2 2 L: (2.2)

Let us replace x1 by x1s� sx1 8 s 2R in (2.2), to obtain

T .˛.s/;˛.x2//˛
2.x1/D 0 8x1;x2 2 L; s 2R:

That is, ˛�2.T .˛.s/;˛.x2///L˛
�2.T .˛.r/;˛.x2/// D .0/ 8 x2 2 L, s 2 R. By

Lemma 3, ˛�2.T .˛.r/;˛.x2/// D 0 8 x2 2 L, r 2 R that is, T .˛.s/;˛.x2// D 0.
Now we replace x2 by Œx2; r� 8 r 2 R, we get T .˛.s/;˛.r//˛2.x2/ D 0, that is
˛�2.T .˛.s/;˛.r///L˛�2.T .˛.s/;˛.r///D .0/ and hence again by Lemma 3 gives
that ˛�2.T .˛.s/;˛.r/// D 0 8 r;s 2 R i.e., T .˛.s/;˛.r// D 0 8 r;s 2 R. Now,
replacing s by ˛�1.t1/ and r by ˛�1.t2/, we get T .t1; t2/ D 0 8 t1; t2 2 R, that is
T D 0. �

Lemma 5. Let R be a ring and ˛;ˇ automorphisms. If � is a symmetric general-
ized .˛;ˇ/-biderivation associated with a symmetric .˛;ˇ/-biderivation �, then the
map � �� WR�R!R is a symmetric left ˛-bicentralizer.

Proof. The map ˝ D � ��, is clearly biadditive. For all x1;x2;x3 2R,

� .x1x2;x3/D .� ��/.x1x2;x3/

D � .x1x2;x3/��.x1x2;x3/

D � .x1;x3/˛.x2/Cˇ.x1/�.x2;x3/

��.x1;x3/˛.x2/�ˇ.x1/�.x2;x3/

D � .x1;x3/˛.x2/��.x1;x3/˛.x2/

D˝.x1;x3/˛.x2/:

Therefore, ˝ is a symmetric left ˛-centralizer of R. �

3. MAIN RESULTS

Proposition 1. Let R be a prime ring, char.R/¤ 2, L a nonzero Lie ideal of R,
˛;ˇ automorphisms, and� WR�R!R a symmetric .˛;ˇ/-biderivation with trace
ı. If ı.x1/D 0 8 x1 2 L, then either L�Z or �D 0.

Proof. By our hypothesis

ı.u/D 0 8 x1 2 L: (3.1)

Linearizing (3.1) and using (3.1), we get

2�.x1;x2/D 0 8 x1;x2 2 L: (3.2)

If we replace x1 by x1r � rx1 in (3.2), to get

ˇ.x1/�.r;x2/� ı.r;x2/˛.x1/D 0: (3.3)
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Again replacing r by rx3 and using (3.2), we find that

ˇ.x1/�.r;x2/˛.x3/��.r;x2/˛.x3x1/D 0: (3.4)

Multiplying (3.3) from left by x3, we get

ˇ.x1/�.r;x2/˛.x3/��.r;x2/˛.x1x3/D 0: (3.5)

From (3.4), (3.5) it follows that �.r;x2/˛.Œx1;x3�/D 0 8 x1;x2;x3 2 L and r 2R.
If we replace r by rs, s 2 R, we obtain �.r;x2/˛.s/˛.Œx1;x3�/ D 0 and hence
˛�1.�.r;x2//RŒx1;x3�D .0/ Thus by primeness of R it follows that either Œx1;x3�D
0 for x1;x3 2 L or ˛�1.�.r;x2//D 0. If Œx1;x3�D 0 8 x1;x3 2 L, then L � Z by
Lemma 2. In other case, ˛�1.�.r;x2//D 0 8 x2 2 L, r 2R, that is, �.r;x2/D 0 .
Replacing x2 by x2s� sx2, we get

ˇ.x2/�.r;s/��.r;s/˛.x2/D 0: (3.6)

Now, replacing s by sx3 in (3.6), we get

ˇ.x2/�.r;s/˛.x3/��.r;s/˛.x3x2/D 0: (3.7)

If we multiply (3.6) by x3 to the right, and subtract (3.7) we get

�.r;s/˛.Œx2;x3�/D 0 8x2;x3 2 L; r; s 2R:

Replace r by t r , to get �.t;s/˛.t/˛.Œx2;x3�/ D 0, that is ˛�1.�.t; s//T Œx2;x3� D

.0/. So by primeness of R either�D 0 or L is commutative. Hence, Lemma 2 gives
the required conclusion. �

Theorem 1. Let R be a prime ring, char.R/¤ 2, L a nonzero Lie ideal of R, ˛;ˇ
automorphisms and � WR�R!R a symmetric .˛;ˇ/-biderivation with trace ı. If
ı.x1/ 2Z 8 x1 2 L, then either L�Z or �D 0.

Proof. By Assumption we have

ı.x1/ 2Z 8 x1 2 L: (3.8)

The linearizing (3.8), we find that

2�.x1;x2/ 2Z 8 x1;x2 2 L: (3.9)

Replace x1 by 2x21 in (3.9), to get

4�.x1;x2/˛.x1/Cˇ.x1/�.x1;x2/ 2Z: (3.10)

Therefore, in particular ˛.x1/ı.x1/Cˇ.x1/ı.x1/ 2Z 8 x1 2 L. Then we have

0D Œ˛.x1/ı.x1/Cˇ.x1/ı.x1/; r�D Œ˛.x1/Cˇ.x1/; r�ı.x1/: (3.11)

For every r;s 2R, we have

Œ˛.x1/Cˇ.x1/; rs�ı.x1/D 0D Œ˛.x1/Cˇ.x1/; r�sı.x1/D 0:

By primeness of R, given an arbitrary element x1 2 L, we have either ı.x1/D 0 or
˛.x1/Cˇ.x1/ 2 Z: If .˛Cˇ/.x1/ 2 Z then x1 2 Z. If Z\LD 0, then ı.x1/D 0
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8 x1 2 L. Assume that Z \L ¤ 0. If L 6� Z, then there exists x2 2 L nZ. Then
8 x1 2 Z \L, the element x1C x2;x1 � x2 2 L nZ. Hence ı.x1C x2/ D 0 and
ı.x1�x2/D 0 and hence ı.x1/D 0. In conclusion we prove that ı.x1/D 0 8 x1 2
Z\L and above we already know that ı.x1/D 0 8 x1 2 LnZ. That is, ı.x1/D 0
8 x1 2 L. �

Theorem 2. Let R be a prime ring, char.R/¤ 2, L a nonzero square closed Lie
ideal of R, ˛;ˇ automorphisms and �1;�2 W R�R! R be two symmetric gener-
alized .˛;ˇ/-biderivations associated with symmetric .˛;ˇ/-biderivations �1;�2 W
R�R! R, respectively. If �1.x1;x1/˛.x1/ D ˇ.x1/�2.x1;x1/ 8 x1 2 L, then
either L�Z or �2 D 0.

Proof. Assume that L 6�Z. Suppose that 1;2; ı1; ı2 are traces of �1;�2;�1;�2,
respectively. We have

1.x1/˛.x1/D ˇ.x1/2.x1/ 8 x1 2 L: (3.12)

Replacing x1 by x1Cx2 in (3.12), we get

1.x1/˛.x2/C1.x2/˛.x1/C2�1.x1;x2/˛.x1/C2�1.x1;x2/˛.x2/

D ˇ.x1/2.x2/Cˇ.x2/2.x1/C2ˇ.x1/�1.x1;x2/C2ˇ.x2/�2.x1;x2/: (3.13)

Substituting x1 by �x1 in (3.13), we get

1.x1/˛.x2/�1.x2/˛.x1/C2�1.x1;x2/˛.x1/�2�1.x1;x2/˛.x2/

D�ˇ.x1/2.x2/Cˇ.x2/2.x1/C2ˇ.x1/�1.x1;x2/�2ˇ.x2/�2.x1;x2/: (3.14)

Comparing (3.13) and (3.14) and using the fact that char(R/¤ 2, we obtain

1.x1/˛.x2/C2�1.x1;x2/˛.x1/D ˇ.x2/2.x1/C2ˇ.x1/�2.x1;x2/: (3.15)

Replacing x2 by 2x2x1 in (3.15), we have

1.x1/˛.x2x1/C2�1.x1;x2/˛.x
2
1/C2ˇ.x2/ı1.x1/˛.x1/

D ˇ.x2x1/2.x1/C2ˇ.x1/�2.x1;x2/˛.x1/C2ˇ.x1/ˇ.x2/ı2.x1/: (3.16)

That is,

.1.x1/˛.x2/C2�1.x1;x2/˛.x1/�2ˇ.x1/�2.x1;x2//˛.x1/C2ˇ.x2/ı1.x1/˛.x1/

D ˇ.x2x1/2.x1/C2ˇ.x1/ˇ.x2/ı2.x1/: (3.17)

Using (3.15) in (3.17), we find that

ˇ.x2/2.x1/˛.x1/C2ˇ.x2/ı.x1/˛.x1/D ˇ.x2x1/2.x1/C2ˇ.x1x2/ı2.x1/:

(3.18)

Replacing x2 by 2x3x2 in (3.18) and using char.R/¤ 2, we get

ˇ.x2x3/2.x1/˛.x1/C2ˇ.x3x2/ı.x1/˛.x1/

D ˇ.x3x2x1/2.x1/C2ˇ.x1x3x2/ı2.x1/: (3.19)
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Now, subtracting (3.19) from (3.18) multiplied by x3 to the left, we get

ˇ.Œx3;x1�/ˇ.x2/ı2.x1/ 8 x1;x2;x3 2 L: (3.20)

This implies that Œx3;x1�Lˇ�1.ı2.x1//D .0/. By Lemma 3, gives that for an arbit-
rary element x1 2 L either x1 2 Z.L/ or ı2.x1/ D 0. If Z.L/ D 0, then ı2.x1/ D
0. If L D Z.L/, then L � Z, by Lemma 2, a contradiction. Let us assume that
L ¤ Z.L/ ¤ 0. Then there exists x1 2 L nZ.L/. So ı2.x1/ D 0 since ı2.x2/ D 0
8 x2 2 L nZ.L/. Take 0 ¤ x3 2 Z.L/. Then x1C x3;x1� x3 2 L nZ.L/ and so
�.x1Cx3;x1Cx3/D 0D�.x1�x3;x1�x3/, that is

�2.x1;x1/C2�2.x1;x3/C�2.x3;x3/D 0

and

�2.x1;x1/�2�2.x1;x3/C�2.x3;x3/D 0:

Adding the above two expression, we find that 2ı2.x3/D 0. Since char(R/¤ 2, we
have ı2.x3/D 0 8 x3 2 L. Using Proposition 1, we get the required result. �

Using the same technique with necessary variation one can prove the following
theorem.

Theorem 3. Let R be a prime ring, char.R/¤ 2, L a nonzero square closed Lie
ideal of R, ˛;ˇ automorphisms and �1;�2 W R�R! R be two symmetric gener-
alized .˛;ˇ/-biderivations associated with symmetric .˛;ˇ/-biderivations �1;�2 W
R�R!R, respectively. If �1.x1;x1/˛.x1/Cˇ.x1/�2.x1;x1/D 0 8 x1 2 L, then
either L�Z or �2 D 0.

It is immediately to get the following corollaries from Theorems 2, 3 and Lemma
1.

Corollary 1. Let R be a prime ring, char.R/ ¤ 2, I a nonzero ideal of R,
and �1;�2 W R�R! R be two symmetric generalized .˛;ˇ/-biderivations asso-
ciated with symmetric .˛;ˇ/-biderivations �1;�2 W R�R! R, respectively. If
�1.x;x/˛.x/D˙ˇ.x/�2.x;x/ 8 x 2 I , then R is commutative.

Corollary 2. Let R be a prime ring, char.R/ ¤ 2, L a nonzero square closed
Lie ideal of R, ˛;ˇ automorphisms and � WR�R!R be a symmetric generalized
.˛;ˇ/-biderivation associated with a symmetric .˛;ˇ/-biderivation� WR�R!R.
If Œ� .x;x/;x�˛;ˇ D 0 8 x 2 I , then either L�Z or �D 0.

Corollary 3. Let R be a prime ring, char.R/ ¤ 2, I a nonzero ideal of R, ˛;ˇ
automorphisms and � WR�R!R be a symmetric generalized .˛;ˇ/-biderivation
associated with a symmetric .˛;ˇ/-biderivation � WR�R!R. If � .x;x/˛.x/D
˙ˇ.x/�.x;x/ 8 x 2 I , then R is commutative or � is a left ˛-bicentralizer.
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Theorem 4. Let R be a prime ring, char.R/¤ 2;3, L a nonzero Lie ideal of R,
� W R�R! R a symmetric generalized biderivation associated with a symmetric
biderivation �. If

� .� .x1;x1/;� .x1;x1//��.�.x1;x1/;�.x1;x1//

D�.� .x1;x1/;� .x1;x1//�� .�.x1;x1/;�.x1;x1//

8 x1 2 L, then either L�Z or �D � or �D 0.

Proof. Let  , ı be the traces of � and �, respectively. By our hypothesis we have

2.x1/� ı
2.x1/D ı..x1//�.ı.x1//: (3.21)

The substitution of x1 by x1Cx2 in (3.21), gives that

4.� .x1;x2//C2� ..x1/;.x2//C4� ..x1/;� .x1;x2//

C4� ..x2/;� .x1;x2//� ı.�.x1;x2//�2�.ı.x1/;ı.x2//

�4�.ı.x1/;�.x1;x2//�4�.ı.x2/;�.x1;x2//

D 4ı.� .x1;x2//C2�..x1/;.x2//C4�..x1/;� .x1;x2//

C4�..x2/;� .x1;x2//�4.�.x1;x2//�2� .ı.x1/;ı.x2//

�4� .ı.x1/;�.x1;x2//�4� .ı.x2/;�.x1;x2//: (3.22)

Now, substituting x2 by �x2 in the above expression, we find that

4.� .x1;x2//C2� ..x1/;.x2//�4� ..x1/;� .x1;x2//

�4� ..x2/;� .x1;x2//� ı.�.x1;x2//�2ı.ı.x1/;ı.x2//

C4�.ı.x1/;�.x1;x2//C4�.ı.x2/;�.x1;x2//

D 4ı.� .x1;x2//C2�..x1/;.x2//�4�..x1/;� .x1;x2//

�4�..x2/;� .x1;x2//�4.�.x1;x2//�2� .ı.x1/;ı.x2//

C4� .ı.x1/;�.x1;x2//C4� .ı.x2/;�.x1;x2//: (3.23)

Comparing (3.22) and (3.23) and using the fact that char.R/¤ 2, we get

2.� .x1;x2//C� ..x1/;.x2//�2ı.�.x1;x2//��.ı.x1/;ı.x2//

D 2ı.�.x1;x2//C�..x1/;.x2//�2.�.x1;x2//�� .ı.x1/;ı.x2//: (3.24)

Now, substituting x2 by x2Cx3 in(3.24), gives that

2� .� .x1;x2/;� .x1;x3//C� ..x1/;� .x2;x3//

�2�.�.x1;x2/;�.x1;x3//��.ı.x1/;�.x2;x3//

D 2ı.�.x1;x2/;�.x2;x3//C�..x1/;� .x2;x3//

�2.�.x1;x2//�� .ı.x1/;�.x2;x3//: (3.25)

Let us take T D � ��, and denote k D C ı the trace of K D � C�. By Lemma
5 T is a left bicentralizer of R. Then (3.24), reduces to
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2T .� .x1;x2/� .x1;x3//CT ..x1/;� .x2;x3//

C2T .�.x1;x2/;�.x1;x3//CT .ı.x1/;�.x2;x3//D 0: (3.26)

Replacing x3 by 2x3´ in (3.26)and using (3.26), we obtain

2T .� .x1;x2/;x3/�.x1;´/CT ..x1/;x3/�.x2;´/

C2T .�.x1;x2/;x3/�.x1;´/CT .ı.x1/;x3/�.x2;´/D 0: (3.27)

That is,
2T .K.x1;x2/;x3/�.x1;´/CT .k.x1/;x3/�.x2;´/D 0: (3.28)

Choosing x2 D x1 in (3.28), and using char.R/¤ 3, we get

T .k.x1/;x3/�.x1;´/D 0: (3.29)

Choosing ´D x1 in (3.28), we obtain

2T .K.x1;x2/;x3/ı.x1/CT .k.x1/;x3/�.x2;x1/D 0: (3.30)

Comparing (3.29) and (3.30) and using the fact that char.R/¤ 2, gives that

T .K.x1;x2/;x3/ı.x1/D 0: (3.31)

Replacing x2 by 2x2x in (3.31), we find that

T .K.x1;x2/;x3/xı.x1/C2T .x2;x3/�.x1;x/ı.x1/D 0: (3.32)

By replacing x3 by 2x3x in (3.31), we find that

T .K.x1;x2/;x3/xı.x1/D 0: (3.33)

From (3.32) and (3.33) and using the fact that char.R/¤ 2, we find that

T .x2;x3/�.x1;x/ı.x1/D 0: (3.34)

Replace x3 by 2x3w1, to get .T .x2;x3/L�.x1;x/�.x1/ D 0 8 x1;x2;x;x3 2 L.
Lemma 3, gives that either .T .x2;x3/ D 0 or �.x1;x/ı.x1/ D 0. In the first case
T .x2;x3/ D 0 8 x2;x3 2 L and hence by Lemma 4, proves that T D 0. Therefore
� D �. On the other hand, if �.x1;x/ı.x1/ D 0 8 x1;x 2 L, then replacing x by
2x1x, we have ı.x1/xı.x1/ D 0, that is, ı.x1/Lı.x1/ D 0. Again, by Lemma 3,
ı.x1/ D 0 and hence ı.x1/ D 0 for al x1 2 L. Proposition 1, gives that L � Z or
�D 0. �

Corollary 4. Let R be a prime ring, char.R/ ¤ 2, I a nonzero ideal of R, ˛
an automorphism, and � WR�R!R a symmetric generalized .˛;˛/-biderivation
associated with a symmetric .˛;˛/-biderivation �. If

� .� .x1;x1/;� .x1;x1//��.�.x1;x1/;�.x1;x1//

D�.� .x1;x1/;� .x1;x1//�� .�.x1;x1/;�.x1;x1//

8 x1 2 I , then either R is commutative or �D � or � is a left ˛-bicentralizer.
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