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Abstract. Let R be a prime ring with char(R) # 2. A biadditive symmetric map A : R xR — R
is called symmetric (c, 8)-biderivation if, for any fixed y € %R, the map x — A(x,y) is a (¢, §)-
derivation. A symmetric biadditive map I" : R x R — R is a symmetric generalized (o, §)-
biderivation if for any fixed y € R, the map x — I'(x, y) is a generalized («, §)-derivation of R
associated with the (c, B)-derivation A(., y). In the present paper, we investigate the commut-
ativity of a ring having a generalized («, #)-biderivation satisfying certain algebraic conditions.
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1. INTRODUCTION

Throughout this article R denotes an associative ring with center Z. An additive
subgroup £ of R is said to be a Lie ideal of Rif [/,r]e £, V/ e Landr e R. A
Lie ideal £ is called square closed if u? € £V u € £. And it is easy to check that
2Quv e LY u,vel.

A derivation 0 : R — R is an additive map such that 0(xy) = 0(x)y + x0(y) V
x,y € R. An additive map [ : R — R is a generalized derivation if there exists
a derivation 9 : R — R such that F(xy) = F(x)y + x0(y) holds V x,y € K. If
@ 1 RXR — R is a symmetric map (¢p(x,y) = ¢(y,x) V x,y € R) the map 7 :
R — R defined by t(x) = ¢(x,x) is the trace of ¢. If ¢ is also biadditive (i.e.,
additive in both arguments), its trace 7 satisfies T(x +y) = t(x) +7(y) +2¢(x,y), ¥
X,y € R. A symmetric biadditive map ¢ : R xR — fR is a symmetric biderivation if
o(xy,z2)=¢(x,2)y+x¢(y,2) ¥ x,y,z € R. The concept of symmetric biderivation
was introduced by G. Maksa [9]. A symmetric biadditive map { : ARxR —> R isa
symmetric left bicentralizer if {(xy,z) = {(x,z)y ( and consequently {(x,yz) =
{(x,y)z) ¥V x,y,z €R.

Symmetric biderivations were proved to be related to the general solution of some
functional equations (see [11]). The maps (u,v) — ¥[u,v],¥ € €, are typical ex-
amples of biderivations and they were called inner biderivations. Here € is the exten-
ded centroid of %R, that is, the center of the two-sided Martindale quotient ring @ (we
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refer the reader to [3] for more details). In [7], it is shown that every biderivation of
a noncommutative prime ring R is inner. In [5], this result is extended to semiprime.
In [14], it is proved that if ¢ is a nonzero symmetric biderivation, where fR is a prime
ring of char(®R) # 2, with the property:

o(x,x)x = xp(x,x),x € K. (1.1

then R is commutative. He also proved that if ¢1, ¢ are nonzero biderivations on
R, © is a symmetric biadditive map and t1(72(x)) = 0(x) holds V x € R, where
71,72, and D are the traces of ¢1,¢2, and O, respectively, then either ¢; = 0 or
@2 = 0. Let’s mention two results proved in [15]. The first one states that if ¢;
and ¢, are symmetric biderivations on a prime ring R, char(R) # 2,3, such that
©1(x,x)@2(x,x) = 0 holds V x € R, then either ¢; = 0 or ¢ = 0. The second
result says that if [[p(x,x),x],x] € Z V x € R, then R is commutative. In [16] the
authors extended the results in [14] assuming condition (1.1) over a nonzero ideal
and a nonzero Lie ideal of a prime ring respectively.

The notion of generalized biderivation was introduced in [6]. A biadditive map
I' : R xR — N is a generalized biderivation associated with a biderivation A : R x
R — Rif forevery x, y € R, the maps y — I'(x, y) and y — I'(y,x) are generalized
derivations of R associated with A(x,.) and A(.,x). Thatis, I'(xy,z) =T"(x,2)y +
xA(y,z)and I'(x,yz) =T'(x,y)z+ yA(x,z) hold V x, y, z € R. BreSar shown that
every generalized biderivation I” of an ideal / (I" : I x I — *R) of a prime ring ‘R
with char(fR) # 2, is of the form I"(x, y) = xay + ybx for some a,b € 9, where Q
is Martindale quotient ring of R ( see [8] and [10] for details). In [ 1] authors extended
some results of [14, 15] to generalized biderivations on prime and semiprime rings.
Recently, in [2], symmetric generalized (8, ¢)-biderivations of a prime ring R with
char(fR) # 2 have been considered. Notice that a symmetric left bicentralizer is a
symmetric generalized biderivation associated with the biderivation 7' = 0.

2. PRELIMINARIES

Lemma 1 ([12, Lemma 3]). If the prime ring R contains a commutative nonzero
right ideal 1, then R is commutative.

Lemma 2 ([13, Lemma 2.6]). Let ‘R be a prime ring with char(R) # 2. If Lisa
commutative Lie ideal of 'R, then £ C Z.

Lemma 3 ([4, Lemma 4]). Let R be a prime ring with char(R) #2. If £ & Z is
a Lie ideal of R and a£b = (0), then either a =0 or b = 0.

Lemma 4. Let R be a prime ring, char(R) # 2, £ a Lie ideal of R and «
is automorphism. If T : R xR — R is a symmetric left a-centralizer such that
T(a(x1),x(x1)) =0V x1 € £, then either £ Z or T = 0.

Proof. Assume that £ € Z. We have
T(x1,x1) =0V x1 € £. 2.1
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Linearizing (2.1), we get
T(a(x1),a(x2)) =0V x1,x € £. 2.2)
Let us replace x; by x;5 —sx; V s € R in (2.2), to obtain
T(a(s),a(x2))a?(x1) =0 Vxi,xp € £, s € R.

That is, a=2(T (a(s),x(x2))) La2(T(a(r),a(x2))) = (0) ¥V x, € £, s € R. By
Lemma 3, o 2(T(a(r),(x2))) =0V x5 € &, r € R that is, T(a(s),a(x2)) = 0.
Now we replace x, by [x2,7] ¥V r € R, we get T(a(s),a(r))a?(xp) = 0, that is
o 2(T(ae(s),(r))) La=2(T (a(s),(r))) = (0) and hence again by Lemma 3 gives
that o= 2(T(ae(s),c(r))) =0V r,s € Rie., T(a(s),a(r)) =0V r,s € R. Now,
replacing s by a~1(¢1) and r by a~1(12), we get T(t1,t2) =0 V 11,1, € R, that is
T =0. O

Lemma 5. Let R be a ring and o, B automorphisms. If I' is a symmetric general-
ized (o, B)-biderivation associated with a symmetric (a, B)-biderivation A, then the
map I' — A : R xR — R is a symmetric left a-bicentralizer.

Proof. The map 2 = I' — A, is clearly biadditive. For all x1, x2, x3 € R,
I(x1x2,x3) = (I' = A)(x1x2,x3)
= I'(x1x2,x3) — A(x1x2,X3)
= I'(x1,x3)a(x2) + B(x1) A(x2,x3)
— A(x1,x3)a(x2) — B(x1)A(x2,X3)
= I'(x1,x3)a(x2) — A(x1, x3)a(x2)
= 2(x1,x3)a(x2).

Therefore, §2 is a symmetric left o-centralizer of . 0

3. MAIN RESULTS

Proposition 1. Let R be a prime ring, char(R) # 2, £ a nonzero Lie ideal of R,
o, B automorphisms, and A : R xR — R a symmetric («, B)-biderivation with trace
8. If§(x1) =0V x1 € &, then either £ Z or A =0.

Proof. By our hypothesis
S(u) =0V x; € L. 3.1
Linearizing (3.1) and using (3.1), we get
2A(x1,x2) =0V x1,x2 € £. (3.2)
If we replace x1 by x1r —rxq in (3.2), to get

B(x1)A(r, x2) —8(r, x2)a(x1) = 0. (3.3)
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Again replacing r by rx3 and using (3.2), we find that

Px1)A(r, x2)a(x3) — A(r, x2)a(x3x1) = 0. (3.4)
Multiplying (3.3) from left by x3, we get
B(x1) A(r,x2)a(x3) — A(r,x2)a(x1x3) = 0. (3.5)

From (3.4), (3.5) it follows that A(r, x2)a([x1,x3]) =0V x1,x2,x3 € Land r € R.
If we replace r by rs, s € R, we obtain A(r,xz)a(s)a([x1,x3]) = 0 and hence
a1 (A(r,x2))R[x1, x3] = (0) Thus by primeness of A it follows that either [x1,x3] =
0 for x1,x3 € Lora ' (A(r,x3)) =0. If [x1,x3] =0V x1,x3 € £, then £ C Z by
Lemma 2. In other case, o~} (A(r,x2)) =0V x, € £, r €R, thatis, A(r,x2) =0.
Replacing x, by x25 —sx3, we get

B(x2)A(r,s)— A(r,s)a(x2) = 0. (3.6)
Now, replacing s by sx3 in (3.6), we get
B(x2)A(r,s)a(x3) — A(r,s)a(x3x2) = 0. (3.7)

If we multiply (3.6) by x3 to the right, and subtract (3.7) we get
A(r,s)a([x2,x3]) =0 Vxa,x3 € £,r,5 €R.
Replace r by tr, to get A(t,s)a(t)a([x2,x3]) = 0, that is @~ (A(t,5)) T [x2,x3] =

(0). So by primeness of R either A = 0 or £ is commutative. Hence, Lemma 2 gives
the required conclusion. O

Theorem 1. Let R be a prime ring, char(R) # 2, £ a nonzero Lie ideal of R, o,
automorphisms and A : R X R — R a symmetric («, B)-biderivation with trace §. If
8(x1) € Z Y x1 € £, then either £ C Z or A =0.

Proof. By Assumption we have

8(x1)eZVxek. (3.8)
The linearizing (3.8), we find that
2A(x1,x2) € Z YV x1,x2 € L. 3.9
Replace x; by 2x% in (3.9), to get
4A(x1, x2)a(x1) + B(x1)A(x1,x2) € Z. (3.10)
Therefore, in particular a(x1)8(x1) + B(x1)8(x1) € Z V x1 € £. Then we have
0= [a(x1)d(x1) + B(x1)d(x1). r] = [a(x1) + B(x1).r]d(x1). (3.11)

For every r,s € ‘R, we have
[er(x1) 4+ B(x1),r5]8(x1) = 0 = [(x1) + B(x1),r]s8(x1) = 0.

By primeness of R, given an arbitrary element x; € £, we have either §(x;) = 0 or
a(x))+B(x1)eZ. If(a+B)(x1)€eZthenx; € Z. If ZNL =0, then §(x1) =0
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VY x1 € £. Assume that Z N L £ 0. If £ Z Z, then there exists x, € £\ Z. Then
V x1 € ZN L, the element x1 + x2,x; —x2 € £\ Z. Hence §(x; + x2) = 0 and
8(x1 —x2) = 0 and hence §(x1) = 0. In conclusion we prove that §(x1) =0V x; €
Z N £ and above we already know that §(x1) =0V x; € £\ Z. That is, 6(x1) =0
V x1 € L. OJ

Theorem 2. Let R be a prime ring, char(R) # 2, £ a nonzero square closed Lie
ideal of ‘R, «, B automorphisms and I'y, I3 : R X R — R be two symmetric gener-
alized (a, B)-biderivations associated with symmetric (o, B)-biderivations Ay, Ay :
R xR — R, respectively. If I'(x1,x1)a(x1) = B(x1)I2(x1,x1) ¥V x1 € £, then
either £ C Z or A, = 0.

Proof. Assume that £ Z Z. Suppose that y1, y»,81,82 are traces of Iy, [, Ay, As,
respectively. We have

yi(xpe(x1) = B(x1)y2(x1) ¥ x1 € £ (3.12)
Replacing x;1 by x1 + x2 in (3.12), we get
y1(xpa(x2) +y1(x2)a(xr) + 201 (x1, x2)a(x1) + 201 (x1, x2)@ (x2)
= B(x1)y2(x2) + B(x2)y2(x1) + 2B(x1) [1(x1,x2) + 2B (x2) [2(x1,x2).  (3.13)
Substituting x; by —x1 in (3.13), we get
y1(xp)a(x2) —y1(x2)a(x1) + 21 (x1, x2)a(x1) — 207 (x1, x2)a(x2)
= —B(x1)y2(x2) + B(x2)y2(x1) +2B(x1) ' (x1,x2) —2B(x2) 2 (x1,x2). (3.14)
Comparing (3.13) and (3.14) and using the fact that char(®R) # 2, we obtain
yi(xDa(xz) + 2 (x1, x2)a(x1) = B(x2)y2(x1) +2B(x1)12(x1,x2).  (3.15)
Replacing x, by 2x,x1 in (3.15), we have
yi(xp)a(xaxy) +20I1 (xl,xz)oz(x%) +2B(x2)81(x1)a(x7)
= B(xax1)y2(x1) +2B(x1) I2(x1, x2)(x1) +2B(x1)B(x2)82(x1). (3.16)
That is,
(y1(xp)a(x2) +2I1(x1, x2)a(x1) —2B(x1) 12 (x1,Xx2))a(x1) +2B(x2)81 (x1)a(x1)
= B(x2x1)y2(x1) +2B(x1)(x2)82(x1). (3.17)
Using (3.15) in (3.17), we find that

B(x2)y2(xD)a(x1) +2B(x2)8(x1)a(x1) = Bxax1)ya(x1) + 2B (x1x2)82(x1).
(3.18)

Replacing x, by 2x3x in (3.18) and using char(R) # 2, we get

B(x2x3)y2(x1)a(x1) +2B(x3x2)8(x1)a(x1)
= B(x3x2x1)y2(x1) +2B(x1x3x2)82(x1). (3.19)
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Now, subtracting (3.19) from (3.18) multiplied by x3 to the left, we get

B([x3.x1])B(x2)82(x1) ¥V x1,x2,x3 € £. (3.20)

This implies that [x3,x1]£87!(82(x1)) = (0). By Lemma 3, gives that for an arbit-
rary element x1 € £ either x; € Z(£) or 62(x1) = 0. If Z(£) =0, then §(x;) =
0. If £=Z(£), then £ C Z, by Lemma 2, a contradiction. Let us assume that
£ # Z(£) # 0. Then there exists x; € £\ Z(£). So §2(x1) = 0 since §(x2) =0
Y xp € £\ Z(£). Take 0 # x3 € Z(£). Then x; + x3,x1 —x3 € £\ Z(£) and so
A(x1+x3,x1 +x3) =0= A(x1 —x3,x1 —x3), thatis

Az(x1,x1) +2A2(x1,x3) + Az(x3,x3) =0

and
Ap(x1,x1) —2A2(x1,x3) + Az(x3,x3) = 0.

Adding the above two expression, we find that 26, (x3) = 0. Since char(fR) # 2, we
have 62(x3) = 0 V x3 € £. Using Proposition 1, we get the required result. O

Using the same technique with necessary variation one can prove the following
theorem.

Theorem 3. Let R be a prime ring, char(R) # 2, £ a nonzero square closed Lie
ideal of R, o, B automorphisms and I'1, 3 : R xR — R be two symmetric gener-
alized (a, B)-biderivations associated with symmetric («, B)-biderivations Ay, Ay :
RXR — R, respectively. If I'1 (x1,x1)a(x1) + B(x1)12(x1,x1) =0V x1 € £, then
either £ C Z or Ay = 0.

It is immediately to get the following corollaries from Theorems 2, 3 and Lemma
1.

Corollary 1. Let R be a prime ring, char(R) # 2, I a nonzero ideal of ‘R,
and I'1, I3 : R xR — R be two symmetric generalized («, B)-biderivations asso-
ciated with symmetric («, f)-biderivations A1, Ay : R xR — R, respectively. If
I, x)a(x) =£B(x)2(x,x) VY x €I, then *R is commutative.

Corollary 2. Let ‘R be a prime ring, char(R) # 2, £ a nonzero square closed
Lie ideal of R, «, B automorphisms and I' : R X R — R be a symmetric generalized
(e, B)-biderivation associated with a symmetric (o, B)-biderivation A : R xR — R.
If[I"'(x,x),x]q g =0V x €1, then either £ C Z or A = 0.

Corollary 3. Let R be a prime ring, char(R) # 2, I a nonzero ideal of R, a,
automorphisms and I' : R xR — R be a symmetric generalized (a, B)-biderivation
associated with a symmetric («, B)-biderivation A : RxR — R. If I'(x,x)a(x) =
+B(x)A(x,x) V x € I, then R is commutative or I is a left a-bicentralizer.
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Theorem 4. Let R be a prime ring, char(R) # 2,3, £ a nonzero Lie ideal of R,
I' : R xR — R a symmetric generalized biderivation associated with a symmetric
biderivation A. If

(I (x1,x1), I (x1,x1)) — A(A(x1,x1), A(x1,X1))
= A (x1,x1), " (x1,x1)) = I'(A(x1,x1), A(x1,X1))
V x1 €L, theneither CCZorA=1T or A=0.

Proof. Let y, § be the traces of I and A, respectively. By our hypothesis we have

y?(x1) =82 (x1) = 8(y(x1)) = y (8(x1)). (3.21)
The substitution of x; by x; + x, in (3.21), gives that
4y(I'(x1,x2)) + 20 (y(x1), y(x2)) + 4L (y(x1), I'(x1,X2))
+4I'(y(x2), I'(x1,x2)) = 8(A(x1,x2)) —2A(8(x1),8(x2))
—4A(8(x1), A(x1,x2)) —4A(8(x2), A(x1,x2))
= 46(I"(x1,x2)) +2A(y (x1), y(x2)) + 4A(y (x1), " (x1, x2))
+4A(y(x2), I'(x1,x2)) —4y(A(x1,x2)) = 2I'(8(x1),6(x2))
—4I'(8(x1), A(x1,x2)) — 4 (8(x2), A(x1,X2)). (3.22)
Now, substituting x» by —x» in the above expression, we find that

4y(I(x1,x2)) + 2 (y(x1), y(x2)) =4I (y(x1), I (x1,X2))
=4I (y(x2), I"(x1,x2)) —8(A(x1,x2)) —28(8(x1),8(x2))
+4A6(x1), A(x1,x2)) +4A(6(x2), A(x1,x2))
= 46(I"(x1,x2)) +2A(y(x1), y(x2)) —4A(y (x1), " (x1,x2))
—4A(y(x2), I"(x1,x2)) =4y (A(x1,x2)) — 21" (8(x1),8(x2))
+4I'(6(x1), A(x1,x2)) + 41 (6(x2), A(x1,x2)). (3.23)
Comparing (3.22) and (3.23) and using the fact that char(fR) # 2, we get

2y(I'(x1,x2)) + I'(y(x1), ¥ (x2)) —28(A(x1,x2)) — A(8(x1),8(x2))
=28(A(x1,x2)) + A(y(x1), ¥y (x2)) =2y (A(x1,x2)) — I'(8(x1),8(x2)).  (3.24)
Now, substituting x» by x> + x3 in(3.24), gives that
2I'(I'(x1,x2), I (x1,x3)) + ' (y(x1), " (x2,X3))
—2A(A(x1,x2), A(x1,x3)) — A(8(x1), A(x2,X3))
= 28(A(x1,x2), A(x2,x3)) + A(y(x1), I'(x2,x3))
—2y(A(x1.x2)) = ' (6(x1), Ax2. x3)). (3.25)

Letus take 7 = I' — A, and denote k = y + § the trace of K = I" + A. By Lemma
5 T is a left bicentralizer of R. Then (3.24), reduces to
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2T (I (x1,x2) I (x1,x3)) + T(y(x1), I'(x2,x3))

+ 2T (A(x1,x2), A(x1,x3)) + T (8(x1), A(x2,x3)) = 0.

Replacing x3 by 2x3z in (3.26)and using (3.26), we obtain

2T (I'(x1,x2),x3) A(x1,2) + T (y(x1), x3) A(x2,2)

+2T(A(x1,%2),x3)A(x1,2) + T(6(x1),x3)A(x2,2) = 0.

That is,
2T (K(x1,x2),x3) A(x1,2) + T'(k(x1),x3)A(x2,2) = 0.
Choosing x» = x1 in (3.28), and using char(fR) # 3, we get

T(k(x1),x3)A(x1,2) =0.
Choosing z = x1 in (3.28), we obtain
2T (K (x1,x2),x3)8(x1) + T (k(x1).x3) A(x2,x1) = 0.
Comparing (3.29) and (3.30) and using the fact that char(R) # 2, gives that
T(K(x1,x2),x3)8(x1) = 0.
Replacing x, by 2x,x in (3.31), we find that
T(K(x1,x2),x3)x8(x1) + 2T (x2,x3) A(x1,x)8(x1) = 0.
By replacing x3 by 2x3x in (3.31), we find that
T(K(x1,x2),x3)x8(x1) =0.
From (3.32) and (3.33) and using the fact that char(R) # 2, we find that
T (x2,x3)A(x1,x)8(x1) =0.

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

Replace x3 by 2x3wq, to get (T (x2,x3)LA(x1,x)A(x1) =0V x1,x2,x,x3 € L.
Lemma 3, gives that either (T (x2,x3) = 0 or A(x1,x)8(x1) = 0. In the first case
T(x2,x3) =0V x2,x3 € £ and hence by Lemma 4, proves that T = 0. Therefore
I' = A. On the other hand, if A(x1,x)8(x1) =0V x1,x € £, then replacing x by
2x1x, we have §(x1)x8(x1) = 0, that is, §(x1)£6(x1) = 0. Again, by Lemma 3,
8(x1) = 0 and hence §(x1) = O for al x; € £. Proposition 1, gives that £ C Z or

A=0.

O

Corollary 4. Let R be a prime ring, char(R) # 2, I a nonzero ideal of ‘R, «
an automorphism, and I' : R X R — R a symmetric generalized (o, o)-biderivation

associated with a symmetric (a,a)-biderivation A. If

I'(I'(x1,x1),I'(x1,x1)) — A(A(x1,x1), A(x1,X1))

= A (x1,x1),'(x1,x1)) = I'(A(x1,x1), A(x1,X1))

V x1 € I, then either R is commutative or A = I' or A is a left a-bicentralizer.
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