

Miskolc Mathematical Notes Vol. 20 (2019), No. 2, pp. 1175–1183

ON LIE IDEALS AND SYMMETRIC GENERALIZED (α, β) -BIDERIVATION IN PRIME RING

NADEEM UR REHMAN AND SHULIANG HUANG

Received 17 November, 2017

Abstract. Let \mathfrak{R} be a prime ring with char(\mathfrak{R}) $\neq 2$. A biadditive symmetric map $\Delta : \mathfrak{R} \times \mathfrak{R} \to \mathfrak{R}$ is called symmetric (α, β)-biderivation if, for any fixed $y \in \mathfrak{R}$, the map $x \mapsto \Delta(x, y)$ is a (α, β)derivation. A symmetric biadditive map $\Gamma : \mathfrak{R} \times \mathfrak{R} \to \mathfrak{R}$ is a symmetric generalized (α, β)biderivation if for any fixed $y \in \mathfrak{R}$, the map $x \mapsto \Gamma(x, y)$ is a generalized (α, β)-derivation of \mathfrak{R} associated with the (α, β)-derivation $\Delta(., y)$. In the present paper, we investigate the commuativity of a ring having a generalized (α, β)-biderivation satisfying certain algebraic conditions.

2010 *Mathematics Subject Classification:* 16N60; 16U80; 16W25 *Keywords:* Lie ideals, symmetric biderivations, generalized (α, β)-biderivations

1. INTRODUCTION

Throughout this article \mathfrak{R} denotes an associative ring with center Z. An additive subgroup \mathfrak{L} of R is said to be a Lie ideal of \mathfrak{R} if $[l,r] \in \mathfrak{L}$, $\forall l \in \mathfrak{L}$ and $r \in \mathfrak{R}$. A Lie ideal \mathfrak{L} is called square closed if $u^2 \in \mathfrak{L} \forall u \in \mathfrak{L}$. And it is easy to check that $2uv \in \mathfrak{L} \forall u, v \in \mathfrak{L}$.

A derivation $\mathfrak{d}: \mathfrak{R} \to \mathfrak{R}$ is an additive map such that $\mathfrak{d}(xy) = \mathfrak{d}(x)y + x\mathfrak{d}(y) \forall x, y \in R$. An additive map $\mathbb{F}: \mathfrak{R} \to \mathfrak{R}$ is a generalized derivation if there exists a derivation $\mathfrak{d}: \mathfrak{R} \to \mathfrak{R}$ such that $\mathbb{F}(xy) = \mathbb{F}(x)y + x\mathfrak{d}(y)$ holds $\forall x, y \in \mathfrak{R}$. If $\varphi: \mathfrak{R} \times \mathfrak{R} \to \mathfrak{R}$ is a symmetric map $(\varphi(x, y) = \varphi(y, x) \forall x, y \in \mathfrak{R})$ the map τ : $\mathfrak{R} \to \mathfrak{R}$ defined by $\tau(x) = \varphi(x, x)$ is the trace of φ . If φ is also biadditive (i.e., additive in both arguments), its trace τ satisfies $\tau(x+y) = \tau(x) + \tau(y) + 2\varphi(x, y), \forall x, y \in \mathfrak{R}$. A symmetric biadditive map $\varphi: \mathfrak{R} \times \mathfrak{R} \to \mathfrak{R}$ is a symmetric biderivation if $\varphi(xy, z) = \varphi(x, z)y + x\varphi(y, z) \forall x, y, z \in \mathfrak{R}$. The concept of symmetric biderivation was introduced by G. Maksa [9]. A symmetric biadditive map $\zeta: \mathfrak{R} \times \mathfrak{R} \to \mathfrak{R}$ is a symmetric left bicentralizer if $\zeta(xy, z) = \zeta(x, z)y$ (and consequently $\zeta(x, yz) = \zeta(x, y)z$) $\forall x, y, z \in \mathfrak{R}$.

Symmetric biderivations were proved to be related to the general solution of some functional equations (see [11]). The maps $(u, v) \mapsto \Psi[u, v], \Psi \in \mathcal{C}$, are typical examples of biderivations and they were called inner biderivations. Here \mathcal{C} is the extended centroid of \mathfrak{R} , that is, the center of the two-sided Martindale quotient ring \mathcal{Q} (we

© 2019 Miskolc University Press

refer the reader to [3] for more details). In [7], it is shown that every biderivation of a noncommutative prime ring \Re is inner. In [5], this result is extended to semiprime. In [14], it is proved that if φ is a nonzero symmetric biderivation, where \Re is a prime ring of char(\Re) \neq 2, with the property:

$$\varphi(x,x)x = x\varphi(x,x), x \in \mathfrak{R}.$$
(1.1)

then \Re is commutative. He also proved that if φ_1, φ_2 are nonzero biderivations on \Re , \mathfrak{D} is a symmetric biadditive map and $\tau_1(\tau_2(x)) = \mathfrak{d}(x)$ holds $\forall x \in \Re$, where τ_1, τ_2 , and \mathfrak{d} are the traces of φ_1, φ_2 , and \mathfrak{D} , respectively, then either $\varphi_1 = 0$ or $\varphi_2 = 0$. Let's mention two results proved in [15]. The first one states that if φ_1 and φ_2 are symmetric biderivations on a prime ring \Re , char(\Re) $\neq 2, 3$, such that $\varphi_1(x, x)\varphi_2(x, x) = 0$ holds $\forall x \in \Re$, then either $\varphi_1 = 0$ or $\varphi_2 = 0$. The second result says that if $[[\varphi(x, x), x], x] \in Z \ \forall x \in \Re$, then \Re is commutative. In [16] the authors extended the results in [14] assuming condition (1.1) over a nonzero ideal and a nonzero Lie ideal of a prime ring respectively.

The notion of generalized biderivation was introduced in [6]. A biadditive map $\Gamma : \mathfrak{R} \times \mathfrak{R} \to \mathfrak{R}$ is a generalized biderivation associated with a biderivation $\Delta : \mathfrak{R} \times \mathfrak{R} \to \mathfrak{R}$ if for every $x, y \in \mathfrak{R}$, the maps $y \mapsto \Gamma(x, y)$ and $y \mapsto \Gamma(y, x)$ are generalized derivations of \mathfrak{R} associated with $\Delta(x,.)$ and $\Delta(.,x)$. That is, $\Gamma(xy,z) = \Gamma(x,z)y + x\Delta(y,z)$ and $\Gamma(x, yz) = \Gamma(x, y)z + y\Delta(x, z)$ hold $\forall x, y, z \in \mathfrak{R}$. Brešar shown that every generalized biderivation Γ of an ideal I ($\Gamma : I \times I \to \mathfrak{R}$) of a prime ring \mathfrak{R} with char(\mathfrak{R}) $\neq 2$, is of the form $\Gamma(x, y) = xay + ybx$ for some $a, b \in \mathfrak{Q}$, where \mathfrak{Q} is Martindale quotient ring of \mathfrak{R} (see [8] and [10] for details). In [1] authors extended some results of [14, 15] to generalized biderivations on prime and semiprime rings. Recently, in [2], symmetric generalized (θ, ϕ)-biderivations of a prime ring \mathfrak{R} with char(\mathfrak{R}) $\neq 2$ have been considered. Notice that a symmetric left bicentralizer is a symmetric generalized biderivation associated with the biderivation T = 0.

2. PRELIMINARIES

Lemma 1 ([12, Lemma 3]). *If the prime ring* \Re *contains a commutative nonzero right ideal I, then* \Re *is commutative.*

Lemma 2 ([13, Lemma 2.6]). Let \mathfrak{R} be a prime ring with char(\mathfrak{R}) \neq 2. If \mathfrak{L} is a commutative Lie ideal of \mathfrak{R} , then $\mathfrak{L} \subseteq \mathbb{Z}$.

Lemma 3 ([4, Lemma 4]). Let \mathfrak{R} be a prime ring with char(\mathfrak{R}) $\neq 2$. If $\mathfrak{L} \not\subseteq Z$ is a Lie ideal of \mathfrak{R} and $a\mathfrak{L}b = (0)$, then either a = 0 or b = 0.

Lemma 4. Let \mathfrak{R} be a prime ring, $char(\mathfrak{R}) \neq 2$, \mathfrak{L} a Lie ideal of \mathfrak{R} and α is automorphism. If $T : \mathfrak{R} \times \mathfrak{R} \to \mathfrak{R}$ is a symmetric left α -centralizer such that $T(\alpha(x_1), \alpha(x_1)) = 0 \forall x_1 \in \mathfrak{L}$, then either $\mathfrak{L} \subseteq Z$ or T = 0.

Proof. Assume that $\mathfrak{L} \not\subseteq Z$. We have

$$T(x_1, x_1) = 0 \ \forall \ x_1 \in \mathfrak{L}.$$

Linearizing (2.1), we get

$$T(\alpha(x_1), \alpha(x_2)) = 0 \ \forall \ x_1, x_2 \in \mathfrak{L}.$$
(2.2)

Let us replace x_1 by $x_1s - sx_1 \forall s \in \Re$ in (2.2), to obtain

$$T(\alpha(s), \alpha(x_2))\alpha^2(x_1) = 0 \ \forall x_1, x_2 \in \mathfrak{L}, \ s \in \mathfrak{R}.$$

That is, $\alpha^{-2}(T(\alpha(s), \alpha(x_2)))\mathfrak{L}\alpha^{-2}(T(\alpha(r), \alpha(x_2))) = (0) \forall x_2 \in \mathfrak{L}, s \in \mathfrak{R}$. By Lemma 3, $\alpha^{-2}(T(\alpha(r), \alpha(x_2))) = 0 \forall x_2 \in \mathfrak{L}, r \in \mathfrak{R}$ that is, $T(\alpha(s), \alpha(x_2)) = 0$. Now we replace x_2 by $[x_2, r] \forall r \in \mathfrak{R}$, we get $T(\alpha(s), \alpha(r))\alpha^2(x_2) = 0$, that is $\alpha^{-2}(T(\alpha(s), \alpha(r)))\mathfrak{L}\alpha^{-2}(T(\alpha(s), \alpha(r))) = (0)$ and hence again by Lemma 3 gives that $\alpha^{-2}(T(\alpha(s), \alpha(r))) = 0 \forall r, s \in \mathfrak{R}$ i.e., $T(\alpha(s), \alpha(r)) = 0 \forall r, s \in \mathfrak{R}$. Now, replacing s by $\alpha^{-1}(t_1)$ and r by $\alpha^{-1}(t_2)$, we get $T(t_1, t_2) = 0 \forall t_1, t_2 \in \mathfrak{R}$, that is T = 0.

Lemma 5. Let \mathfrak{R} be a ring and α , β automorphisms. If Γ is a symmetric generalized (α, β) -biderivation associated with a symmetric (α, β) -biderivation Δ , then the map $\Gamma - \Delta : \mathfrak{R} \times \mathfrak{R} \to \mathfrak{R}$ is a symmetric left α -bicentralizer.

Proof. The map $\Omega = \Gamma - \Delta$, is clearly biadditive. For all $x_1, x_2, x_3 \in \Re$,

$$\Gamma(x_1x_2, x_3) = (\Gamma - \Delta)(x_1x_2, x_3)
= \Gamma(x_1x_2, x_3) - \Delta(x_1x_2, x_3)
= \Gamma(x_1, x_3)\alpha(x_2) + \beta(x_1)\Delta(x_2, x_3)
- \Delta(x_1, x_3)\alpha(x_2) - \beta(x_1)\Delta(x_2, x_3)
= \Gamma(x_1, x_3)\alpha(x_2) - \Delta(x_1, x_3)\alpha(x_2)
= \Omega(x_1, x_3)\alpha(x_2).$$

Therefore, Ω is a symmetric left α -centralizer of \Re .

1177

3. MAIN RESULTS

Proposition 1. Let \mathfrak{R} be a prime ring, $char(\mathfrak{R}) \neq 2$, \mathfrak{L} a nonzero Lie ideal of \mathfrak{R} , α, β automorphisms, and $\Delta : \mathfrak{R} \times \mathfrak{R} \to \mathfrak{R}$ a symmetric (α, β) -biderivation with trace δ . If $\delta(x_1) = 0 \forall x_1 \in \mathfrak{L}$, then either $\mathfrak{L} \subseteq Z$ or $\Delta = 0$.

Proof. By our hypothesis

$$\delta(u) = 0 \ \forall \ x_1 \in \mathfrak{L}. \tag{3.1}$$

Linearizing (3.1) and using (3.1), we get

$$2\Delta(x_1, x_2) = 0 \ \forall \ x_1, x_2 \in \mathfrak{L}.$$

$$(3.2)$$

If we replace x_1 by $x_1r - rx_1$ in (3.2), to get

$$\beta(x_1)\Delta(r, x_2) - \delta(r, x_2)\alpha(x_1) = 0.$$
(3.3)

Again replacing r by rx_3 and using (3.2), we find that

$$\beta(x_1)\Delta(r, x_2)\alpha(x_3) - \Delta(r, x_2)\alpha(x_3x_1) = 0.$$
(3.4)

Multiplying (3.3) from left by x_3 , we get

$$\beta(x_1)\Delta(r, x_2)\alpha(x_3) - \Delta(r, x_2)\alpha(x_1x_3) = 0.$$
(3.5)

From (3.4), (3.5) it follows that $\Delta(r, x_2)\alpha([x_1, x_3]) = 0 \forall x_1, x_2, x_3 \in \mathfrak{L}$ and $r \in \mathfrak{R}$. If we replace r by $rs, s \in \mathfrak{R}$, we obtain $\Delta(r, x_2)\alpha(s)\alpha([x_1, x_3]) = 0$ and hence $\alpha^{-1}(\Delta(r, x_2))\mathfrak{R}[x_1, x_3] = (0)$ Thus by primeness of \mathfrak{R} it follows that either $[x_1, x_3] = 0$ for $x_1, x_3 \in \mathfrak{L}$ or $\alpha^{-1}(\Delta(r, x_2)) = 0$. If $[x_1, x_3] = 0 \forall x_1, x_3 \in \mathfrak{L}$, then $\mathfrak{L} \subseteq Z$ by Lemma 2. In other case, $\alpha^{-1}(\Delta(r, x_2)) = 0 \forall x_2 \in \mathfrak{L}, r \in \mathfrak{R}$, that is, $\Delta(r, x_2) = 0$. Replacing x_2 by $x_2s - sx_2$, we get

$$\beta(x_2)\Delta(r,s) - \Delta(r,s)\alpha(x_2) = 0.$$
(3.6)

Now, replacing *s* by sx_3 in (3.6), we get

$$\beta(x_2)\Delta(r,s)\alpha(x_3) - \Delta(r,s)\alpha(x_3x_2) = 0.$$
(3.7)

If we multiply (3.6) by x_3 to the right, and subtract (3.7) we get

$$\Delta(r,s)\alpha([x_2,x_3]) = 0 \ \forall x_2, x_3 \in \mathfrak{L}, r, s \in \mathfrak{R}.$$

Replace r by tr, to get $\Delta(t,s)\alpha(t)\alpha([x_2,x_3]) = 0$, that is $\alpha^{-1}(\Delta(t,s))T[x_2,x_3] = (0)$. So by primeness of \Re either $\Delta = 0$ or \mathfrak{L} is commutative. Hence, Lemma 2 gives the required conclusion.

Theorem 1. Let \mathfrak{R} be a prime ring, $char(\mathfrak{R}) \neq 2$, \mathfrak{L} a nonzero Lie ideal of \mathfrak{R} , α, β automorphisms and $\Delta : \mathfrak{R} \times \mathfrak{R} \to \mathfrak{R}$ a symmetric (α, β) -biderivation with trace δ . If $\delta(x_1) \in \mathbb{Z} \ \forall \ x_1 \in \mathfrak{L}$, then either $\mathfrak{L} \subseteq \mathbb{Z}$ or $\Delta = 0$.

Proof. By Assumption we have

$$\delta(x_1) \in Z \ \forall \ x_1 \in \mathfrak{L}. \tag{3.8}$$

The linearizing (3.8), we find that

$$2\Delta(x_1, x_2) \in Z \ \forall \ x_1, x_2 \in \mathfrak{L}.$$

$$(3.9)$$

Replace x_1 by $2x_1^2$ in (3.9), to get

$$4\Delta(x_1, x_2)\alpha(x_1) + \beta(x_1)\Delta(x_1, x_2) \in Z.$$
(3.10)

Therefore, in particular $\alpha(x_1)\delta(x_1) + \beta(x_1)\delta(x_1) \in Z \ \forall x_1 \in \mathfrak{L}$. Then we have

$$0 = [\alpha(x_1)\delta(x_1) + \beta(x_1)\delta(x_1), r] = [\alpha(x_1) + \beta(x_1), r]\delta(x_1).$$
(3.11)

For every $r, s \in \mathfrak{R}$, we have

$$[\alpha(x_1) + \beta(x_1), rs]\delta(x_1) = 0 = [\alpha(x_1) + \beta(x_1), r]s\delta(x_1) = 0.$$

By primeness of \mathfrak{R} , given an arbitrary element $x_1 \in \mathfrak{L}$, we have either $\delta(x_1) = 0$ or $\alpha(x_1) + \beta(x_1) \in \mathbb{Z}$. If $(\alpha + \beta)(x_1) \in \mathbb{Z}$ then $x_1 \in \mathbb{Z}$. If $\mathbb{Z} \cap \mathfrak{L} = 0$, then $\delta(x_1) = 0$

1178

 $\forall x_1 \in \mathfrak{L}$. Assume that $Z \cap \mathfrak{L} \neq 0$. If $\mathfrak{L} \not\subseteq Z$, then there exists $x_2 \in \mathfrak{L} \setminus Z$. Then $\forall x_1 \in Z \cap \mathfrak{L}$, the element $x_1 + x_2, x_1 - x_2 \in \mathfrak{L} \setminus Z$. Hence $\delta(x_1 + x_2) = 0$ and $\delta(x_1 - x_2) = 0$ and hence $\delta(x_1) = 0$. In conclusion we prove that $\delta(x_1) = 0 \forall x_1 \in Z \cap \mathfrak{L}$ and above we already know that $\delta(x_1) = 0 \forall x_1 \in \mathfrak{L} \setminus Z$. That is, $\delta(x_1) = 0 \forall x_1 \in \mathfrak{L}$.

Theorem 2. Let \mathfrak{R} be a prime ring, $char(\mathfrak{R}) \neq 2$, \mathfrak{L} a nonzero square closed Lie ideal of \mathfrak{R} , α, β automorphisms and $\Gamma_1, \Gamma_2 : \mathfrak{R} \times \mathfrak{R} \to \mathfrak{R}$ be two symmetric generalized (α, β) -biderivations associated with symmetric (α, β) -biderivations $\Delta_1, \Delta_2 :$ $\mathfrak{R} \times \mathfrak{R} \to \mathfrak{R}$, respectively. If $\Gamma_1(x_1, x_1)\alpha(x_1) = \beta(x_1)\Gamma_2(x_1, x_1) \forall x_1 \in \mathfrak{L}$, then either $\mathfrak{L} \subseteq Z$ or $\Delta_2 = 0$.

Proof. Assume that $\mathfrak{L} \not\subseteq Z$. Suppose that $\gamma_1, \gamma_2, \delta_1, \delta_2$ are traces of $\Gamma_1, \Gamma_2, \Delta_1, \Delta_2$, respectively. We have

$$\gamma_1(x_1)\alpha(x_1) = \beta(x_1)\gamma_2(x_1) \ \forall \ x_1 \in \mathfrak{L}.$$
(3.12)

Replacing x_1 by $x_1 + x_2$ in (3.12), we get

 $\gamma_1(x_1)\alpha(x_2) + \gamma_1(x_2)\alpha(x_1) + 2\Gamma_1(x_1, x_2)\alpha(x_1) + 2\Gamma_1(x_1, x_2)\alpha(x_2)$ $= \beta(x_1)\gamma_2(x_2) + \beta(x_2)\gamma_2(x_1) + 2\beta(x_1)\Gamma_1(x_1, x_2) + 2\beta(x_2)\Gamma_2(x_1, x_2).$ (3.13)

Substituting x_1 by $-x_1$ in (3.13), we get

 $\gamma_1(x_1)\alpha(x_2) - \gamma_1(x_2)\alpha(x_1) + 2\Gamma_1(x_1, x_2)\alpha(x_1) - 2\Gamma_1(x_1, x_2)\alpha(x_2)$

$$= -\beta(x_1)\gamma_2(x_2) + \beta(x_2)\gamma_2(x_1) + 2\beta(x_1)\Gamma_1(x_1, x_2) - 2\beta(x_2)\Gamma_2(x_1, x_2).$$
(3.14)

Comparing (3.13) and (3.14) and using the fact that $char(\Re) \neq 2$, we obtain

 $\gamma_1(x_1)\alpha(x_2) + 2\Gamma_1(x_1, x_2)\alpha(x_1) = \beta(x_2)\gamma_2(x_1) + 2\beta(x_1)\Gamma_2(x_1, x_2).$ (3.15) Replacing x_2 by $2x_2x_1$ in (3.15), we have

 $\gamma_1(x_1)\alpha(x_2x_1) + 2\Gamma_1(x_1, x_2)\alpha(x_1^2) + 2\beta(x_2)\delta_1(x_1)\alpha(x_1)$

$$= \beta(x_2x_1)\gamma_2(x_1) + 2\beta(x_1)\Gamma_2(x_1, x_2)\alpha(x_1) + 2\beta(x_1)\beta(x_2)\delta_2(x_1). \quad (3.16)$$

That is,

$$(\gamma_1(x_1)\alpha(x_2) + 2\Gamma_1(x_1, x_2)\alpha(x_1) - 2\beta(x_1)\Gamma_2(x_1, x_2))\alpha(x_1) + 2\beta(x_2)\delta_1(x_1)\alpha(x_1)$$

= $\beta(x_2x_1)\gamma_2(x_1) + 2\beta(x_1)\beta(x_2)\delta_2(x_1).$ (3.17)

Using (3.15) in (3.17), we find that

$$\beta(x_2)\gamma_2(x_1)\alpha(x_1) + 2\beta(x_2)\delta(x_1)\alpha(x_1) = \beta(x_2x_1)\gamma_2(x_1) + 2\beta(x_1x_2)\delta_2(x_1).$$
(3.18)

Replacing x_2 by $2x_3x_2$ in (3.18) and using char(R) $\neq 2$, we get

$$\beta(x_2x_3)\gamma_2(x_1)\alpha(x_1) + 2\beta(x_3x_2)\delta(x_1)\alpha(x_1) = \beta(x_3x_2x_1)\gamma_2(x_1) + 2\beta(x_1x_3x_2)\delta_2(x_1). \quad (3.19)$$

NADEEM UR REHMAN AND SHULIANG HUANG

Now, subtracting (3.19) from (3.18) multiplied by x_3 to the left, we get

$$\beta([x_3, x_1])\beta(x_2)\delta_2(x_1) \ \forall \ x_1, x_2, x_3 \in \mathfrak{L}.$$
(3.20)

This implies that $[x_3, x_1]\mathfrak{L}\beta^{-1}(\delta_2(x_1)) = (0)$. By Lemma 3, gives that for an arbitrary element $x_1 \in \mathfrak{L}$ either $x_1 \in Z(\mathfrak{L})$ or $\delta_2(x_1) = 0$. If $Z(\mathfrak{L}) = 0$, then $\delta_2(x_1) = 0$. If $\mathfrak{L} = Z(\mathfrak{L})$, then $\mathfrak{L} \subseteq Z$, by Lemma 2, a contradiction. Let us assume that $\mathfrak{L} \neq Z(\mathfrak{L}) \neq 0$. Then there exists $x_1 \in \mathfrak{L} \setminus Z(\mathfrak{L})$. So $\delta_2(x_1) = 0$ since $\delta_2(x_2) = 0$ $\forall x_2 \in \mathfrak{L} \setminus Z(\mathfrak{L})$. Take $0 \neq x_3 \in Z(\mathfrak{L})$. Then $x_1 + x_3, x_1 - x_3 \in \mathfrak{L} \setminus Z(\mathfrak{L})$ and so $\Delta(x_1 + x_3, x_1 + x_3) = 0 = \Delta(x_1 - x_3, x_1 - x_3)$, that is

$$\Delta_2(x_1, x_1) + 2\Delta_2(x_1, x_3) + \Delta_2(x_3, x_3) = 0$$

and

$$\Delta_2(x_1, x_1) - 2\Delta_2(x_1, x_3) + \Delta_2(x_3, x_3) = 0.$$

Adding the above two expression, we find that $2\delta_2(x_3) = 0$. Since char(\Re) $\neq 2$, we have $\delta_2(x_3) = 0 \forall x_3 \in \mathfrak{L}$. Using Proposition 1, we get the required result.

Using the same technique with necessary variation one can prove the following theorem.

Theorem 3. Let \mathfrak{R} be a prime ring, $char(\mathfrak{R}) \neq 2$, \mathfrak{L} a nonzero square closed Lie ideal of R, α, β automorphisms and $\Gamma_1, \Gamma_2 : \mathfrak{R} \times \mathfrak{R} \to \mathfrak{R}$ be two symmetric generalized (α, β) -biderivations associated with symmetric (α, β) -biderivations $\Delta_1, \Delta_2 :$ $\mathfrak{R} \times \mathfrak{R} \to \mathfrak{R}$, respectively. If $\Gamma_1(x_1, x_1)\alpha(x_1) + \beta(x_1)\Gamma_2(x_1, x_1) = 0 \forall x_1 \in \mathfrak{L}$, then either $\mathfrak{L} \subseteq Z$ or $\Delta_2 = 0$.

It is immediately to get the following corollaries from Theorems 2, 3 and Lemma 1.

Corollary 1. Let \mathfrak{R} be a prime ring, $char(\mathfrak{R}) \neq 2$, I a nonzero ideal of \mathfrak{R} , and $\Gamma_1, \Gamma_2 : \mathfrak{R} \times \mathfrak{R} \to \mathfrak{R}$ be two symmetric generalized (α, β) -biderivations associated with symmetric (α, β) -biderivations $\Delta_1, \Delta_2 : \mathfrak{R} \times \mathfrak{R} \to \mathfrak{R}$, respectively. If $\Gamma_1(x, x)\alpha(x) = \pm \beta(x)\Gamma_2(x, x) \forall x \in I$, then \mathfrak{R} is commutative.

Corollary 2. Let \mathfrak{R} be a prime ring, $char(\mathfrak{R}) \neq 2$, \mathfrak{L} a nonzero square closed Lie ideal of \mathfrak{R} , α, β automorphisms and $\Gamma : \mathfrak{R} \times \mathfrak{R} \to \mathfrak{R}$ be a symmetric generalized (α, β) -biderivation associated with a symmetric (α, β) -biderivation $\Delta : \mathfrak{R} \times \mathfrak{R} \to \mathfrak{R}$. If $[\Gamma(x, x), x]_{\alpha, \beta} = 0 \forall x \in I$, then either $\mathfrak{L} \subseteq Z$ or $\Delta = 0$.

Corollary 3. Let \mathfrak{R} be a prime ring, $char(\mathfrak{R}) \neq 2$, I a nonzero ideal of \mathfrak{R} , α, β automorphisms and $\Gamma : \mathfrak{R} \times \mathfrak{R} \to \mathfrak{R}$ be a symmetric generalized (α, β) -biderivation associated with a symmetric (α, β) -biderivation $\Delta : \mathfrak{R} \times \mathfrak{R} \to \mathfrak{R}$. If $\Gamma(x, x)\alpha(x) = \pm \beta(x)\Delta(x, x) \forall x \in I$, then \mathfrak{R} is commutative or Γ is a left α -bicentralizer.

1180

Theorem 4. Let R be a prime ring, $char(\Re) \neq 2,3, \mathfrak{L}$ a nonzero Lie ideal of \mathfrak{R} , $\Gamma : \mathfrak{R} \times \mathfrak{R} \to \mathfrak{R}$ a symmetric generalized biderivation associated with a symmetric biderivation Δ . If

$$\Gamma(\Gamma(x_1, x_1), \Gamma(x_1, x_1)) - \Delta(\Delta(x_1, x_1), \Delta(x_1, x_1))$$

= $\Delta(\Gamma(x_1, x_1), \Gamma(x_1, x_1)) - \Gamma(\Delta(x_1, x_1), \Delta(x_1, x_1))$

 $\forall x_1 \in \mathfrak{L}$, then either $\mathfrak{L} \subseteq Z$ or $\Delta = \Gamma$ or $\Delta = 0$.

Proof. Let γ , δ be the traces of Γ and Δ , respectively. By our hypothesis we have $\gamma^2(x_1) - \delta^2(x_1) = \delta(\gamma(x_1)) - \gamma(\delta(x_1)).$ (3.21)

The substitution of x_1 by $x_1 + x_2$ in (3.21), gives that

$$4\gamma(\Gamma(x_{1},x_{2})) + 2\Gamma(\gamma(x_{1}),\gamma(x_{2})) + 4\Gamma(\gamma(x_{1}),\Gamma(x_{1},x_{2})) + 4\Gamma(\gamma(x_{2}),\Gamma(x_{1},x_{2})) - \delta(\Delta(x_{1},x_{2})) - 2\Delta(\delta(x_{1}),\delta(x_{2})) - 4\Delta(\delta(x_{1}),\Delta(x_{1},x_{2})) - 4\Delta(\delta(x_{2}),\Delta(x_{1},x_{2})) = 4\delta(\Gamma(x_{1},x_{2})) + 2\Delta(\gamma(x_{1}),\gamma(x_{2})) + 4\Delta(\gamma(x_{1}),\Gamma(x_{1},x_{2})) + 4\Delta(\gamma(x_{2}),\Gamma(x_{1},x_{2})) - 4\gamma(\Delta(x_{1},x_{2})) - 2\Gamma(\delta(x_{1}),\delta(x_{2})) - 4\Gamma(\delta(x_{1}),\Delta(x_{1},x_{2})) - 4\Gamma(\delta(x_{2}),\Delta(x_{1},x_{2})).$$
(3.22)

Now, substituting x_2 by $-x_2$ in the above expression, we find that

$$\begin{aligned} 4\gamma(\Gamma(x_{1},x_{2})) + 2\Gamma(\gamma(x_{1}),\gamma(x_{2})) - 4\Gamma(\gamma(x_{1}),\Gamma(x_{1},x_{2})) \\ - 4\Gamma(\gamma(x_{2}),\Gamma(x_{1},x_{2})) - \delta(\Delta(x_{1},x_{2})) - 2\delta(\delta(x_{1}),\delta(x_{2})) \\ + 4\Delta(\delta(x_{1}),\Delta(x_{1},x_{2})) + 4\Delta(\delta(x_{2}),\Delta(x_{1},x_{2})) \\ = 4\delta(\Gamma(x_{1},x_{2})) + 2\Delta(\gamma(x_{1}),\gamma(x_{2})) - 4\Delta(\gamma(x_{1}),\Gamma(x_{1},x_{2})) \\ - 4\Delta(\gamma(x_{2}),\Gamma(x_{1},x_{2})) - 4\gamma(\Delta(x_{1},x_{2})) - 2\Gamma(\delta(x_{1}),\delta(x_{2})) \\ + 4\Gamma(\delta(x_{1}),\Delta(x_{1},x_{2})) + 4\Gamma(\delta(x_{2}),\Delta(x_{1},x_{2})). \end{aligned}$$
(3.23)

Comparing (3.22) and (3.23) and using the fact that $char(\Re) \neq 2$, we get

$$2\gamma(\Gamma(x_1, x_2)) + \Gamma(\gamma(x_1), \gamma(x_2)) - 2\delta(\Delta(x_1, x_2)) - \Delta(\delta(x_1), \delta(x_2)) = 2\delta(\Delta(x_1, x_2)) + \Delta(\gamma(x_1), \gamma(x_2)) - 2\gamma(\Delta(x_1, x_2)) - \Gamma(\delta(x_1), \delta(x_2)).$$
(3.24)

Now, substituting x_2 by $x_2 + x_3$ in(3.24), gives that

$$2\Gamma(\Gamma(x_{1}, x_{2}), \Gamma(x_{1}, x_{3})) + \Gamma(\gamma(x_{1}), \Gamma(x_{2}, x_{3})) -2\Delta(\Delta(x_{1}, x_{2}), \Delta(x_{1}, x_{3})) - \Delta(\delta(x_{1}), \Delta(x_{2}, x_{3})) = 2\delta(\Delta(x_{1}, x_{2}), \Delta(x_{2}, x_{3})) + \Delta(\gamma(x_{1}), \Gamma(x_{2}, x_{3})) -2\gamma(\Delta(x_{1}, x_{2})) - \Gamma(\delta(x_{1}), \Delta(x_{2}, x_{3})).$$
(3.25)

Let us take $T = \Gamma - \Delta$, and denote $k = \gamma + \delta$ the trace of $K = \Gamma + \Delta$. By Lemma 5 *T* is a left bicentralizer of \mathfrak{R} . Then (3.24), reduces to

$$2T(\Gamma(x_1, x_2)\Gamma(x_1, x_3)) + T(\gamma(x_1), \Gamma(x_2, x_3)) + 2T(\Delta(x_1, x_2), \Delta(x_1, x_3)) + T(\delta(x_1), \Delta(x_2, x_3)) = 0.$$
(3.26)

Replacing x_3 by $2x_3z$ in (3.26) and using (3.26), we obtain

$$2T(\Gamma(x_1, x_2), x_3)\Delta(x_1, z) + T(\gamma(x_1), x_3)\Delta(x_2, z) + 2T(\Delta(x_1, x_2), x_3)\Delta(x_1, z) + T(\delta(x_1), x_3)\Delta(x_2, z) = 0.$$
(3.27)

That is,

$$2T(K(x_1, x_2), x_3)\Delta(x_1, z) + T(k(x_1), x_3)\Delta(x_2, z) = 0.$$
(3.28)

Choosing $x_2 = x_1$ in (3.28), and using char(\Re) \neq 3, we get

$$T(k(x_1), x_3)\Delta(x_1, z) = 0.$$
(3.29)

Choosing $z = x_1$ in (3.28), we obtain

$$2T(K(x_1, x_2), x_3)\delta(x_1) + T(k(x_1), x_3)\Delta(x_2, x_1) = 0.$$
(3.30)

Comparing (3.29) and (3.30) and using the fact that $char(\Re) \neq 2$, gives that

$$T(K(x_1, x_2), x_3)\delta(x_1) = 0.$$
(3.31)

Replacing x_2 by $2x_2x$ in (3.31), we find that

$$T(K(x_1, x_2), x_3)x\delta(x_1) + 2T(x_2, x_3)\Delta(x_1, x)\delta(x_1) = 0.$$
(3.32)

By replacing x_3 by $2x_3x$ in (3.31), we find that

$$\Gamma(K(x_1, x_2), x_3) x \delta(x_1) = 0.$$
 (3.33)

From (3.32) and (3.33) and using the fact that $char(R) \neq 2$, we find that

$$T(x_2, x_3)\Delta(x_1, x)\delta(x_1) = 0.$$
(3.34)

Replace x_3 by $2x_3w_1$, to get $(T(x_2, x_3)\mathfrak{L}\Delta(x_1, x)\Delta(x_1) = 0 \forall x_1, x_2, x, x_3 \in \mathfrak{L}$. Lemma 3, gives that either $(T(x_2, x_3) = 0 \text{ or } \Delta(x_1, x)\delta(x_1) = 0$. In the first case $T(x_2, x_3) = 0 \forall x_2, x_3 \in \mathfrak{L}$ and hence by Lemma 4, proves that T = 0. Therefore $\Gamma = \Delta$. On the other hand, if $\Delta(x_1, x)\delta(x_1) = 0 \forall x_1, x \in \mathfrak{L}$, then replacing x by $2x_1x$, we have $\delta(x_1)x\delta(x_1) = 0$, that is, $\delta(x_1)\mathfrak{L}\delta(x_1) = 0$. Again, by Lemma 3, $\delta(x_1) = 0$ and hence $\delta(x_1) = 0$ for al $x_1 \in \mathfrak{L}$. Proposition 1, gives that $\mathfrak{L} \subseteq Z$ or $\Delta = 0$.

Corollary 4. Let \mathfrak{R} be a prime ring, $char(\mathfrak{R}) \neq 2$, I a nonzero ideal of \mathfrak{R} , α an automorphism, and $\Gamma : \mathfrak{R} \times \mathfrak{R} \to \mathfrak{R}$ a symmetric generalized (α, α) -biderivation associated with a symmetric (α, α) -biderivation Δ . If

$$\begin{split} \Gamma(\Gamma(x_1, x_1), \Gamma(x_1, x_1)) &- \Delta(\Delta(x_1, x_1), \Delta(x_1, x_1)) \\ &= \Delta(\Gamma(x_1, x_1), \Gamma(x_1, x_1)) - \Gamma(\Delta(x_1, x_1), \Delta(x_1, x_1)) \end{split}$$

 $\forall x_1 \in I$, then either R is commutative or $\Delta = \Gamma$ or Δ is a left α -bicentralizer.

1182

ACKNOWLEDGEMENT

The authors are greatly indebted to the referee for his/her valuable suggestions which have improved the paper immensely.

References

- A. Ali, V. D. Filippis, and F. Shujat, "Results concerning symmetric generalized biderivations of prime and semiprime rings." *Matematicki Vesnik*, vol. 66, no. 4, pp. 410–417, 2004.
- [2] M. Ashraf, N. Rehman, S. Ali, and M. R. Mozumder, "On generalized (σ, τ)-biderivations in rings." *Asian-European Journal of Mathematics*, vol. 4, no. 3, pp. 389–402, 2011, doi: 10.1142/S1793557111000319.
- [3] K. Beidar, M. S. Martindale, and A. Mikhalev, *Rings with Generalized Identities*. New York: Marcel Dekker Inc., 1996.
- [4] J. Bergen, I. N. Herstein, and J. W. Kerr, "Lie ideals and derivations of prime rings." J. Algebra, vol. 7, pp. 259–267, 1981, doi: 10.1016/0021-8693(81)90120-4.
- [5] M. Brešar, "On certain pairs of functions of semiprime rings." Proc. Amer. Math. Soc., vol. 3, no. 120, pp. 709–713, 1994, doi: 10.2307/2160460.
- [6] M. Brešar, "On generalized biderivations and related maps." J.Algebra, vol. 172, pp. 764–786, 1995, doi: 10.1006/jabr.1995.1069.
- [7] M. Brešar, M. S. Martindale, and C. Miers, "Centralizing maps in prime rings with involution." *J.Algebra*, vol. 161, no. 2, pp. 342–357, 1993, doi: 10.1006/jabr.1993.1223.
- [8] I. Herstein, "Rings with involution." The University Chicago Press, Chicago, 1976.
- [9] G. Maksa, "On the trace of symmetric biderivations." C. R. Math. Rep. Acad. Sci. Canada, vol. 9, pp. 303–307, 1987.
- [10] W. S. Martindale III, "Prime rings satisfying a generalized polynomial identity." J. of Algebra, vol. 12, pp. 576–584, 1969, doi: 10.1016/0021-8693(69)90029-5.
- [11] G. Maska, "A remark on symmetric biadditive functions having non-negative diagonalization." *Glasnik. Mat.*, vol. 15, no. 35, pp. 279–282, 1980.
- [12] J. H. Mayne, "Centralizing mappings of prime rings." Canad. Math. Bull., vol. 27, no. 1, pp. 122–126, 1984, doi: 10.4153/CMB-1984-018-2.
- [13] N. Rehman, "On Commutativity of prime rings with generalized derivations." Math. J. Okayama Univ., vol. 44, pp. 43–49, 2002.
- [14] J. Vukman, "Symmetric biderivations on prime and semiprime rings." *Aequationes Math.*, vol. 38, pp. 245–254, 1989, doi: 10.1007/BF01840009.
- [15] J. Vukman, "Two results concerning symmetric biderivations on prime rings." *Aequationes Math.*, vol. 40, pp. 181–189, 1990, doi: 10.1007/BF02112294.
- [16] M. Yenigul and N. Argac, "Ideals and symmetric biderivations on prime and semiprime rings." *Math. J. Okayama Univ.*, vol. 35, no. 9, pp. 189–192, 1993.

Authors' addresses

Nadeem ur Rehman

Department of Mathematics, Aligarh Muslim University, 202002, Aligarh, India *E-mail address:* nu.rehman.mm@amu.ac.in

Shuliang Huang

Shuliang Huang, Department of Mathematics, Chuzhou University, Chuzhou 239012, China *E-mail address:* shulianghuang@sina.com