MMN-2334

Bounding the convex combination of arithmetic and integral means in terms of one-parameter harmonic and geometric means

Wei-Mao Qian; Wen Zhang; Yu-Ming Chu;

Abstract

In the article, we find the best possible parameters $\lambda_{1}$, $\mu_{1}$, $\lambda_{2}$ and $\mu_{2}$ on the interval $[0, 1/2]$ such that the double inequalities \begin{equation*} H(a, b; \lambda_{1})<\alpha A(a,b)+(1-\alpha)T(a,b)0$ with $a\neq b$, where $A(a,b)=(a+b)/2$, $T(a,b)=2\int_{0}^{\pi/2}a^{\cos^{2}\theta}b^{\sin^{2}\theta}d\theta/\pi$, $H(a, b; \lambda)=2[\lambda a+(1-\lambda)b][\lambda b+(1-\lambda)a]/(a+b)$, $G(a, b; \mu)=\sqrt{[\mu a +(1-\mu)b][\mu b+(1-\mu)a]}$ are the arithmetic, integral, one-parameter harmonic and one-parameter geometric means of $a$ and $b$, respectively.


Vol. 20 (2019), No. 2, pp. 1157-1166
DOI: https://doi.org/10.18514/MMN.2019.2334


Download: MMN-2334