MMN-2136

On the Cesaro summability for functions of two variables

Ü. Totur; I. Canak;

Abstract

For a continuous function $f(T,S)$ on $\mathbb{R}_{+}^{2}=[0,\infty)\times [0,\infty)$, we define its integral on $\mathbb{R}_{+}^{2}$ by \begin{equation*} F(T,S)=\int _{0}^{T}\int _{0}^{S} f(t,s)dt ds, \end{equation*} and its $(C,\alpha,\beta)$ mean by \begin{equation*} \sigma _{\alpha,\beta}(T,S)= \int _{0}^{T} \int _{0}^{S}\left(1-\frac{t}{T}\right)^{\alpha}\left(1-\frac{s}{S}\right)^{\beta}f(t,s)dtds, \end{equation*} where $\alpha >-1$, and $\beta >-1$. We say that $\int _{0}^{\infty}\int _{0}^{\infty} f(t,s)dt ds$ is $(C, \alpha, \beta)$ integrable to $L$ if $\lim _{T,S \to \infty} \sigma _{\alpha,\beta} (T,S)=L$ exists. We prove that if $\lim _{T,S \to \infty} \sigma _{\alpha,\beta} (T,S)=L$ exists for some $\alpha >-1$ and $\beta >-1$, then $\lim _{T,S \to \infty} \sigma _{\alpha+h,\beta +k} (T,S)=L$ exists for all $h>0$ and $k>0$. Next, we prove that if $\int _{0}^{\infty}\int _{0}^{\infty} f(t,s)dt ds$ is $(C, 1, 1)$ integrable to $L$ and \begin{equation*} T\int_{0}^{S}f(T,s)ds=O(1) \end{equation*} and \begin{equation*} S\int_{0}^{T}f(t,S)ds=O(1) \end{equation*} then $\lim _{T,S \to \infty} F(T,S)=L$ exists.


Vol. 19 (2018), No. 2, pp. 1203-1215
DOI: https://doi.org/10.18514/MMN.2018.2136


Download: MMN-2136