Miskolc Mathematical Notes HU e-ISSN 1787-2413
Vol. 19 (2018), No. 2, pp. 1203-1215 DOI: 10.18514/MMN.2018.2136

ON THE CESARO SUMMABILITY FOR FUNCTIONS OF TWO
VARIABLES

U. TOTUR AND i. CANAK

Received 06 November, 2016

Abstract. For a continuous function f(7T,S) on RZ = [0, 00) x [0, 50), we define its integral on
IRﬁ_ by
T (S
F(T,S) = / / f(t,s)dtds,
o Jo
and its (C,«, ) mean by

00.5(T.5) :/OT /OS (1—%)‘1 (1-%)'8 f,s)dds,

where & > —1, and f > —1. We say that [° [o° f(t.s)dtds is (C,a,B) integrable to L if
im7, 5500 0g,g (T, S) = L exists.

We prove that if limy,§—0004,8(T,S) = L exists for some o« > —1 and B > —1, then
im7, § 00 Oq4h,+k(T,S) = L exists forall 1 > 0 and k > 0.

Next, we prove thatif o~ [o° f(t,s)dtds is (C.1,1) integrable to L and

S
,s)ds = O
T/(; f(T,s)ds (1)
and -
S/ f(,8)ds =0(1)
0

then im7 § o0 F(T,S) = L exists.
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1. INTRODUCTION

Let f(¢) be a continuous function on [0, c0). The improper integral fooo f(t)dt is
said to be (C, «) integrable to L for some o > —1 if the limit

T—o0 Jg

(T t\*
lim (1—7) ft)dt =L

(© 2018 Miskolc University Press
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exists. For all @, 8 € R with —1 < o < 8, the (C, ) integrability implies the (C, 8)
integrability. This implication is a classical result in the summability theory [1, p.
106]. The converse of this implication may be true by adding some suitable condition
on the (C, B) integrability of the improper integral fooo f(t)dt. Any theorem which
states that convergence of the improper integral follows from the (C, ) integrability
of the improper integral and a Tauberian condition is said to be a Tauberian theorem.

As a special case, Laforgia [7] obtained a sufficient condition under which con-
vergence of the improper integral follows from (C, 1) integrability of the improper
integral. Méricz and Németh [9] established some one-sided and two-sided bounded
Tauberian conditions for real or complex valued functions. Recently, Canak and Totur
([2, 3]) have proved the generalized Littlewood theorem and Hardy-Littlewood type
Tauberian theorems for the (C, 1) integrability of a continuous function on [0, c0) by
using the concept of the general control modulo analogous to the one defined by Dik
[6]. Canak and Totur [4] have also given alternative proofs of some classical type
Tauberian theorems for the (C, 1) integrability of a continuous function on [0, c0).
Canak and Totur [5] generalized the results of Laforgia [7] for the (C, «) integrability
of functions by weighted mean methods.

For a continuous function f(7,S) on R2 = [0,00) x [0, 00), we define its integral

on IR?F by

T rS
F(T,S)=/ / f(t,s)dtds, (1.1
o Jo
and its (C,«, ) mean by

6u.p(T.S) =/OT/OS (1—%)‘1 (1—%)’3 f(t.s)drds.

where « > —1 and B > —1. An improper integral

o0 o0
/ / f(t,s)detds (1.2)
o Jo
is said to be (C,a, B) integrable to L if
li T,8)=1L 1.3
T,Slgooaa,ﬂ( ) (1.3)

The (C,0,0) integrability is the convergence of the improper integral (1.2).

However, there are some (C,«, ) integrable functions which fail to converge as
improper integrals. Adding some Tauberian condition, one may get the converse.

In this paper, we prove that the (C,«, 8) integrability of (1.2) where o > —1 and
B > —1 implies the (C,« + h, B + k) integrability of (1.2) for all 2 > 0 and k > 0. As
a corollary to this result, we show that if (1.2) converges to L, then (1.2) is (C, h,k)
integrable to L for all 2 > 0 and k > 0. But, the converse of this implication might be
true under some conditions imposed on the function. Furthermore, we give conditions
under which (1.2) follows from the (C, 1, 1) integrability of (1.2). It will be shown as
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a corollary of our first result in this paper that convergence of the improper integral
(1.2) implies the existence of the limit lim7, g o0 0 & (7, S) forall 2 > 0 and k > 0.

2. RESULTS

The following theorem shows that (C,«, B) integrability of (1.2), where o > —1
and 8 > —1, implies (C,a + h, B + k) integrability of (1.2), where all # > 0 and
k> 0.

Theorem 1. If (1.2) is (C,a, B) integrable to L for some o > —1 and f > —1,
then it is (C,o + h, B + k) integrable to L for all h > 0 and k > 0.

Proof. Consider

T ,S
/ / @(t,s;T,S)oq g(T,S)dtds, 2.1
o Jo
where
1 1 1/1\% 11 s\B s k-1
g"(t’S’T’S):B(ourl,h)B(ﬂ+1,kﬁ(7) (I‘T) s(5) (1-%)
2.2)

where B denotes the Beta function defined by
1
B(x.,y) = / 11— Ydt, x>0,y >0.
0

Letting u = + and v = %, we have

T pS
/ / o(t,s:T,S)dtds = 1. 2.3)
o Jo
We need to prove that
T ,S
lim / / @(t,s;T,S)oq g(T,S)dtds = L. 2.4)
T,S—o0Jo Jo ’
Since
li T,S)=L 2.5
T,Slgooaa,ﬂ( ) (2.5)
by the hypothesis, there exists a value T for any given € > 0 such that
0ap(T.S)—L| <&, T=T., =5, (2.6)

It follows from (2.3) that
T rS
/ / @(t,s;:T,S)oq p(T,S)dtds — L
o Jo

T rS
=[ / o(t.s;T,S)[0g (T, S)—Lldtds. (2.7)
0 0
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To prove (2.4), it suffices to show that

S
@(t,s;T,S)oq (T, S)dtds— L| < 4e, (2.8)
0

provided that 7" and S are large enough.
We notice that by the hypothesis, the function o, g (T, S) is bounded on RZ , that
is,
loq,g(T.S)—L| <K, 0=<T,S < o0,
for some constant K. Using (2.3) and (2.6), we obtain, by (2.7),

T pS
‘/ / @(t,s:T,S)[0q,p(T,S)—L]dtds
o Jo

Te pSe
5/ / (p(tvs’T’S)|O—a,ﬁ(T,S)_L|dtdS
0 0
Te S
+/ / @(t,s:T,S)|og,g(T,S)—Ll|dtds
0 Se

T ,Se
+/ / 0(1.5:T.S)|06.8(T.S)— L|dtds
e 0

T pS
+ef / o(t,s;T,S)dtds
T. 5. . s
fo / (p(z,s;T,S)dtds—i—K[ / o(t,s;T,S)dtds
o Jo 0o Js.

T pSe T S
+K/ / <P(I,S;T,S)dtds+6/ / @(t,s;T,S)dtds
1. Jo o Jo

Te pSe T. S
ZK/ / ‘P(f,S;T,S)dtds—l-K/ / @(t,s;T,S)dtds
o Jo 0o Js.

T ,Se
+K/ / o(t,s;T,S)dtds + ¢
T. Jo

By the substitution u = £, v = %, we have

Te Se T81 o ¢ h—1
t,s;T,S)dtds = 1—— d
/o/o“’(s ydtds = B(+1h)/ ()( T) Z

Se 1 k-1
B(ﬂ—i—lk)/ (1—%) ds
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Ts/T b1
d
T Bla+l, h)/ —wtdu
ss/s
v)k_ldv

B(ﬂ+1k)/

which tends to zero when T, S — oo for any fixed 7 and S,. Thus, there exist some
T} and S} such that

Te Se P —
K/ [ o(t,s;T,S)dtds < e, TzTal, SzSal.
o Jo

By the substitution u = %, v = %, we have

Te rS 1 Tgl £\Y P h—1
ts:T.S)dtds=——— | (L) (1=L) &
/0 /é‘”(’s’ S)dids B(a+1,h)/0 T(T) ( T)

1 51 B k—1
Tk s %) (1-5) e

TE/T h—1
- d
T Bla+l, h)/ —u)Tdu

1 1
X—
B(B+1,k) Js,./s

which tends to zero when T, S — oo for any fixed T, and S (Note that

vﬂ(l — v)k_ldv
Wfsls/s v (1—v)*1dv tends to 1 as S — oo ). Thus, there exist some 7/":2
and S2 such that
Te S — —
K/ / o(t,s;T,S)dtds <e, T>TZ? S>S2
0 €
Similarly, the integral

T ,Se
/ / o(t,s;T,S)dtds
. Jo

tends to to zero when 7, S — oo for any fixed T, and S; (Note that
mf;s/Tu“(l —u)*1dv tends to 1 as S — 00 ). Thus, there exist some T2

and S2 such that

T ,Se o~ —
K/ / o(t,s;T,S)dtds < e, TZTS, SzSg.
Te JO
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Hence, we have (2.8) for T > max{Te, To!, T2, T:3}, S > max{Sc, S; !, 5,2, S, 3}
and this proves (2.4). We obtain

T ,S
/O/O(p(t,s;T,S)aa,ﬁ(t,s)dtds
=/0T/0Sgo(z,s;T,S) ([Ot/os (1—?)”(1—?)’3 f(u,v)dudv) drds
=/OT/0Sf(u,v) (/quvsgo(r,s;T,S) (1—%)“ (l—g)ﬂdtds)dudv
:/OT /OS fu,v)I(u,v;T,S)dudv,

where

[, v:T,S) = /uT /Us(p(m; 7.5)(1- ?)a (1- g)ﬂ dids.

Here, we write I(u,v;T,S) as

et = [ [ st (-2 (-2 s
(s [ F () (=5) 0=«
(i [5G 09 02 w)
(i (1) (=5) eera)
(e 8) [ 09 e

=1 (M’T)IZ(U7S),

1 1 a+1 T ¢ h—1 o
nen =g (z) [ (7)) e

1 1 B+1 .S g\ k—1 P
IZ(U,S):m(E) /l; (l—g) (S—U) ds.

where

and
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Substituting t = T — (T —u)x in I1(u,T), we have

1 u\h—1 u\et+1 1 A
LuT)=——(1-= 1—— “11-x)%d
1. 7) B(a+1,h)( T) ( T) /Ox (1=x)"dx
u a+h
=(1-7)
and similarly we have
v\ B+k
12(v,S)=(1—§) .

These show that

T ,S
/ / @(t,s;T,S)oq p(t,s)dtds
o Jo

T S
u\at+h v\ B+k
:/0 /0 (1_7) (1_5) S v)dudv = oqyp g+i(T.S)

This completes the proof of Theorem 1. g

3. THECASEa=1,=00Ra=0,8=1

Similar to the (C, 1, 1) integrability, one can improve the theory of the (C, 1,0) or
the (C,0, 1) integrability. Since this theory is similar to the theory of integrability of
functions of one variable, we only present it without detailed proofs.

Definition 1. Let f(7,S) be a continuous function on IREL and F(T,S) be defined
as in (1.1). We define (C, 1,0) and (C,0, 1) means of (1.1) by

T S t
01,0(T.S) :=/ f (1——) f(t,s)dtds 3.D
o Jo r
and
T ,S s
0.1(T.S) = / / (1 — —) f(t,)dtds, 3.2)
o Jo S
respectively. We say that (1.2) is (C,1,0) and (C,0, 1) integrable on [R?Ir if
li T,S 33
r lim_01,0(T.5) (3.3)
and
li T,S 34
T’Slgloo(fo,l( ) (3.4)

exist and are finite, respectively.

The (C,1,0) and (C,0, 1) summability methods are regular method. Namely, if
(1.2) converges to L, then (1.2) is both (C,1,0) and (C,0, 1) integrable to L.
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Theorem 2. If(1.2) is (C,1,0) integrable to L and

S
T/ f(T,s)ds = 0O(1) (3.5
0
then (1.2) converges to L.

Theorem 3. If(1.2) is (C,0,1) integrable to L

T
S/ f(@, S)dt =0(1) (3.6)
0
then (1.2) converges to L.

Since the proofs of Theorem 2 and Theorem 3 can be obtained with similar steps
as in Theorem 3.2 in [7], we omit the proofs.

4, THECASEa =1, =1

Definition 2. Let f(7,S) be a continuous function on [Ri. We say that (1.2) is
(C,1,1) integrable on RZ , if

. T pS ¢ s
T’}gw/o /0 (1_F) (1—§) f(t,5)d1ds 4.1)

As aresult of Theorem 1, we have the following corollary.

exists and is finite.

Corollary 1. If (1.2) converges to L, then (1.2) is (C,1,1) integrable to L.
Proof. Takea = =0and h = k = 1 in Theorem 1. O

That the converse of Corollary 1 is not true in general is shown by the following
examples.

Example 1. The integral fooo fooo costcossdtds converges to zero, in (C,1,1)
sense.

By (4.1), we have

T ,rS
t
/0 / (I_F) (l—g)costcossdtds

0
T s
! 1—cosT)(1—cosS
=/ I costdl‘/ (l_i)cossdsz( cos T)(1 —cos )’
0 r 0 S TS

which tends to zero as 7, S — oo.

Example 2. The integral fooo fooo sint sins dtds converges to 1, in (C, 1, 1) sense.
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By (4.1), we have
T ,S
t
/ / 1—= (l—i) sint sinsdtds
0 T S

0
T S | |
Zt = S —sinS
/0 (1 )sintdt/o (1_%)Sinsds (1 sz); sin )’

which tendsto 1 as 7, .S — oc.
A convolution theorem for (C, 1, 1) integrability is given by the following theorem.

Theorem 4. Let the integrals

/000/000 f(t,s)dtds, /OOO/OOOg(t,s)dtds

be convergent in (C,0,0) sense, to L and Ly, respectively. Then

tops
h(t,s) 2/ / ft—u,s—v)g(t,s)dudv 4.2)
0 JO
converges in (C,1,1) sense to L1 L.

Proof. We need to show that

T pS ¢ s
li 1—— 1—— =1L 4.
T’SIEOO/O /0 ( T)( S)h(t,s)dtds \La 4.3)

We define F and G by

t ps
F(t,s)z//f(t,s)dtds 4.4)
0 Jo
and

t ps
G(t,s):/ / g(t,s)dtds 4.5)
0 Jo
By (4.2), we get

/OT /OS (1 —%) (1 —%)h(z,s)dtds
:/OT/OS (1—%) (1—§) (/Ot/Osf(t—u,s—v)g(t,s)dudv)dtds
:/OT/OSg(t,s)dudv (/MT/US (1—%) (1—%)f(t—u,s—v)dtds)

The substitutions t —u = @ and s —v = § and the subsequent integration by parts
give

/(;T/OSg(f,S)dudv/uT/vS (1_%) (1-5) fe—us—vydids
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T ,S T—u pS—v U4 V48
—/0 /0 g(u,v)dudv/o /0 (1— T )(1— S )f(a),S)da)d(S

1 T rS
=ﬁ/0 /0 Gu,v)F(T —u,S —v)dudv

Since F(T,S) — L1 and G(T,S) — Ly as T — oo and S — o0, we have that for
some T, and S¢

|F(T,S)—Lq| <€ (4.6)
and

|G(T,S)—La| <€ 4.7)
for T > T, and S > S¢. Then we have

1 T ,S
—/ / Gu,v)F(T —u,S —v)dudv—L{L,
TS Jo Jo

1

T rS
= ﬁ/o /0 (G(u,v)— L) F(T —u,S —v)dudv

T pS
+/ / Lo (F(T —u,S—v)—Ly)dudv|
o Jo

1
<
=TS
L

7S Jo

Te rSe
/ |Lo||F(T —u,S —v)—Li|dudv
o Jo
Te rS
/|L2||F(T—M,S—v)—L1|dudv
Se
1 T pSe
+—// |Lo||F(T —u,S —v)—Li|dudv
TS Jr. Jo

1 T ,S
—}-—/ / |Lo||F(T —u,S —v)— Li|dudv
TS T. JS.

Since F(T,S) — Li and G(T,S) — Ly as T — oo and S — o0, there exist some
constants N1 and N, such that

|F(T,S)—Li| <N (4.8)
and

|G(T,S)—L2| = N> 4.9)
for all 7" and S. If we use (4.6), (4.7), (4.8), and (4.9), and then letting T and S tend
to oo independently, we have the desired result. O

By the next theorem we give a sufficient condition under which (C,1,1) integ-
rability of (1.2) follows from (C, 0,0) integrability of (1.2).
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Theorem 5. If (1.2) is (C,1,1) integrable to L and

S
T/ f(T,s)ds = 0(1) (4.10)
0
and
T
S/ f(t,8)dt = 0(1) 4.11)
0
then (1.2) converges to L.
Proof. Let (1.2) be (C,1,1) integrable to L; that is,

(TS y p
G(T,S).:/O /0 (1—?)(1—§)f(t,s)dtds—>L, 7.8 >00  (4.12)

We rewrite G(T, S) as

r s\ 0
G(T,S) =f0 (1 _§> S Gi(T.s)dt. (4.13)
where I o.s
G1(T,S)::/ / (1—1) £t 5)dtds. (4.14)
o Jo T

It follows from (4.12), (4.13), and (4.14) that %Gl (T,S)is (C,0,1) integrable to L.
By (4.12), we have

G(T,S)=G(T,S)—H(T,S), (4.15)
where
1[5 9
H(T,S) = —/ s—G1(T,s)dt. (4.16)
S 0 s
We have to show that H;(7,5) - 0as 7,5 — oc.
By (4.13), we find

3 1 5 9 H{((T,S)
—G(T.S) = — —G(T,s)ds = ——— 417
SLG(T.S) ASZIC s5-GiTs)ds = = “.17)

We also have

SH 9
/ " G(T,S)dS = G(T,S1)— G(T, S3)
< S

1
_/&HﬂﬂﬁdT
S S

log S>
= [ Hy(T,e%)dv
log Sy

log S>
= / R(T,v)dv.
log S
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Here, we used the substitution S = ¢ and R(T,v) = H{(T,e"). We need to show
that limy— o0 R(T,v) = 0. By the simple calculation, we have

0 0 d
—R(T,v) =e"—H{(T,e") =S —H{(T,S). 4.18
au(v)eaul(e) aSl() (4.18)
By (4.16), we get
S 9
SHl(T,S)=[ sa—Gl(T,s)ds. 4.19)
0 N
Differentiation the both sides of (4.19) with respect to 7" gives
d d
H{(T,S)+S—H{(T,S)=85S—G1(T,S). 4.20
1( )+351()851() (4.20)
Taking the (C, 1,0) mean of the both sides of (4.11) we have
d
which implies that
d
SﬁHl(T,S) =0(1) (4.22)

by (4.18).
We can easily obtain H{(7,S) — 0 as T, S — oo by following the steps of The-
orem 3.2 in [7]. It follows from (4.12) and (4.15) that G{(T,S) —> L as T, S — oc.
Since G1(T,S) — L as T, S — oo and the condition (4.10), we have
limr, s 00 F(T,S) = L by Theorem 2.
O

Remark 1. Analogous Tauberian results were proved in [8] for double improper
integrals with a different perspective.

5. CONCLUSION

In this paper, we extended the classical Tauberian theorems given for the (C,«)
integrability of the improper integrals of functions of one variable to those of the
(C,a, B) integrability improper integrals of functions of two by using the methods
employed in Laforgia [7]. The analogous results for the functions of several variables
can be obtained by the similar techniques.
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