MMN-2017

Theta function identities and representation numbers of certain quadratic forms in twelve variables

Bülent Köklüce; Ibrahim Karatay;

Abstract

In this paper using the $(p,k)$-parametrization of theta functions and Eisenstein Series developed by Alaca, Alaca and Williams, we obtain some new theta function identities and then use them to derive explicit formulae for the number of representations of a positive integer $n$ by certain quadratic forms \begin{equation*} \mathop{\displaystyle \sum }% \limits_{k=1}^{6}a_{k}(x_{2k-1}^{2}+x_{2k-1}x_{2k}+x_{2k}^{2}) \end{equation*}% in twelve variables where $a_{k}\in \left\{ 1,2,4\right\} $ .


Vol. 18 (2017), No. 2, pp. 889-904
DOI: https://doi.org/10.18514/MMN.2017.2017


Download: MMN-2017