MMN-1791
On the oscillation of a class of damped fractionaldifferential equations
Abstract
\begin{abstract}
Using Riccati type transformations, the authors establish
some new oscillation criteria for the fractional differential equation%
\begin{equation*}
\left( D_{0+}^{1+\alpha }y\right) (t)+p(t)\left( D_{0+}^{\alpha
}y\right) (t)+q(t)f(G(t))=0,\text{ \ \ \ }t>0,
\end{equation*}%
where $D_{0+}^{\alpha }y$ is the Riemann-Liouville fractional
derivative of order $\alpha $ of $y$,
$G(t)=\int\limits_{0}^{t}\left( t-s\right) ^{-\alpha }y(s)ds$, and
$\alpha \in \left( 0,1\right) $. Examples are provided to illustrate
the relevance of the results.
\end{abstract}
Vol. 17 (2016), No. 1, pp. 647-656