Please note that the journal's website will not be available from May 17 to the morning of May 19 due to maintenance of the university's electrical system. Sorry for any inconvenience in advance!
MMN-770

Existence results for a non-resonant nonlocal boundary value problems

Abstract

In this paper we consider the following nonlocal boundary value problems \begin{displaymath} (p(t)x')'=f(t,x,x'), \quad x'(0)=0, \quad x(1)=\int_{0 }^{1}x'(s)dg(s) \end{displaymath} and \begin{displaymath} (p(t)x')'=f(t,x,x'), \quad x'(0)=0, \quad x(1)=\int_{0 }^{1}x(s)dg(s), \end{displaymath} where $f:[0,1]\times\mathbb{R}^{k}\times\mathbb{R}^{k}\to\mathbb{R}^{k}$ and the integrals are meant in the sense of Riemann-Stieltjes. Under a sign condition on the function $f$, we prove the existence of solutions.


Vol. 16 (2015), No. 1, pp. 517-525
DOI: https://doi.org/10.18514/MMN.2015.770


Download: MMN-770