MMN-770
Existence results for a non-resonant nonlocal boundary value problems
Abstract
In this paper we consider the following nonlocal boundary value problems
\begin{displaymath}
(p(t)x')'=f(t,x,x'), \quad x'(0)=0, \quad x(1)=\int_{0 }^{1}x'(s)dg(s)
\end{displaymath}
and
\begin{displaymath}
(p(t)x')'=f(t,x,x'), \quad x'(0)=0, \quad x(1)=\int_{0 }^{1}x(s)dg(s),
\end{displaymath}
where $f:[0,1]\times\mathbb{R}^{k}\times\mathbb{R}^{k}\to\mathbb{R}^{k}$ and the integrals are meant in the sense of Riemann-Stieltjes.
Under a sign condition on the function $f$, we
prove the existence of solutions.
Vol. 16 (2015), No. 1, pp. 517-525