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ON THE MOBILITY DEGREE OF (PSEUDO-) RIEMANNIAN
SPACES WITH RESPECT TO CONCIRCULAR MAPPINGS

OLENA CHEPURNA AND IRENA HINTERLEITNER

Abstract. In this paper we study the mobility degree of (pseudo-) Riemannian spaces with re-
spect to concircular mappings. We assume that the smoothness class of differentiability is C 2.
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1. INTRODUCTION

Under a geodesic circle we understand a curve for which the first curvature is
constant and the second curvature is zero. K. Yano [14] introduced a conformal
mapping of (pseudo-) Riemannian spaces which preserves geodesic circles and is
called concircular.

These mappings are studied in many papers. In the present paper, we show results
connected with basic notations under the conditions of minimal differentiability of
metrics and geometric objects which define concircular mappings and also concircu-
lar vector fields.

2. FUNDAMENTAL EQUATIONS OF CONCIRCULAR MAPPINGS

Let Vn D .M; g/ and NVn D . NM; Ng/ be n-dimensional (pseudo-) Riemannian
manifolds with the metric tensors g and Ng, respectively, n > 2.

Definition 1. A conformal mapping is a diffeomorphism of Vn onto NVn such that
for all points x 2M .� NM/ the following relation is satisfied

Ng.x/ D e2�.x/g.x/; (2.1)

where � is a function on M .
If � is constant, then the mapping is homothetic, and, moreower, if � D 0, then

the mapping is isometric. See [1, 7, 9, 10, 12].
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As we have checked (see [14], [9, p. 117]), if a pseudo-Riemannian space admits
concircular mappings, then the function of conformality # def

D e�� satisfies

rr# D � � g; (2.2)

where � is a function andr is the Levi-Civita connection with respect to the metric g.
In a local coordinate neighbourhood .U; x/, U � M , it has the form ri#j D � gij ,
where gij are components of g and #j D rj# . A vector field #i is called equidistant
(Sinyukov [12, p. 92], see [9, p. 82]).

The integrability conditions of the last set of equations read

#�R
�
ijk D gijrk� � gikrj�; (2.3)

where Rh
ijk

are components of the Riemann tensor of Vn. Using contraction, we get:

ri� D �
1

n � 1
#�R

�
i ; (2.4)

where Rh
i D gh�R�i and Rij D R�

i�j are components of the Ricci tensor on Vn.

Remark 1. In many papers, the Ricci tensor was defined with the opposite sign,
for example, [2–8, 12].

Contracting the integrability condition (2.3) with gi�#� , we obtain easily rk� D

B #k , where B is a function. Because #k is gradient-like: #k D rk# , then it implies
that � D �.#/ and B D B.#/.

After this, the condition (2.3) acquires the following form

#�R
�
ijk D B .gij#k � gik#j /: (2.5)

As was shown earlier [13] (see [3, 4, 6, 9]), these equations are satisfied if

Vn; NVn 2 C 2 .i. e. gij .x/; Ngij .x/ 2 C 2/; #.x/ 2 C 3; #i .x/ 2 C 2 and %.x/ 2 C 1:

3. FUNDAMENTAL EQUATIONS OF CONCIRCULAR MAPPINGS FOR MINIMAL
DIFFERENTIABLE CONDITIONS

We can write formula (2.2) in the following form

rj#
i �

@# i

@xj
C � i

�j#
� D % � �ij ; (3.1)

where # i D gi�#�, �ij is the Kronecker symbol and � h
ij are the Christoffel symbols.

It is easily seen that formulas (3.1) and also (2.2) are true when

Vn; NVn 2 C 1 .i. e. gij .x/; Ngij .x/ 2 C 1/; #.x/ 2 C 2; #i .x/ 2 C 1 and %.x/ 2 C 0:

The following lemma holds.



ON THE MOBILITY DEGREE OF (PSEUDO-) RIEMANNIAN SPACES 563

Lemma 1 (Hinterleitner and Mikeš [2]). Let �h 2 C 1 be a vector field and � a
function. If

@�h

@xi
� � �hi 2 C 1;

then �h 2 C 2 and � 2 C 1.

If � h
ij 2 C 1 holds, which is equivalent to Vn 2 C 2 (i. e., gij 2 C 2), then from

formula (3.1) follows @# i

@xj
� % � �ij 2 C 1, and from Lemma 1 we get:

# i .x/ 2 C 2.� #i .x/ 2 C 2 � #.x/ 2 C 3/ and %.x/ 2 C 1:

From this viewpoint, we specify and generalize the results involving concircular
vector fields below. Evidently, in this case, the above formulas from (2.3) to (2.5) are
satisfied.

The system of equations

ri#j D � � gij ;

ri� D �
1

n � 1
#�R

�
i

(3.2)

is closed. It is a system of linear differential equations with respect to the co-vector #i
and function %, of Cauchy type, in first order covariant derivatives with coefficients
uniquely determined by the metric g of the (pseudo-) Riemannian space Vn. For
any family of initial values #i .x0/ D #�i and �.x0/ D �� of the functions under
consideration in the given point x0, it admits at most one solution. Consequently, the
number of free parameters in the general solution of the system is at most nC 1. See
[6, 13].

Definition 2. The upper bound for the number of substantial parameters in the
general solution of the system of equations (2.2) is called the mobility degree under
concircular mappings of the (pseudo-) Riemannian manifold Vn.

Since the system is linear, it admits at most nC 1 linearly independent solutions
corresponding to constant coefficients. It is obvious that the mobility degree under
concircular mappings of the space coincides with the cardinality of the system of
independent (substantial) concircular vector fields of the space.

It is known that only spaces with constant curvature admit the maximal number
of n C 1 linearly independent concircular vector fields. Hence, under concircular
mappings, only the spaces of constant curvature have the maximal mobility degree.
This holds locally.

It follows from the analysis of the system of equations (3.2) that if Vn 2 C r , r � 2,
then #i 2 C r and � 2 C r�1. It follows that the function # belongs to C rC1. From
this and the formula (2.1), we obtain the following theorem.
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Theorem 1. If the (pseudo-) Riemannian manifold Vn .Vn 2 C r , r � 2, n > 2/

admits a concircular mapping onto NVn 2 C 2, then NVn belongs to C r . Moreover, the
function # of conformality Vn and NVn: Ng D #�2 � g belongs to C rC1.

We suppose that the differentiability class r is equal to 2; 3; : : : ;1; !, where 1
and ! denote infinitely differentiable and real analytic functions, respectively.

We can construct examples of such concircular mappings Vn ! NVn in the form of
equidistant metrics, see [9, p. 79]:

Ng D
1

# 2
� g; g D �.dx1/2 C const �

p
j# 0j � d Qs2;

where d Qs2.x2; : : : ; xn/ is a C r metric of an .n� 1/-dimensional (pseudo-) Rieman-
nian space QVn�1 and #.x1/ is a C rC1 function and # > 0, # 0 ¤ 0.

4. A (PSEUDO-) RIEMANNIAN SPACE WHICH ADMITS AT LEAST TWO
LINEARLY INDEPENDENT CONCIRCULAR VECTOR FIELDS

Below we prove the following properties of concircular fields.

Lemma 2. The non-vanishing concircular vector field #i .x/ can be equal to zero
only on point sets of zero measure.

Proof. Let us suppose that Lemma 2 is not true. Thus there exists a point x0 2
M in the neighborhood Ux0 � M of which the concircular vector field #i .x/ is
vanishing. From (3.2) follows that �.x/ D 0 on Ux0 . From that follows the initial
conditions at the point x0: #i .x0/ D 0 and �.x0/ D 0. The system of linear equations
(3.2) with these initial conditions has only the trivial solution #i .x/ D 0 and �.x/ D
0 on all of M . �

By mathematical induction we have the following lemma.

Lemma 3. The set of r .r < n/ linear independent concircular vector fields

f
1

#
i
;
2

#
i
; : : : ;

r

#
i
g (4.1)

on Vn can be linearly dependent only on point sets of zero measure.

Proof. Successively we are able to substitute r D 1; 2; : : : ; n� 1. Let (4.1) be lin-
early independent (excluding at point sets of zero measure) concircular vector fields
on Vn which satisfy the equations

s

#
i;j

D
s
�gij ;

where
s
� are functions on Vn.

Let these vectors be linearly independent at the point x0 2 M , then these are
linearly independent at a point x in a certain neighborhood Ux0 . Finally, let #i be a
concircular vector field on M and

#i .x/ D
Pr

sD1

s
�.x/�

s

#
i
.x/ for x 2 Ux0 (4.2)
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where
s
� .x/ are functions on Uxo . Because

s

#
i
.x/ 2 C 1, the functions

s
� .x/ are

differentiable. Covariantly differentiating (4.2) with respect to xj we find

.� �

rX

sD1

s
� �

s
�/ gij D

rX

sD1

rj
s
� �

s

#
i
:

This implies that � D
Pr

sD1

s
� �

s
� and rj

s
� D 0 (i. e.,

s
� = const) on Uxo .

For the initial conditions

#i .xo/ D

rX

sD1

s
� �

s

#
i
.xo/;

�.xo/ D

rX

sD1

r
� �

r
�.xo/;

the equations (3.2) have only one solution: #i .x/ D
Pr

sD1

s
� �

s

#
i
.x/ on Vn. �

We are going to prove the following

Theorem 2. If a (pseudo-) Riemannian space Vn 2 C 2 .n > 2/ admits at least
two linearly independent concircular vector fields #i .x/ 2 C 1 with constant coeffi-
cients, then B is a constant, uniquely determined by the metric of the space Vn.

Remark 2. In [6] and [4, p. 88] a similar theorem was published, but the proof
was done only for Vn 2 C 3, #i .x/ 2 C 3 and %.x/ 2 C 2, and, moreover, it has
local validity. This also concerns the following Theorems 3, 4 and 5. On the basis of
Lemmas 2 and 3 these Theorems are valid globally.

Proof. Assume in Vn exist at least two linearly independent concircular vector
fields with constant coefficients #i and Q#i , with correspondent functions B and QB ,
respectively. Then the following is satisfied (see (3.1)):

#�R
�
ijk D B.gij#k � gik#j /; (4.3)

Q#�R
�
ijk D

QB.gij Q#k � gik Q#j /: (4.4)

Multiplying (4.3) by Q#�g
�k and contracting over k we get by (4.4)

.B � QB/.gij#� Q#
� � Q#i#j / D 0:

Suppose B ¤ QB . Then gij#� Q#
� � Q#i#j D 0. From the last formula we get

#� Q#
� D 0 and Q#i#j D 0, a contradiction, since the vector fields are non-zero.

Hence B D QB holds. That is, the function B is uniquely defined by the metric of
the space Vn itself. Because #k and Q#k are gradient-like covector fields (#k D rk#

and Q#k D rk
Q#) from the equality B D QB the fact B.#/ D QB. Q#/ follows. Note that

# and Q# are indenpendent variables, then from this fact follows: B is constant. �
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Note that the above theorem is analogous to some results proven earlier under the
additional assumptions Vn, NVn 2 C 3, [5, 6, 13].

Theorem 3. There are no (pseudo-) Riemannian spaces Vn 2 C 2, except spaces of
constant curvature, which admit more than .n � 2/ linearly independent concircular
vector fields #i .x/ 2 C 1 corresponding to constant coefficients.

Remark 3. In [4, p. 86], [3, 5], a similar theorem was published but the proof was
done only for Vn 2 C 3, #i .x/ 2 C 3 and %i .x/ 2 C 2.

Proof. Let us suppose the opposite. Let Vn be a space which is not of constant
curvature and yet admits more than .n � 2/ linearly independent concirrcular vector
fields with constant coefficients. The conditions (2.5) read

#�Z
�
ijk D 0; (4.5)

where

Zh
ijk

def
DRh

ijk � B.�hkgij � �hj gik/:

We can write the tensor Zh
ijk

as

Zh
ijk D

mX

sD1

b
s

h
s



ijk

;

where bsh are some linearly independent vectors, and
s


ijk are linearly independent
tensors. Since Vn is not of constant curvature, m � 2 holds.

From the conditions (4.5), we obtain

#� b
1

� D 0; #� b
2

� D 0; : : : ; #� b
m

� D 0: (4.6)

Since m � 2, among the equations of the system (4.6) there are at least two sub-
stantial equations. From the previous facts it follows that there exist less or equal
to n � 2 linearly independent vector fields #i , a contradiction. This proves The-
orem 3. �

From Theorem 3 and results in [6], the following two theorems are obtained:

Theorem 4. Let Vn 2 C 2, .n > 2/, be (pseudo-) Riemannian spaces in which
there are .n� 2/ linearly independent concircular vector fields #i .x/ 2 C 1. Then
the Riemannian tensor has the following expression

Rhijk D B .ghkgij � ghjgik/C e.ahbi � aibh/.aj bk � akbj /;

where ai and bi are non-colinear and pairwise orthogonal covectors, e D �1, and
B D const.
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Theorem 5. The (pseudo-) Riemannian space Vn 2 C 3 .n > 3/ admits .n � 2/

linearly independent concircular vector fields #i .x/ 2 C 1 if and only if in Vn the
relations [11]

Rhijk D B.ghkgij � ghjgik/C e.ahbi � aibh/.aj bk � akbj /;

ai; j D
1

�
j
aiC

2

�
j
bi C ciaj I

bi; j D
3

�
j
aiC

4

�
j
bi C cibj I

ci; j D
5

�
j
aiC

6

�
j
bi C cicj � Bgij

are satisfied, where ai and bi are non-colinear and pairwise orthogonal covectors;

ci ;
s

�
j
.s D 1; : : : ; 6/ are some covectors; e D �1, and B D const.

Remark. This theorem was proved locally for Vn 2 C 3; #i 2 C 3; % 2 C 2; in [6].
The detailed local proof is contained in the dissertation [3, p. 94-95], [4, p. 88-92].
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