
Miskolc Mathematical Notes HU e-ISSN 1787-2413
Vol. 14 (2013), No. 1, pp. 265–277

ON THE EXISTENCE OF DIOPHANTINE QUADRUPLES IN
ZŒ
p
�2�

IVAN SOLDO

Received 11 July, 2012

Abstract. By the work of Abu Muriefah, Al-Rashed, Dujella and the author, the problem of the
existence of D.´/-quadruples in the ring ZŒ

p
�2� has been solved, except for the cases

´D 24aC2C .12bC6/
p
�2;´D 24aC5C .12bC6/

p
�2;

´D 48aC44C .24bC12/
p
�2:

In this paper, we present some new formulas for D.´/-quadruples in these remaining cases,
involving some congruence conditions modulo 11 on integers a and b. We show the existence of
D.´/-quadruple for significant proportion of the remaining three cases.
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1. INTRODUCTION

Let ´ be an element of a commutative ring R. A Diophantine quadruple with the
property D.´/, or a D.´/-quadruple, is a set D of four non-zero elements of R with
the property that the product of any two distinct elements of this set increased by ´

is a square of some element in R. Any set D satisfying this condition is called a set
with the property D.´/.

Greek mathematician Diophantus of Alexandria found four positive rational num-
bers f 1

16
; 33

16
; 17

4
; 105

16
g with the property D.1/ (see [4]). The first D.1/-quadruple in

integers, the set f1;3;8;120g, was found by Fermat (see [4, 15]). Baker and Daven-
port proved that Fermat’s set cannot be extended to a D.1/-quintuple in integers (see
[2]). In 2004, Dujella proved that in Z there does not exist a D.1/-sextuple and there
are only finitely many D.1/-quintuples (see [8]).

Many authors considered the problem of the existence of Diophantine quadruples
in integers. Brown (see [3]) proved that if n 2Z, n� 2 .mod 4/, then there does not
exist a D.n/-quadruple. On the other hand, Dujella (see [5]), proved that if n 6� 2

.mod 4/ and if n 62 S D f�4;�3;�1;3;5;8;12;20g, then there exists at least one
D.n/-quadruple, and he conjectured that there does not exist a D.n/-quadruple for
n 2 S .

c
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Dujella also considered the existence of D.aCb
p
�1/-quadruples in the ring of

Gaussian integers. In [6], it was shown that if b is odd or a � b � 2 .mod 4/, then
there does not exist a D.aCb

p
�1/-quadruple, and if ´D aCb

p
�1 is not of that

form and ´ 62 f˙2;˙1˙ 2i;˙4ig, then there exist at least two distinct Diophantine
quadruples with the property D.´/. Franušić also gave some results on Diophantine
quadruples in Gaussian integers (see [13]), and in [11, 12, 14] completely solved the
analogous problem in some real quadratic fields.

In addition to results of Dujella and Franušić in Gaussian integers, the case of
the ring ZŒ

p
�2� of integers in the quadratic field Q.

p
�2/ is the only case of a

complex quadratic field studied until now. It started by the work of Abu Muriefah and
Al-Rashed in [1]. Dujella and Soldo extended the results of Abu Muriefah and Al-
Rashed and obtained several new polynomial formulas for Diophantine quadruples
with the property D.aCb

p
�2/, for integers a and b satisfying certain congruence

conditions. Their main result is

Theorem 1 ([10], Theorem 1.1). Let ´ 2 ZŒ
p
�2�. If ´ is of the form ´ D aC

.2bC1/
p
�2 or ´D 4aC .4bC2/

p
�2, a;b 2Z, then there does not exist a D.´/-

quadruple. If z is not of that form, then there exists at least one D.´/-quadruple,
except maybe if z has one of the following forms:

´D 24aC2C .12bC6/
p
�2;´D 24aC5C .12bC6/

p
�2;

´D 48aC44C .24bC12/
p
�2;

or if ´ 2 f�1;1˙2
p
�2g.

In this paper we considered the existence of D.´/-quadruple for ´ D 24aC 2C

.12bC6/
p
�2;´D 24aC5C.12bC6/

p
�2;´D 48aC44C.24bC12/

p
�2; these

are cases not covered by the research described in [10]. By [9, Theorem 1], each
of these elements can be represented as a difference of two squares of elements in
ZŒ
p
�2�. Thus, in an analogy to what is known in Z (see [5]) and certain quadratic

fields (see [6, 11, 12, 14]), it seems reasonable to expect that for such ´’s there exists
at least one D.´/-quadruple, with perhaps finitely many exceptions.

The methods for the construction of Diophantine quadruples usually use elements
with small norm. We proved that for such ´’s, quadruples cannot contain some ele-
ments with very small norm, as in the formulas in Sections 3 and 4 of [10].

Moreover, for finding formulas for Diophantine quadruples, we used the method
described in details in [10, Section 2]. Using the fact that numbers 11 and 22 factori-
zes in ZŒ

p
�2� as 11D .3C

p
�2/.3�

p
�2/ and 22D .2C3

p
�2/.2�3

p
�2/, we

found some formulas for quadruples containing the elements 2˙ 3
p
�2 with norm

22 and 3˙
p
�2 with norm 11. By studying them carefully, we obtained our main

results, covered by Propositions 3, 4, and 5, presented in Section 3. Namely, we
showed the existence of D.´/-quadruples for significant proportion of the remaining
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three cases. These new formulas then necessarily involve some congruence condi-
tions modulo 11 on a and b, which makes those cases harder to handle.

We also specify very simple result which will be used later on.

Lemma 1. Let f´1;´2;´3;´4g � ZŒ
p
�2� be a set with the property D.´/ and

w 2ZŒ
p
�2�. Then

(i) the set f Ń1; Ń2; Ń3; Ń4g has the property D. Ń/,
(ii) the set f´1w;´2w;´3w;´4wg has the property D.´w2/.

Note that by multiplying elements of a D.24aC 2C .12bC 6/
p
�2/-quadruple

by
p
�2, by Lemma 1(ii) we obtain (with obvious substitution) a D.48aC 44C

.24bC 12/
p
�2/-quadruple. Thus, it is sufficient to consider D.´/-quadruples for

´D 24aC2C .12bC6/
p
�2 and ´D 24aC5C .12bC6/

p
�2.

2. ELEMENTS OF SMALL NORM

Concerning to three unsolved cases from Theorem 1, it can be shown that such
quadruples cannot contain some elements with small norm.

Proposition 1. Let ´D 24aC5C .12bC6/
p
�2, a;b 2Z and s 2 f˙1;˙3;˙4;

˙1˙
p
�2;˙2˙

p
�2;˙1˙2

p
�2g. Then there does not exist a D.´/-quadruple

of the form fs; t;u;vg in ZŒ
p
�2�.

Proof. Let ´D 24aC5C .12bC6/
p
�2;a;b 2Z.

(1) Suppose that s D 1 and f1; t;u;vg is D.´/-quadruple in ZŒ
p
�2�. Then there

exists an element u1 2 ZŒ
p
�2� such that t C ´ D u2

1. We will look this equation
modulo 4. Since

u2
1 � 0;1;2;3C2

p
�2 .mod 4/;

´� 1C2
p
�2 .mod 4/;

from t D u2
1�´, we obtain t � t 0 .mod 4/, where

t 0 2 S D f2;2
p
�2;1C2

p
�2;3C2

p
�2g:

Similarly, u� u0 .mod 4/, v � v0 .mod 4/, where u0;v0 2 S .
On the other hand, there exist u2;u3;u4 2 ZŒ

p
�2�, such that tuC´D u2

2, tvC

´ D u2
3, uvC ´ D u2

4. In a same way, we obtain tu � .tu/0 .mod 4/, tv � .tv/0

.mod 4/, uv � .uv/0 .mod 4/, where .tu/0; .ts/0; .us/0 2 S .
This means that there exist three (equal or distinct) elements of the set S , such that

the product of any two of them is some element of S . It is easy to check that this is
not possible.

From Lema 1(ii) for wD�1, it follows that there does not exist a D.´/-quadruple
of the form f�1; t;u;vg.
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(2) If we suppose that s D 4 and f4; t;u;vg is D.´/-quadruple in ZŒ
p
�2�, then

there exists an element w1 2 ZŒ
p
�2� such that 4t C ´ D w2

1 . Since, w2
1 � ´ � t1

.mod 4/, where t1 2 S , from 4t D w2
1 �´ we obtain a contradiction. The nonexis-

tence of a D.´/-quadruple of the form f�4; t;u;vg immediately follows from
Lemma 1(ii).

(3) Let s D 1˙
p
�2 and fs; t;u;vg be a D.´/-quadruple in ZŒ

p
�2�. Then there

exists an element w2 2ZŒ
p
�2� such that stC´D w2

2 . We have

w2
� 0;1 .mod s/;

´� 2 .mod s/:

Then from st D w2
2 �´ we get a contradiction.

Since 1C
p
�2 or 1�

p
�2 is a divisor of any element of the set

T D f˙3;�1˙
p
�2;˙2˙

p
�2;˙1˙2

p
�2g;

we conclude that there does not exist D.´/-quadruple of the form fs; t;u;vg, s 2

T . �

Proposition 2. Let ´D 24aC2C .12bC6/
p
�2, a;b 2Z and s 2 f˙1;˙3;˙4;

˙1˙
p
�2;˙2˙

p
�2;˙1˙2

p
�2g. Then there does not exist a D.´/-quadruple

of the form fs; t;u;vg in ZŒ
p
�2�.

Proof. Let ´D 24aC2C .12bC6/
p
�2;a;b 2Z.

(1) Suppose that s D 1 and f1; t;u;vg is D.´/-quadruple in ZŒ
p
�2�. Then there

exists an element u1 2 ZŒ
p
�2� such that t C ´ D u2

1. We will look this equation
modulo 8. We have

u2
1 � 0;1;4;6;1C4

p
�2;2C4

p
�2;7C2

p
�2;7C6

p
�2 .mod 8/:

From 12bC6� 2;6 .mod 8/, we conclude:
(i) If ´� 2C2

p
�2 .mod 8/, then from t D u2

1�´ we get t � t 0 .mod 8/, where

t 02S1

Df5;2
p
�2;7C2

p
�2;5C4

p
�2;2C6

p
�2;4C6

p
�2;6C6

p
�2;7C6

p
�2g:

Similarly, u�u0 .mod 8/, v� v0 .mod 8/, tu� .tu/0 .mod 8/, tv� .tv/0 .mod 8/,
uv � .uv/0 .mod 8/, where u0;v0; .tu/0; .tv/0; .uv/0 2 S1.

(ii) If ´� 2C6
p
�2 .mod 8/, in the same way we get t 0;u0;v0; .tu/0; .tv/0, .uv/0 2

S2, where

S2Df5;6
p
�2;2C2

p
�2;4C2

p
�2;6C2

p
�2;7C2

p
�2;5C4

p
�2;7C6

p
�2g:

Now, in both cases, it is easy to check that there does not exist three (equal or distinct)
elements of the sets S1 and S2, such that the product of any two of them is some
element of those sets. Using the Lema 1(ii), we conclude that there does not exist a
D.´/-quadruple of the form f�1; t;u;vg.
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(2) If we suppose that s D 4 and f4; t;u;vg is D.´/-quadruple in ZŒ
p
�2�, then

there exists an element w1 2ZŒ
p
�2� such that 4tC´D w2

1 . Since,

w2
1 � 0;1;2;3C2

p
�2 .mod 4/;

´� 2C2
p
�2 .mod 4/;

we conclude that w2
1 � ´ � 1;2

p
�2;2C 2

p
�2;3C 2

p
�2 .mod 4/. Now, from

4t D w2
1 � ´, we get a contradiction. Now, Lema 1(ii) implies that there does not

exist a D.´/-quadruple of the form f�4; t;u;vg.
(3) Let s D 1˙

p
�2 and fs; t;u;vg be a D.´/-quadruple in ZŒ

p
�2�. Since ´� 2

.mod s/, the proof is the same as in case (3) in Proposition 1. �

On the other hand, by following the approach from [7], we were able to prove
that there exist infinitely many D.´/-quadruples for ´ of studied forms, containing
elements˙2 and˙2

p
�2.

We consider the existence of D.´/-quadruples of the form fu;v;uCvC2r;4uC

vC 4rg, u;v;r 2 ZŒ
p
�2�. The method is based on factorization ´ D st; s; t 2

ZŒ
p
�2�. For arbitrary u, let v be an element such that uvC ´ D r2. The set

fu;v;uCvC2rg has the property D.´/. Indeed,

u.uCvC2r/C´D .uC r/2;

v.uCvC2r/C´D .vC r/2:

If we apply this construction to the Diophantine pair fu;uC vC 2rg we obtain the
set fu;uCvC2r;4uCvC4rg also with the property D.´/. Therefore, the set

fu;v;uCvC2r;4uCvC4rg

has the property D.´/, if and only if

v.4uCvC4r/C´D y2; y 2ZŒ
p
�2�:

That is equivalent to
.vC2r �y/.vC2rCy/D 3st:

If we set
vC2r �y D s;

vC2rCy D 3t;
(2.1)

we obtain
2vC4r D sC3t: (2.2)

In the first case we set uD 2. Using 2vC´D r2, from (2.2) it follows that

.rC2/2
D .sC3/.tC1/C1:

Now, we can choose rC2D .tC1/m˙1 or rC2D .sC3/m˙1, for m 2ZŒ
p
�2�.

Let rC2D .sC3/m�1. Then

tC1D .sC3/m2
�2m;
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´D st D s.sC3/m2
� .2mC1/s:

If we choose mD 1�
p
�2 and s D 6pC4C .6qC3/

p
�2;p;q 2Z, we obtain the

set
f2;�18pC12q�15C .�6p�18q�13/

p
�2;

�6pC36qC7C .�18p�6q�21/
p
�2;

6pC60qC33C .�30pC6q�29/
p
�2g;

(2.3)

with the property

D.60p�36p2C312qC288pqC72q2C98

C.�156p�72p2C60q�72pqC144q2�54/
p
�2/:

Let rC2D .tC1/mC1. For mD 2 and t D 24pC5C .12qC6/
p
�2;p;q 2Z,

we get the set

f2;�12p�2C .�6q�3/
p
�2;

84pC22C .42qC21/
p
�2;

180pC50C .90qC45/
p
�2g;

(2.4)

with the property

D.1080pC2304p2�1152q�1152q2�163

C.1152pC540qC2304pqC270/
p
�2/:

Now, let uD 2
p
�2. From (2.1) and 2

p
�2vC´D r2, we obtain

.rC2
p
�2/2

D .sC3
p
�2/.tC

p
�2/�2:

If we set rC2
p
�2D .sC3

p
�2/mC

p
�2, for mD 2�

p
�2 and s D 12pC6C

.12qC1/
p
�2;p;q 2Z, we get the set

f2
p
�2;�6pC96qC35C .�48p�6q�21/

p
�2;

42pC144qC75C .�72pC42q�17/
p
�2;

90pC192qC115C .�96pC90q�9/
p
�2g;

(2.5)

with the property

D.816pC288p2C840qC2304pq�576q2C314

C.�420p�576p2C816qC576pqC1152q2�30/
p
�2/:

Similarly, if rC2
p
�2D .sC3

p
�2/m�

p
�2, for mD 1�

p
�2 and s D 6pC

3C .6qC1/
p
�2;p;q 2Z, we obtain the set

f2
p
�2;�18pC12q�7C .�6p�18q�15/

p
�2;

�6pC36qC15C .�18p�6q�17/
p
�2;

6pC60qC37C .�30pC6q�15/
p
�2g;

(2.6)
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with the property

D.60p�36p2C240qC288pqC72q2C53

C.�120p�72p2C60q�72pqC144q2�30/
p
�2/:

By Lemma 1(ii) we obtain D.´/-quadruples with elements �2;�2
p
�2.

Remark 1. While, for example, the property

D.1080pC2304p2�1152q�1152q2�163

C.1152pC540qC2304pqC270/
p
�2/

of the set (2.4) can be expressed as D.24aC5C .12bC6/
p
�2/, where

aD 45pC96p2�48q�48q2�7;

b D 96pC45qC192pqC22;
(2.7)

for the most of integer pairs .a;b/ there does not exist integers p and q such that
a and b can be represented by (2.7). Similar situation appears while considering
properties of all the other sets. This means that obtained results do not cover any of
the remaining unsolved cases of Theorem 1 (regardless of the fact that for arbitrary
p an q such sets generate infinitely many quadruples with the certain property).

3. D.´/-QUADRUPLES WITH AN ELEMENT OF NORM 11

In this section, according to three unsolved cases

´D 24aC2C .12bC6/
p
�2;´D 24aC5C .12bC6/

p
�2;

´D 48aC44C .24bC12/
p
�2;

of Theorem 1, we consider the existence of a D.´/-quadruple of the form fu;v;uC

vC2r;uC4vC4vg;u;v;r 2 ZŒ
p
�2�. We obtain some new results by considering

a and b modulo 11, using the method in detail described in [10, Section 2]. Anyway,
here we will specify that method again, for the convenience of the reader.

Let fu;vg be an arbitrary pair with the property D.´/, for ´ 2 ZŒ
p
�2�. It means

that
uvC´D r2;

for r 2ZŒ
p
�2�. Similarly as in Section 2, the only condition such that the set

fu;v;uCvC2r;uC4vC4rg

has the property D.´/ is equal to

u.uC4vC4r/C´D y2; (3.1)

i.e.
3´D .uC2r �y/.uC2rCy/:

This means that there is an element e 2ZŒ
p
�2� such that

uC2r �y D e;
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uC2rCy D
3´

e
;

which gives

2uC4r D
3´ Ne

N.e/
C e; (3.2)

where Ne is the conjugate of an element e and N.e/D e � Ne is the norm of e. Suppose
that ´ and e are given. Then, if we look at equation (3.2) modulo 4, we get a condition
for the form of u. We choose a u of small norm satisfying this condition. Now, it is
easy to find the form of r . It remains to satisfy the condition that v D .r2�´/=u 2

ZŒ
p
�2�, which is equivalent to the divisibility condition

N.u/j.r2
�´/ � Nu:

Proposition 3. If ´ is of the form ´D 24aC5C .12bC6/
p
�2, then there exists

at least one Diophantine quadruple with the property D.´/, for any a;b 2Z, except
maybe for a� a0 .mod 11/, b � b0 .mod 11/, where

.a0;b0/ 2 f.0;3/; .0;4/; .0;6/; .0;7/; .1;1/; .1;5/; .1;9/; .2;1/; .2;2/; .2;8/;

.2;9/; .3;5/; .4;3/; .4;5/;.4;7/;.5;0/; .5;2/; .5;8/; .5;10/; .6;0/;

.6;5/; .6;10/; .7;2/; .7;5/; .7;8/; .8;4/; .8;5/; .8;6/; .9;1/; .9;3/;

.9;7/; .9;9/; .10;0/; .10;4/; .10;6/; .10;10/g:

Proof. Let ´ D 24aC 5C .12bC 6/
p
�2, a;b 2 Z, and e D 3. We choose u D

2C3
p
�2 and N.u/D 22. Now, from (3.2), it follows that

r D 6aC1C3b
p
�2:

From the condition uvC´D r2, it follows that

v D
1

11

�
36a2

�12aC108ab�18b2
�18b�22

�
C

1

11

�
�54a2

C18aC36abC27b2
�6b

�p
�2:
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We get the set

f2C3
p
�2;

1

11

�
36a2

�12aC108ab�18b2
�18b�22

�
C

1

11

�
�54a2

C18aC36abC27b2
�6b

�p
�2;

1

11

�
36a2

C120aC108ab�18b2
�18bC22

�
C

1

11

�
�54a2

C18aC36abC27b2
C60bC33

�p
�2;

1

11

�
144a2

C216aC432ab�72b2
�72b�22

�
C

1

11

�
�216a2

C72aC144abC108b2
C108bC33

�p
�2g;

(3.3)

with the property D.´/ in Q.
p
�2/. It remains to check for which pairs .a;b/ mo-

dulo 11, set (3.3) has the elements in the ring ZŒ
p
�2�. Equivalently, we have to find

all pairs .a;b/ which satisfy the condition

N.u/j.r2
�´/ � Nu;

i.e.

72a2
�24aC216ab�36b2

�36b�44� 0 .mod 11/;

�108a2
C36aC72abC54b2

�12b � 0 .mod 11/:

It is easy to check that the above condition is satisfied for all .a;b/D .11kCa0;11lC

b0/;k; l 2Z, where

.a0;b0/ 2 f.0;0/; .0;10/; .1;2/; .1;3/; .2;5/; .2;6/; .3;8/; .3;9/; .4;0/; .4;1/;

.5;3/; .5;4/; .6;6/; .6;7/; .7;9/; .7;10/; .8;1/; .8;2/; .9;4/; .9;5/;

.10;7/; .10;8/g :

Let us determine the pairs .a;b/ for which set (3.3) has at least two equal elements
or some elements equal to zero. If .a;b/ D .11k;11l/, the above cases appear if
.k; l/D .0;0/. But for that pair the set f1�3

p
�2;�3C

p
�2;6C2

p
�2;5C9

p
�2g

has the property D.5C6
p
�2/. If .a;b/D .11k;11lC10/, the above cases appear

if .k; l/ D .0;�1/. But in this case, the set f1C 3
p
�2;�3�

p
�2;6� 2

p
�2;5�

9
p
�2g has the property D.5�6

p
�2/.

Similarly, if u D 2� 3
p
�2, we obtain another set with the property D.´/ in

Q.
p
�2/. The set has the elements in the ring ZŒ

p
�2� for new pairs .a;b/ D

.11kCa0;11lCb0/;k; l 2Z, where

.a0;b0/ 2 f.1;7/; .1;8/; .2;4/; .3;1/; .3;2/; .4;9/; .4;10/; .5;6/; .5;7/; .6;3/;

.6;4/; .7;0/; .7;1/; .8;8/; .8;9/; .9;6/; .10;2/; .10;3/g ;

and contains four distinct elements.
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Let e D 1C
p
�2 and uD 3C

p
�2 with N.u/D 11. In the similar way, we also

get a set with the property D.´/ in Q.
p
�2/. If .a;b/D .11kCa0;11lCb0/;k; l 2Z,

and

.a0;b0/ 2 f.0;9/; .1;6/; .2;3/; .3;0/; .4;8/; .5;5/; .6;2/; .8;7/; .10;1/g;

then the set contains four distinct elements in the ring ZŒ
p
�2�. If we put u D 3�

p
�2, a new set has all distinct elements in the ring ZŒ

p
�2� for new pairs .a;b/D

.11kCa0;11lCb0/;k; l 2Z and

.a0;b0/ 2 f.0;5/; .0;8/; .1;0/; .2;0/; .3;3/; .3;6/; .4;6/; .5;1/; .5;9/; .6;1/;

.7;4/; .7;7/; .8;10/; .9;2/; .9;10/; .10;5/g :

Now, we take e D 1�
p
�2 and u D 3C

p
�2. We obtain another set with the

property D.´/ in Q.
p
�2/. It is easy to check that for all .a;b/D .11kCa0;11lC

b0/;k; l 2Z, where

.a0;b0/ 2 f.0;2/; .1;10/; .2;7/; .2;10/; .3;4/; .3;7/; .4;4/; .6;9/; .7;3/;

.7;6/; .8;0/; .8;3/; .9;0/; .9;8/g ;

the set contains four distinct elements in the ring ZŒ
p
�2�. Finally, if we choose

uD 3�
p
�2, we get the new set and new pairs .a;b/D .11kCa0;11lCb0/,

.a0;b0/ 2 f.0;1/; .1;4/; .3;10/; .4;2/; .6;8/; .10;9/g;

with four distinct elements in the ring ZŒ
p
�2�.

�

Proposition 4. If ´ is of the form ´D 24aC2C .12bC6/
p
�2, then there exists

at least one Diophantine quadruple with the property D.´/, for any a;b 2Z, except
maybe for a� a0 .mod 11/, b � b0 .mod 11/, where

.a0;b0/ 2 f.0;3/; .0;5/; .0;7/; .1;0/; .1;2/; .1;8/; .1;10/; .2;0/; .2;5/; .2;10/;

.3;2/; .3;5/; .3;8/; .4;4/; .4;5/; .4;6/; .5;1/; .5;3/; .5;7/; .5;9/;

.6;0/; .6;4/; .6;6/; .6;10/; .7;3/; .7;4/; .7;6/; .7;7/; .8;1/; .8;5/;

.8;9/; .9;1/; .9;2/; .9;8/; .9;9/; .10;5/g:
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Proof. Let ´D 24aC2C .12bC6/
p
�2, a;b 2Z, and eD 2C

p
�2. We choose

uD 3�
p
�2 and N.u/D 11. We get the set

f3�
p
�2;

1

11

�
126a2

C180ab�63b2
�66b�23

�
C

1

11

�
�90a2

C66aC126abC45b2
�15

�p
�2;

1

11

�
126a2

C132aC180ab�63b2
�32

�
C

1

11

�
�90a2

C126abC45b2
�66bC18

�p
�2;

1

11

�
504a2

C264aC720ab�252b2
�132b�15

�
C

1

11

�
�360a2

C132aC504abC180b2
C132bC17

�p
�2g;

(3.4)

with the property D.´/ in Q.
p
�2/. It is easy to check that the set (3.4) has all

distinct elements in the ring ZŒ
p
�2� for all .a;b/ D .11kC a0;11l C b0/;k; l 2 Z,

where

.a0;b0/ 2 f.0;2/; .0;9/; .1;1/; .1;5/; .2;4/; .2;8/; .3;0/; .3;7/; .4;3/; .4;10/;

.5;2/; .5;6/; .6;5/; .6;9/; .7;1/; .7;8/; .8;0/; .8;4/; .9;3/; .9;7/;

.10;6/; .10;10/g :

Similarly, if uD 3C
p
�2, we obtain another set with the property D.´/ in Q.

p
�2/.

That set has the elements in the ring ZŒ
p
�2� for new pairs .a;b/D .11kCa0;11lC

b0/;k; l 2Z, where

.a0;b0/ 2 f.0;4/; .1;6/; .2;3/; .2;9/; .3;6/; .4;8/; .5;0/; .5;5/; .6;2/;

.6;8/; .7;5/; .7;10/; .8;2/; .8;7/; .9;4/; .9;10/; .10;1/; .10;7/g ;

and contains four distinct elements.
Let e D 2�

p
�2 and u D 3C

p
�2. In a same way, we also get a set with the

property D.´/ in Q.
p
�2/. If .a;b/D .11kCa0;11lCb0/;k; l 2Z, and

.a0;b0/ 2 f.0;1/; .0;8/; .1;9/; .2;2/; .2;6/; .3;3/; .3;10/; .4;0/; .4;7/;

.5;4/; .5;8/; .6;1/; .7;2/; .7;9/; .8;6/; .8;10/; .10;0/; .10;4/g ;

then the set contains four distinct elements in the ring ZŒ
p
�2�. If we put u D 3�

p
�2, a new set has all distinct elements in the ring ZŒ

p
�2� for new pairs .a;b/D

.11kCa0;11lCb0/;k; l 2Z and

.a0;b0/ 2 f.0;6/; .1;4/; .2;1/; .2;7/; .3;4/; .4;2/; .5;10/;

.7;0/; .8;3/; .8;8/; .9;0/; .9;6/; .10;3/; .10;9/g :



276 IVAN SOLDO

Now, we take eD
p
�2 and uD 3�

p
�2. We obtain another set with the property

D.´/ in Q.
p
�2/. It is easy to check that for all .a;b/D .11kCa0;11lCb0/;k; l 2

Z, where

.a0;b0/ 2 f.0;0/; .1;3/; .3;9/; .4;1/; .6;7/; .9;5/; .10;8/g ;

the set contains elements of the ring ZŒ
p
�2�. If .a;b/D .11k;11l/, then there ap-

pear two equal elements for .k; l/D .0;0/. But for that pair the set f1�3
p
�2;2

p
�2;

9C
p
�2;17C9

p
�2g has the property D.2C6

p
�2/. If we choose uD 3C

p
�2,

we get the new set and new pairs .a;b/D .11kCa0;11lCb0/,

.a0;b0/ 2 f.0;10/; .1;7/; .3;1/; .4;9/; .6;3/; .10;2/g ;

with all elements in the ring ZŒ
p
�2�. Moreover, if .a;b/D .11k;11lC10/, then the

set contains two equal elements for .k; l/D .0;�1/. But the set f1C3
p
�2;�2

p
�2;

9�
p
�2;17�9

p
�2g has the property D.2�6

p
�2/.

�

As we mentioned, Proposition 4 immediately implies

Proposition 5. If ´ is of the form ´ D 48aC 44C .24bC 12/
p
�2, then there

exists at least one Diophantine quadruple with the property D.´/, for any a;b 2 Z,
except maybe for a� a0 .mod 11/, b � b0 .mod 11/, where

.a0;b0/ 2 f.0;5/; .1;1/; .1;2/; .1;8/; .1;9/; .2;1/; .2;5/; .2;9/; .3;3/; .3;4/;

.3;6/; .3;7/; .4;0/; .4;4/; .4;6/; .4;10/; .5;1/; .5;3/; .5;7/; .5;9/;

.6;4/; .6;5/; .6;6/; .7;2/; .7;5/; .7;8/; .8;0/; .8;5/; .8;10/; .9;0/;

.9;2/; .9;8/; .9;10/; .10;3/; .10;5/; .10;7/g:

Remark 2. Concerning the possible exceptions from Propositions 3, 4, and 5,
for certain numbers ´ (e.g. ´ D 5C 42

p
�2, 5C 78

p
�2, 29C 114

p
�2, 197C

78
p
�2 of the exceptional form in Proposition 3) we were not able to find any D.´/-

quadruple.
On the other hand, for all exceptional pairs .a0;b0/ from Proposition 3, we were

able to find at least one ´ of the form ´D 24aC5C.12bC6/
p
�2/, a� a0 .mod 11/,

b � b0 .mod 11/ for which there exist a D.´/-quadruple (in some cases we can find
infinitely many such ´’s by using formulas from Remark 1). Some of the observed
quadruples contain an element of norm 19. A systematic study of such quadruples
would involve additional congruence conditions modulo 19 on a and b, so the results
become too complicated to state explicitly and do not lead to the complete solution
of the problem. Similar results and problems appear when considering exceptional
cases from Propositions 4, and 5.
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[12] Z. Franušić, “Diophantine quadruples in ZŒ

p
4kC3�,” Ramanujan J., vol. 17, no. 1, pp. 77–88,

2008.
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