GLOBAL OPTIMAL SOLUTIONS FOR NONCYCLIC MAPPINGS IN G-METRIC SPACES

SAEED SHABANI AND ABDOLRAHMAN RAZANI

Received 5 June, 2012

2000 Mathematics Subject Classification: 41A65; 46B20; 47H10

Keywords: G–metric space, noncyclic mapping, minimization problem

1. INTRODUCTION

In 2011, Abkar et al. [2] studied the existence of solutions of some specific minimization problems for noncyclic mappings in metric spaces. In 2006, Mustafa et al. [11] introduced the G–metric spaces as a generalization of the notion of metric spaces. Fixed point results and other results in G–metric spaces have been proved by a number of authors, see, e.g., [1,3–5,12,14,15]. In this paper we investigate some minimization problems for noncyclic mappings in G–metric spaces. This work extends results of Abkar et al. [2] to the case of G–metric spaces.

2. PRELIMINARIES

Throughout this paper, \(\mathbb{N} \) is the set of all natural numbers and \(\mathbb{R} \) is the set of all real numbers. Generalizations of the notion of a metric space have been proposed by Gabler [8, 9] and by Dhage [6, 7]. Mustafa et al. [11] introduced a more appropriate notion of a generalized metric space as following.

Definition 1. Let \(X \) be a nonempty set, and \(G : X \times X \times X \rightarrow \mathbb{R}^+ \) be a function satisfying the following conditions:

1. \(G(x, y, z) = 0 \) if \(x = y = z \),
2. \(0 < G(x, x, y) \) for all \(x, y \in X \) with \(x \neq y \),

The second author was supported in part by Imam Khomeini International University, Grant No.751168-91.
(3) \(G(x, x, y) \leq G(x, y, z) \) for all \(x, y, z \in X \) with \(y \neq z \),
(4) \(G(x, y, z) = G(x, z, y) = G(y, z, x) = \cdots \),
(5) \(G(x, y, z) \leq G(x, w, w) + G(w, y, z) \) for all \(x, y, z, w \in X \).

The function \(G \) is called a generalized metric, or, a \(G \)-metric on \(X \), and the pair \((X, G)\) is called a \(G \)-metric space.

Example 1. ([11, Example 6.3]) Let \((X, d)\) be a metric space and define the functions \(G_s \) and \(G_m \) with

\[
G_s(x, y, z) = d(x, y) + d(y, z) + d(x, z), \quad \forall x, y, z \in X
\]
\[
G_m(x, y, z) = \max\{d(x, y), d(y, z), d(x, z)\}, \quad \forall x, y, z \in X
\]

Then \((X, G_s)\) and \((X, G_m)\) are \(G \)-metric space.

Now, we recall some of the basic concepts for \(G \)-metric spaces from ([11]).

Definition 2. Let \((X, G)\) be a \(G \)-metric space, and \(\{x_n\} \) be a sequence of points of \(X \), we say that \(\{x_n\} \) is \(G \)-convergent to \(x \) and write \(x_n \xrightarrow{G} x \) if \(\lim_{n,m \to \infty} G(x, x_n, x_m) = 0 \), that is, for any \(\epsilon > 0 \), there exists \(n_0 \in \mathbb{N} \) such that \(G(x, x_n, x_m) < \epsilon \), for all \(n, m \geq n_0 \).

Proposition 1. Let \((X, G)\) be a \(G \)-metric space, then the following are equivalent.

1. \(\{x_n\} \) is \(G \)-convergent to \(x \).
2. \(\lim_{n \to \infty} G(x, x_n, x_n) = 0 \).
3. \(\lim_{n \to \infty} G(x, x, x_n) = 0 \).

Definition 3. Let \((X, G)\) be a \(G \)-metric space, a \(\{x_n\} \) is called \(G \)-Cauchy for any \(\epsilon > 0 \), there exists \(n_0 \in \mathbb{N} \) such that \(G(x_n, x_m, x_i) < \epsilon \), for all \(n, m, i \geq n_0 \) that is \(\lim_{n,m,i \to \infty} G(x_n, x_m, x_i) = 0 \).

Proposition 2. Let \((X, G)\) be a \(G \)-metric space, then the following are equivalent.

1. \(\{x_n\} \) is \(G \)-Cauchy.
2. For any \(\epsilon > 0 \), there exists \(n_0 \in \mathbb{N} \) such that \(G(x_n, x_m, x_m) < \epsilon \), for all \(n, m \geq n_0 \).

Definition 4. Let \((X_1, G_1)\) and \((X_2, G_2)\) be \(G \)-metric spaces. A function \(f : (X_1, G_1) \to (X_2, G_2)\) is \(G \)-continuous at a point \(a \in X \) if for any \(\epsilon > 0 \), there exists \(\delta > 0 \) such that \(x, y \in X_1, \ G_1(a, x, y) < \delta \) implies \(G_2(f(a), f(x), f(y)) < \epsilon \). A function \(f \) is \(G \)-continuous on \(X \) if and only if it is \(G \)-continuous at all \(a \in X \).

Proposition 3. Let \((X_1, G_1)\) and \((X_2, G_2)\) be \(G \)-metric spaces. A function \(f : (X_1, G_1) \to (X_2, G_2)\) is \(G \)-continuous at a point \(x \in X \) if and only if whenever \(\{x_n\} \) is \(G \)-convergent to \(x \), \(\{f(x_n)\} \) is \(G \)-convergent to \(f(x) \).

Definition 5. A \(G \)-metric space \((X, G)\) is said to be \(G \)-complete if every \(G \)-Cauchy sequence in \((X, G)\) is \(G \)-convergent in \((X, G)\).
Definition 6. Let \((X, G)\) be a \(G\)-metric space. A \(G\)-Ball with center \(x_0\) and radius \(r\) is
\[
B_G(x_0, r) = \{ x \in X : G(x_0, y, y) < r \}.
\]

Definition 7. Let \((X, G)\) be a \(G\)-metric space and \(\epsilon > 0\) be given, then a set \(A \subset X\) is called \(\epsilon\)-net of \((X, G)\) if given any \(x\) there is at least one point \(a \in A\) such that \(x \in B_G(a, \epsilon)\). If the \(A\) is finite then \(A\) is called a finite \(\epsilon\)-net of \((X, G)\). Note that if \(A\) is an \(\epsilon\)-net then \(X = \bigcup_{a \in A} B_G(a, \epsilon)\).

Definition 8. A \(G\)-metric space \((X, G)\) is called \(G\)-totally bounded if for every \(\epsilon > 0\) there exists a finite \(\epsilon\)-net.

Definition 9. A \(G\)-metric space \((X, G)\) is called \(G\)-compact if it is \(G\)-totally bounded.

Proposition 4. Let \((X, G)\) be a \(G\)-metric space, then the following are equivalent.
1. \((X, G)\) is a \(G\)-compact space.
2. \((X, G)\) is \(G\)-sequentially compact, that is, if the sequence \(\{x_n\} \subset X\) is such that \(\sup \{G(x_n, x_m, x_l) : n, m, l \in \mathbb{N}\} < \infty\), then \(\{x_n\}\) has a \(G\)-convergent subsequence.

Theorem 1 ([12], Theorem 2.1). Let \((X, G)\) be a \(G\)-metric space and \(T : X \to X\) be a mapping which satisfies the following condition, for all \(x, y, z \in X\),
\[
G(T(x), T(y), T(z)) \leq k \max\{G(x, y, z), G(x, T(x), T(x)), G(y, T(y), T(y)),
G(z, T(z), T(z)), G(x, T(y), T(y)),
G(y, T(z), T(z)), G(z, T(x), T(x))\},
\]
where \(k \in [0, 1/2]\). Then \(T\) has a unique fixed point (say \(u\)) and \(T\) is \(G\)-continuous at \(u\).

Definition 10. Let \(A, B, C\) be subsets of a \(G\)-metric space \((X, G)\). A mapping \(T : A \cup B \cup C \to A \cup B \cup C\) is called relatively \(G\)-nonexpansive if
\[
G(T(x), T(y), T(z)) \leq G(x, y, z), \quad \forall (x, y, z) \in A \times B \times C.
\]

Definition 11. Let \((X, G)\) be a \(G\)-metric space and \(A, B, C \subset X\), then
\[
dist(A, B, C) = \inf\{G(a, b, c) : a \in A, b \in B, c \in C\}.
\]

Example 2. Let \(R\) be equipped with the usual metric, and \(A = [-1, 0]\) and \(B = N_o\) and \(C = N_e\) where \(N_o\) and \(N_e\) are the set of odd natural numbers and even numbers, respectively. Let \(G_m(x, y, z) = \max\{|x - y|, |x - z|, |y - z|\}\), then \(dist(A, B, C) = 2\).

Definition 12. Let \((X, G)\) be a \(G\)-metric space and \(A, B, C \subset X\), \(T : A \cup B \cup C \to A \cup B \cup C\) is said noncyclic mapping, if
\[
T(A) \subset A, \quad T(B) \subset B, \quad T(C) \subset C.
\]
We consider the following minimization problem: Find
\[
\min_{a \in A} \{G(a, T(a), T(a))\}, \quad \min_{b \in B} \{G(b, T(b), T(b))\}, \\
\min_{b \in B} \{G(c, T(c), T(c))\}, \quad \min_{(a, b, c) \in A \times B \times C} \{G(a, b, c)\}
\] (2.2)
We say that \((x^*, y^*, z^*) \in A \times B \times C\) is a solution of above problem, if
\[
Tx^* = x^*, \quad Ty^* = y^*, \quad Tz^* = z^*.
\]
and
\[
G(x^*, y^*, z^*) = \text{dist}(A, B, C).
\]

Definition 13. Let \((X, G)\) be a \(G\)-metric space and \(A, B, C \subseteq X\), we set
\[
A_0 = \{a \in A : G(a, b, c) = \text{dist}(A, B, C), \text{ for some } b \in B, c \in C\}
\]
\[
B_0 = \{b \in B : G(a, b, c) = \text{dist}(A, B, C), \text{ for some } a \in A, c \in C\}
\]
\[
C_0 = \{c \in C : G(a, b, c) = \text{dist}(A, B, C), \text{ for some } a \in A, b \in B\}
\]

Definition 14. Let \((X, G)\) be a \(G\)-metric space and \(A, B, C\) be nonempty subsets of \(X\), with \(A_0 \neq \emptyset\). We say that \(A, B, C\) have \(P\)-property iff
\[
\left\{ \begin{array}{l}
G(x_1, y_1, z_1) = \text{dist}(A, B, C) \\
G(x_2, y_2, z_2) = \text{dist}(A, B, C) \\
G(x_3, y_3, z_3) = \text{dist}(A, B, C)
\end{array} \right.
\]
then
\[
G(x_1, x_2, x_3) = G(y_1, y_2, y_3) = G(z_1, z_2, z_3),
\]
where \(x_1, x_2, x_3 \in A_0\) and \(y_1, y_2, y_3 \in B_0\) and \(z_1, z_2, z_3 \in C_0\).

The above definition were found in the case of metric space in ([13]).

Example 3. Let \(A, B, C\) be nonempty subsets of a \(G\)-metric space \((X, G)\) such that \(A_0 \neq \emptyset\) and \(\text{dist}(A, B, C) = 0\), then \(A, B, C\) have \(P\)-property.

Definition 15. Let \((X, G)\) be a \(G\)-metric space and \(T : X \to X\) be a mapping. \(T\) is called expansive if for all \(x, y, z \in X\),
\[
G(T(x), T(y), T(z)) \geq G(x, y, z).
\]

Definition 16. Let \((X, G)\) be a \(G\)-metric space and \(T : X \to X\) be a mapping. \(T\) is said to be asymptotically regular iff \(\lim_{n \to \infty} G(T^n x, T^{n+1} x, T^{n+1} x) = 0\), for all \(x \in X\).
3. MAIN RESULTS

We start this section with the following theorem.

Theorem 2. Let A, B, C be nonempty and closed subsets of a $G-$complete space (X, G) such that $A_0 \neq \emptyset$ and A, B, C satisfies the $P-$property. Let $T : A \cup B \cup C \rightarrow A \cup B \cup C$ be a noncyclic mapping. Suppose that

1. $T|_A$ be a mapping which satisfies in (2.1).
2. T is relatively $G-$nonexpansive.

Then the minimization problem (2.2) has a solution.

Proof. If $x \in A_0$, then there exist $y \in B$ and $z \in C$ such that $G(x, y, z) = dist(A, B, C)$. Since T is relatively $G-$nonexpansive then

$$G(T(x), T(y), T(z)) \leq G(x, y, z) = dist(A, B, C)$$

Hence $Tx \in A_0$.

Let $x_0 \in A_0$ by Theorem 1 if $x_n = T^n(x_0)$ then $x_n \xrightarrow{G} x^*$ where x^* is unique fixed point of T in A. Since $x_0 \in A_0$ there exist $y_0 \in B$ and $z_0 \in C$ such that $G(x_0, y_0, z_0) = dist(A, B, C)$. Since $x_1 = Tx_0 \in A_0$, there exist $y_1 \in B$ and $z_1 \in C$ such that $G(x_1, y_1, z_1) = dist(A, B, C)$. Using this process, we have a sequence $\{y_n\}$ in B and $\{z_n\}$ in C such that

$$G(x_n, y_n, z_n) = dist(A, B, C) \quad \forall n \in N \cup \{0\}.$$

Since A, B, C have the $P-$property, we have for all $m, n, l \in N \cup \{0\}$

$$G(x_n, x_m, x_l) = G(y_n, y_m, y_l) = G(z_n, z_m, z_l).$$

This implies that $\{y_n\}$ and $\{z_n\}$ are $G-$Cauchy sequences, and there exist $y^* \in B$ and $z^* \in C$ such that $y_n \xrightarrow{G} y^*$ and $z_n \xrightarrow{G} z^*$. Thus

$$G(x^*, y^*, z^*) = \lim_{n \to \infty} G(x_n, y_n, z_n) = dist(A, B, C)$$

Since

$$G(T(x^*), T(y^*), T(z^*)) \leq G(x^*, y^*, z^*) = dist(A, B, C)$$

Therefore by the $P-$property, we have

$$G(x^*, T(x^*), T(x^*)) = G(y^*, T(y^*), T(y^*)) = G(z^*, T(z^*), T(z^*))$$

Thus $(x^*, y^*, z^*) \in A \cup B \cup C$ is a solution of the minimization problem (2.2). □

Example 4. Let R be equipped with the usual metric, and $G_m(x, y, z) = \max\{|x-y|, |x-z|, |y-z|\}$. Let $A = [-2, 0]$ and $B = \{1\}$ and $C = [2, 3]$. It is obvious that
\[A_0 = \{0\}, B_0 = \{1\}, C_0 = \{2\}. \]
Define \(T : A \cup B \cup C \rightarrow A \cup B \cup C \) with
\[
T(x) = \begin{cases}
\frac{x}{4} & x \in A \\
1 & x \in B \\
\frac{x + 2}{2} & x \in C
\end{cases}
\]
It is easy to check that all the conditions of Theorem 2 hold. Therefore, the minimization problem (2.2) has a solution \((x^*, y^*, z^*) = (0, 1, 2)\).

Theorem 3. Let \(A, B, C \) be nonempty subsets of a \(G \)-complete space \((X, G)\) such that \(A \) is \(G \)-compact and \(B \) and \(C \) are \(G \)-closed. Let \(A_0 \neq \emptyset \) and \(A, B, C \) satisfy the \(P \)-property. Let \(T : A \cup B \cup C \rightarrow A \cup B \cup C \) be a noncyclic mapping. Then the minimization problem (2.2) has a solution provided that the following conditions are satisfied:

1. \(T \) is relatively \(G \)-nonexpansive.
2. \(T|_A \) is a \(G \)-expansive.
3. \(T|_B \) and \(T|_C \) be mappings which satisfy in (2.1).

Proof. If \(x \in A_0 \), and \(x_{n+1} = Tx_n, (n \in N \cup \{0\}) \). By argument similar in the proof of Theorem 2 we obtain that \(T(A_0) \subset A_0 \) and there exist \(y_n \) in \(B \) and \(z_n \) in \(C \) such that
\[
G(x_n, y_n, z_n) = dist(A, B, C) \quad \forall n \in N \cup \{0\}.
\]
Since \(A \) is \(G \)-compact, by Proposition 4 there exist a subsequence \(\{x_{n_k}\} \) of the \(\{x_n\} \) such that \(x_{n_k} \xrightarrow{G} x^* \in A \). Since \(A, B, C \) satisfy the \(P \)-property,
\[
G(x_{n_k}, x_{n_k}, x_{n_k}) = G(y_{n_k}, y_{n_k}, y_{n_k}) = G(z_{n_k}, z_{n_k}, z_{n_k}), \quad (k, s, l \in N).
\]
This implies that \(\{y_n\} \) and \(\{z_n\} \) are \(G \)-Cauchy sequences and there exist \(y^* \in B \) and \(z^* \in C \) such that \(y_{n_k} \xrightarrow{G} y^* \) and \(z_{n_k} \xrightarrow{G} z^* \). Thus
\[
G(x^*, y^*, z^*) = \lim_{n \rightarrow \infty} G(x_{n_k}, y_{n_k}, z_{n_k}) = dist(A, B, C)
\]
Now we prove that \(x^*, y^*, z^* \in F(T) \). Since \(T \) is relatively \(G \)-nonexpansive,
\[
G(T^2(x^*), T^2(y^*), T^2(z^*)) = G(T(x^*), T(y^*), T(z^*)) = dist(A, B, C).
\]
Since \(A, B, C \) satisfy the \(P \)-property, we have
\[
G(x^*, T(x^*), T(x^*)) = G(y^*, T(y^*), T(y^*)) = G(z^*, T(z^*), T(z^*))
\]
and
\[
G(T(x^*), T^2(x^*), T^2(x^*)) = G(T(y^*), T^2(y^*), T^2(y^*)) = G(T(z^*), T^2(z^*), T^2(z^*)).
\]
Now let \(Ty^* \neq T^2y^* \), since \(T|_B \) satisfies in (2.1),
\[
G(T(y^*), T(T(y^*)), T(T(y^*))) \leq kG(y^*, T(y^*), T(y^*))
\]
Thus since \(T|_A \) is a \(G \)-expansive, we have
\[
G(T(y^*), T^2(y^*), T^2(y^*)) = G(T(y^*), T(T(y^*)), T(T(y^*))) \\
\leq kG(y^*, T(y^*), T(y^*)) \\
= kG(x^*, T(x^*), T(x^*)) \\
\leq kG(T(x^*), T^2(x^*), T^2(x^*)) \\
= kG(T(y^*), T^2(y^*), T^2(y^*)�,
\]
which is a contraction. Therefore \(Ty^* = T^2y^* \). A similar argument implies that \(Tz^* = T^2z^* \). Thus \(x^* = T(x^*) \) and \(y^* = T(y^*) \) and \(z^* = T(z^*) \).

Example 5. Let \(X = \mathbb{R}^3 \) and
\[
G((x_1, y_1, z_1), (x_2, y_2, z_2), (x_3, y_3, z_3)) = \max\{G_m(x_1, x_2, x_3), \\
G_m(y_1, y_2, y_3), G_m(z_1, z_2, z_3)\},
\]
where \(G_m(x, y, z) = \max\{|x - y|, |x - z|, |y - z|\} \). Let \(A = \{(x, 0, 0) : -1 \leq x \leq 0\} \) and \(B = \{(0, y, 0) : 0 \leq y \leq 1\} \) and \(C = \{(0, 0, z) : -1 \leq z \leq 1\} \). It is obvious that \(A_0 = B_0 = C_0 = \{(0, 0, 0)\} \) and \(dist(A, B, C) = 0 \), therefore \(A, B, C \) have the \(P \)-property. Define \(T : A \cup B \cup C \to A \cup B \cup C \) with
\[
T(x, 0, 0) = (-x, 0, 0), \ T(0, y, 0) = (0, \frac{y}{4}, 0) \ and \ T(0, 0, z) = (0, 0, \frac{z}{4}).
\]
It is easy to check that all the conditions of Theorem 3 hold. Therefore the minimization problem (2.2) has a solution \(x^* = y^* = z^* = (0, 0, 0) \).

Theorem 4. Let \(A, B, C \) be nonempty subsets of a \(G \)-complete space \((X, G) \) such that \(A \) is \(G \)-compact and \(B \) and \(C \) are \(G \)-closed. Let \(A_0 \neq \emptyset \) and \(A, B, C \) satisfy the \(P \)-property. Let \(T : A \cup B \cup C \to A \cup B \cup C \) be a noncyclic mapping. Then the minimization problem (2.2) has a solution provided that the following conditions are satisfied:

1. \(T \) is relatively \(G \)-nonexpansive.
2. \(T|_A \) is \(G \)-continuous and asymptotically regular.

Proof. Let \(\{x_n\}, \{y_n\}, \{z_n\}, \{x_{n_k}\}, \{y_{n_k}\}, \{z_{n_k}\}, x^*, y^* \) and \(z^* \) be as in Theorem 3. We have \(x_n \not\rightarrow x^* \in A, y_n \not\rightarrow y^* \in B, z_n \not\rightarrow z^* \in C \) and \(G(x^*, y^*, z^*) = dist(A, B, C) \). From Proposition 3, since \(T|_A \) is \(G \)-continuous, we have
\[
x_{n_k+1} = T(x_{n_k}) \not\rightarrow T(x^*).
\]
Also by the asymptotic regularity of \(T|_A \), we obtain
\[
G(x^*, T(x^*), T(x^*)) = \lim_{k \to \infty} G(x_{n_k}, T(x_{n_k}), T(x_{n_k})) \\
= \lim_{k \to \infty} G(T^{n_k}(x_0), T^{n_k+1}(x_0), T^{n_k+1}(x_0)) \\
= 0.
\]
This implies that \(T(x^*) = x^* \). Since \(T \) is relatively \(G \)--nonexpansive, we have

\[
G(T(x^*), T(y^*), T(z^*)) \leq dist(A, B, C)
\]

Therefore by the \(P \)--property, we have

\[
G(x^*, T(x^*), T(x^*)) = G(y^*, T(y^*), T(y^*)) = G(z^*, T(z^*), T(z^*))
\]

Hence \(T(y^*) = y^* \) and \(T(z^*) = z^* \). □

QUESTION: In 2011, Karapinar [10] obtain some common fixed point results in partial metric spaces. Can one study the minimization problem (2.2) for two mappings in partial metric spaces?

REFERENCES

Authors' addresses

Saeed Shahani
Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, Iran.
E-mail address: s.shabani@srbiau.ac.ir, shabani60@gmail.com

Abdolrahman Razani
Department of Mathematics, Faculty of Science, Imam Khomeini International University, P.O.Box 34149-16818, Qazvin, Iran.
E-mail address: razani@ikiu.ac.ir