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Abstract. Let X0;X1; : : : ;Xq be left invariant real vector fields on the homogeneous group G,
satisfying Hörmander’s condition on RN . Assume that X1; : : : ;Xq are homogeneous of degree
one and X0 is homogeneous of degree two. In this paper we consider the following hypoelliptic
operator with drift

LD

qX
i;jD1

aijXiXj Ca0X0;

where .aij / is a q�q positive constant matrix and a0 ¤ 0, and obtain Global Hölder estimates
for L on G by establishing several estimates of singular integrals.
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1. INTRODUCTION

Let G be a homogeneous group and X0;X1; :::;Xq be left invariant real vector
fields on RN .q < N/. Assume that X1; :::;Xq are homogeneous of degree one and
X0 is homogeneous of degree two, satisfying Hörmander’s condition

rankL.X0;X1; :::;Xq/.x/DN;x 2 RN ;

where L.X0;X1; :::;Xq/ denotes the Lie algebra generated by X0;X1; :::;Xq: In this
paper we are interested in the following hypoelliptic operator with drift

LD

qX
i;jD1

aijXiXj Ca0X0; (1.1)
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where a0 ¤ 0;.aij /q
i;jD1

is a constant matrix satisfying

��1j�j2 �

qX
i;jD1

aij �i�j � �j�j
2; � 2Rq; (1.2)

for a constant � > 0:
Many authors paid attention to the hypoelliptic operator. The outstanding result

in [8] points out that Hörmander’s condition implies (actually, is equivalent to) the
hypoellipticity of L in (1.1). The existence of fundamental solutions for homogen-
eous hypoelliptic operators on nilpotent Lie groups was investigated by Folland in
[6]. Bramanti and Brandolini in [2] proved the uniqueness of homogeneous funda-
mental solutions for L. Let us note that L includes the classic Laplace operator and
parabolic operator on Euclidean spaces. Another special case of L is

L1 D

qX
i;jD1

aij @
2
xixj
C

nX
i;jD1

bijxi@xj �@t ;

where .x; t/2RnC1,X0D
Pn
i;jD1 bijxi@xj �@t andXi D @xi ,i D 1;2; : : : ;q ,.aij /q

i;jD1

is a positive matrix in Rq , .bij /is a constant matrix with a suitable upper triangular
structure. Note that L1 belongs to a class of Kolmogorov-Fokker-Planck ultrapara-
bolic operators. The operator L1 appears in many research fields, for instance, in
stochastic processes and kinetic models (see [3–5]), and in mathematical finance the-
ory (see [1, 12]). After the previous study on L1 in [9, 10], the authors of [7, 11, 13]
established an invariant Harnack inequality for the non-negative solution of L1uD 0
by applying the mean value formula. With the theory of singular integral, Polidoro
and Ragusa in [14] concluded some Morrey-type imbedding results and gave a local
Hölder continuity of the solution.

The aim of the paper is to prove global Hölder estimates on the homogeneous
group G for L by applying the properties of the fundamental solution for L and
several estimates of singular integrals on the homogeneous space . The method here
is inspired by that used in [14]. Our results reflect the relations between the Morrey
norms of Lu and Hölder exponents for u and Xiu, i D 1;2; : : : ;q . In order to state
our main results, we first introduce the definition of Morrey space.

Definition 1. For p 2 .1;1/,� 2 Œ0;Q/, the Morrey space on homogeneous group
G is defined by

Lp;�.G/D
˚
g 2 L

p

loc
.G/ W kgkLp;�.G/ <1

	
;

where

kgkLp;�.G/ D

 
sup

r>0;x2G

Z
Br .x/

1

r�
jg.y/jpdy

!1=p
;

Br.x/ and Q will be given in (2.1) and (2.2), respectively. Here Lp;0.G/DLp.G/.
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The main results of this paper are as follows. For the case �¤ 0, we have

Theorem 1. (1) If 1 < p < Q
2
; Q� 2p < � < Q� p, then there exists a

positive constant c D c.p;�/ such that for every u 2 C10 .G/ and any x;´ 2
G, x ¤ ´,

ju.x/�u.´/j´�1 ıx� � c kLukLp;�.G/ ; (1.3)

where � D 2pC��Q
p

I

(2) If 1 < p < Q
2
; Q�p < � < Q; then there exists a positive constant c D

c.p;�/ such that for every u 2 C10 .G/ and any x;´ 2G, x ¤ ´,

jXiu.x/�Xiu.´/j´�1 ıx� � c kLukLp;�.G/ ; (1.4)

where i D 1; � � � ;q and � D pC��Q
p

.

For �D 0, we have the following results, which restores the known result previ-
ously proved in [1].

Remark 1. (1) Assume Q
2
< p < Q. Then there exists a positive constant

c D c.p/ such that for every u 2 C10 .G/ and any x;´ 2G, x ¤ ´,

ju.x/�u.´/j´�1 ıx� � c kLukLp.G/ ; (1.5)

where � D 2p�Q
p
I

(2) Assume p >Q: Then there exists a positive constant c D c.p/ such that for
every u 2 C10 .G/ and any x;´ 2G, x ¤ ´,

jXiu.x/�Xiu.´/j´�1 ıx� � c kLukLp.G/ ; (1.6)

where i D 1; � � � ;q and � D p�Q
p

.

The plan of the paper is as follows: in Section 2 we introduce some knowledge
of homogeneous group and related lemmas. Estimates of two integral operators are
proved. Section 3 is devoted to the proof of the main result.

2. PRELIMINARY

Given a pair of mappings:

Œ.x;y/ 7! x ıy� W RN �RN 7! RN I Œx 7! x�1� W RN 7! RN ;
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which are smooth, it follows that RN with these mappings forms a group, and the
identity is the origin. If there exist 0 < !1 � !2 � : : :� !N , such that the dilations

D.�/ W .x1; : : : ;xN / 7! .�!1x1; : : : ;�
!N xN /;� > 0;

are group automorphisms, then the space RN with this structure is called a homogen-
eous group and denoted by G.

Definition 2. We define a homogeneous norm k � k in G by the following way: if
for any x 2G;x ¤ 0, it holds

kxk D � , jD.1=�/xj D 1;

where j � j denotes the Euclidean norm ; also, let k0k D 0.

It is not difficult to derive that the homogeneous norm satisfies
(1) kD.�/xk D �kxk for every x 2G;� > 0;
(2) there exists c.G/� 1 , such that for every x;y 2G;x�1� c kxkand kx ıyk � c.kxkCkyk/:

In view of the above properties, it is natural to define the quasidistance d :

d.x;y/D
y�1 ıx :

The ball with respect to d is denoted by

B.x;r/� Br.x/Dfy 2G W d.x;y/ < rg: (2.1)

Note B.0;r/DD.r/B.0;1/, therefore

jB.x;r/j D rQ jB.0;1/j ;x 2G;r > 0;

where
QD !1C : : :C!N : (2.2)

We will call that Q is the homogeneous dimension of G. In general,Q � 3.

Definition 3. A differential operators Y on G is said homogeneous of degree
ˇ.ˇ > 0/, if for every test function ',

Y .' .D .�/x//D �ˇ .Y'/.D .�/x/ ;� > 0;x 2GI

A function f is called homogeneous of degree ˛, if

f ..D.�/x//D �˛f .x/ ;� > 0;x 2G:

Remark 2. Clearly, if Y is a differential operators of homogeneous of degree ˇ
and f is a function of homogeneous of degree ˛, then Yf is homogeneous of degree
˛�ˇ.

Lemma 1. ([2]) The operator L possesses a unique fundamental solution � .�/,
such that for every test function u 2 C10 .G/ and every x 2G, it holds

(1) � .�/ 2 C1 .Gnf0g/;
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(2) � .�/ is homogeneous of degree 2�Q;
(3) u.x/D .Lu�� /.x/D

R
RN � .y

�1 ıx/Lu.y/dy;
(4) Xiu.x/D

R
RN Xi� .y

�1 ıx/Lu.y/dy.

Remark 3. If we set �iDXi� ,i D 1; � � � ;q, then it is obvious from Remark 2 that
�i .�/ is homogeneous of degree 1�Q.

Proposition 1. ([2]) Let f 2 C 1.RN n0/ is a homogeneous function of degree
� < 1. Then there exist two constants c D c.G;f / > 0 and M DM.G/ > 1, such
that for any x;y satisfying kxk �M kyk ;

jf .x ıy/�f .x/jC jf .y ıx/�f .x/j � c kykkxk��1 ;

where c D c.G;f / sup
´2˙N

jrf .´/j, ˙N is the unit sphere of RN .

From Proposition 1, it follows

Lemma 2. If K 2 C 1 .Gnf0g/ is a homogeneous function of degree ˛ < 1 with
respect to the group .D.�//�>0, then there exist two constants c > 0 and M > 1,
such that if kxk �M

x�1 ı´, then

jK.´/�K.x/j �
c
x�1 ı´
kxk1�˛

:

By Lemma 1 and Lemma 2, we have immediately

Lemma 3. For every x;y;´ 2G, it holds
(1) there exists a constant c > 0, such that

� .y�1 ıx/�
cy�1 ıxQ�2 I

�i .y
�1
ıx/�

cy�1 ıxQ�1 :
(2) there exist two constants c > 0 andM >1, such that if

y�1 ıx�M x�1 ı´,
then ˇ̌

� .y�1 ıx/�� .y�1 ı´/
ˇ̌
�

c
x�1 ı´y�1 ıxQ�1 Iˇ̌

�i .y
�1
ıx/��i .y

�1
ı´/

ˇ̌
�
c
x�1 ı´y�1 ıxQ :

Now let us introduce two integral operators. For p 2 .1;1/ and � 2 Œ0;Q/, fixed
´ 2G and � > 0, we define for every g 2 Lp;�.G/ that

T˛g.x/D

Z
ky�1ıxk��k´�1ıxk

g.y/y�1 ıxQ�˛ dy;˛ 2 Œ0;Q/I
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T ˇg.x/D

Z
ky�1ıxk<�k´�1ıxk

g.y/y�1 ıxQ�ˇ dy;ˇ 2 .0;Q/:
Lemma 4. If �Cp˛ <Q, then there exists c D c.p;�;˛;�/ > 0 , such that

jT˛g.x/j � c kgkLp;�.G
´�1 ıxp˛C��Qp I (2.3)

if �Cpˇ >Q, then there exists c D c.p;�;ˇ;�/ > 0 , such thatˇ̌̌
T ˇg.x/

ˇ̌̌
� c kgkLp;�.G/

´�1 ıxpˇC��Qp : (2.4)

Proof. We follow the idea of Polidoro and Ragusa in [14]. If �Cp˛ <Q, then it
obtains by decomposing the domain of integration and applying the Hölder inequality
that

jT˛g.x/j �

1X
kD1

Z
2k�1�k´�1ıxk�ky�1ıxk<2k�k´�1ıxk

g.y/y�1 ıxQ�˛ dy
�

1X
kD1

 
1

2k�1�
´�1 ıx

!Q�˛ Z
B
2k�k´�1ıxk

.x/

jg.y/jdy

�

1X
kD1

 
1

2k�1�
´�1 ıx

!Q�˛0@Z
B
2k�k´�1ıxk

.x/

jg.y/jpdy

1A 1
p

ˇ̌̌
B2k�k´�1ıxk.x/

ˇ̌̌p�1
p

� c

1X
kD1

 
1

2k�1�
´�1 ıx

!Q�˛ �
2k�

´�1 ıx� �p kgkLp;�.G/
�
2k�

´�1 ıx� .p�1/Qp

� c kgkLp;�.G/
´�1 ıxp˛C��Qp

1X
kD1

�
2
p˛C��Q

p

�k
:

So (2.3) is proved, since the above series is convergent.
Similarly, if �Cpˇ >Q, thenˇ̌̌
T ˇg.x/

ˇ̌̌
�

1X
kD1

Z
2�k�k´�1ıxk�ky�1ıxk<21�k�k´�1ıxk

g.y/y�1 ıxQ�ˇ dy
�

1X
kD1

 
1

2�k�
´�1 ıx

!Q�ˇ Z
B
21�k�k´�1ıxk.x/

jg.y/jdy
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�

1X
kD1

 
1

2�k�
´�1 ıx

!Q�ˇ 0@Z
B
21�k�k´�1ıxk

.x/

jg.y/jpdy

1A 1
p

ˇ̌̌
B21�k�k´�1ıxk.x/

ˇ̌̌p�1
p

� c

1X
kD1

 
1

2�k�
´�1 ıx

!Q�ˇ �
21�k�

´�1 ıx� �p kgkLp;�.G/
�
21�k�

´�1 ıx� .p�1/Qp

� c kgkLp;�.G/
´�1 ıxpˇC��Qp

1X
kD1

�
2
Q�pˇ��

p

�k
:

This proves (2.4). �

Remark 4. In particular, when �D 0, we see that if p˛ < Q, then there exists a
constant c D c.p;˛;�/ > 0, such that

jT˛g.x/j � c kgkLp.G/
´�1 ıxp˛�Qp I (2.5)

if pˇ >Q, then there exists a constant c D c.p;ˇ;�/ > 0, such thatˇ̌̌
T ˇg.x/

ˇ̌̌
� c kgkLp.G/

´�1 ıxpˇ�Qp : (2.6)

3. PROOFS OF THE MAIN RESULTS

Proof of Theorem 1. (1) With the help of (3) in Lemma 1 and Lemma 3, we know
that there exist constants c > 0 and M > 1 such that

ju.x/�u.´/j D

ˇ̌̌̌Z
RN
� .y�1 ıx/�� .y�1 ı´/Lu.y/dy

ˇ̌̌̌
�

Z
RN

ˇ̌
� .y�1 ıx/�� .y�1 ı´/

ˇ̌
jLu.y/jdy

�

Z
ky�1ıxk�Mkx�1ı´k

ˇ̌
� .y�1 ıx/�� .y�1 ı´/

ˇ̌
jLu.y/jdy

C

Z
ky�1ıxk<Mkx�1ı´k

ˇ̌
� .y�1 ıx/�� .y�1 ı´/

ˇ̌
jLu.y/jdy

�

Z
ky�1ıxk�Mkx�1ı´k

ˇ̌
� .y�1 ıx/�� .y�1 ı´/

ˇ̌
jLu.y/jdy

C

Z
ky�1ıxk<Mkx�1ı´k

ˇ̌
� .y�1 ıx/

ˇ̌
jLu.y/jdy
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C

Z
ky�1ıxk<Mkx�1ı´k

ˇ̌
� .y�1 ı´/

ˇ̌
jLu.y/jdy

�

Z
ky�1ıxk�Mkx�1ı´k

c
x�1 ı´y�1 ıxQ�1 jLu.y/jdy

C

Z
ky�1ıxk<Mkx�1ı´k

cy�1 ıxQ�2 jLu.y/jdy
C

Z
ky�1ıxk<Mkx�1ı´k

cy�1 ı´Q�2 jLu.y/jdy:
Noting that if

y�1 ıx�M x�1 ı´, theny�1 ıx�M x�1 ı´� M
c

´�1 ıx I
if
y�1 ıx<M x�1 ı´ , theny�1 ıx<Mc ´�1 ıx

and y�1 ı´� c �y�1 ıxCx�1 ı´�< c �M x�1 ı´Cx�1 ı´�
D c .1CM/

x�1 ı´ ;
it follows

ju.x/�u.´/j �

Z
ky�1ıxk�Mc k´

�1ıxk

c
x�1 ı´y�1 ıxQ�1 jLu.y/jdy

C

Z
ky�1ıxk<Mck´�1ıxk

cy�1 ıxQ�2 jLu.y/jdy
C

Z
ky�1ı´k<c.1CM/kx�1ı´k

cy�1 ı´Q�2 jLu.y/jdy
:
D I1CI2CI3:

Applying Lemma 4 ( ˛ D 1 and � D M
c

) and noting �Cp < Q, there exists a
constant c D c.p;�;�/ > 0 such that

I1� c kLukLp;�.G/
´�1 ıx´�1 ıxpC��Qp D c kLukLp;�.G/

´�1 ıx 2pC��Qp I

from Lemma 4 ( ˇ D 2 and � DMc; ˇ D 2 and � D c.1CM/ , respectively) and
�C2p >Q, it follows

I2 � c kLukLp;�.G/
´�1 ıx 2pC��Qp
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and

I3 � c kLukLp;�.G/
´�1 ıx 2pC��Qp :

In conclusion, we deduce (1.3).
(2) We know from (4) in Lemma 1 and Lemma 3 that there exist two constants

c > 0 and M > 1 such that

jXiu.x/�Xiu.´/j D

ˇ̌̌̌Z
RN
�i .y

�1
ıx/��i .y

�1
ı´/Lu.y/dy

ˇ̌̌̌
�

Z
RN

ˇ̌
�i .y

�1
ıx/��i .y

�1
ı´/

ˇ̌
jLu.y/jdy

�

Z
ky�1ıxk�Mkx�1ı´k

ˇ̌
�i .y

�1
ıx/��i .y

�1
ı´/

ˇ̌
jLu.y/jdy

C

Z
ky�1ıxk<Mkx�1ı´k

ˇ̌
�i .y

�1
ıx/��i .y

�1
ı´/

ˇ̌
jLu.y/jdy

�

Z
ky�1ıxk�Mkx�1ı´k

ˇ̌
�i .y

�1
ıx/��i .y

�1
ı´/

ˇ̌
jLu.y/jdy

C

Z
ky�1ıxk<Mkx�1ı´k

ˇ̌
�i .y

�1
ıx/

ˇ̌
jLu.y/jdy

C

Z
ky�1ıxk<Mkx�1ı´k

ˇ̌
�i .y

�1
ı´/

ˇ̌
jLu.y/jdy

�

Z
ky�1ıxk�Mkx�1ı´k

c
x�1 ı´y�1 ıxQ jLu.y/jdy

C

Z
ky�1ıxk<Mkx�1ı´k

cy�1 ıxQ�1 jLu.y/jdy
C

Z
ky�1ıxk<Mkx�1ı´k

cy�1 ı´Q�1 jLu.y/jdy:
Let us remark that if

y�1 ıx�M x�1 ı´, theny�1 ıx� M
c

´�1 ıx I
if
y�1 ıx<M x�1 ı´ , theny�1 ıx<Mc ´�1 ıx

and y�1 ı´� c �y�1 ıxCx�1 ı´�< c �M x�1 ı´Cx�1 ı´�
D c .1CM/

x�1 ı´ :
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It implies

jXiu.x/�Xiu.´/j �

Z
ky�1ıxk�Mc k´

�1ıxk

c
x�1 ı´y�1 ıxQ jLu.y/jdy

C

Z
ky�1ıxk<Mck´�1ıxk

cy�1 ıxQ�1 jLu.y/jdy
C

Z
ky�1ı´k<c.1CM/kx�1ı´k

cy�1 ı´Q�1 jLu.y/jdy
:
D I4CI5CI6:

Applying Lemma 4 ( ˛ D 0 and � D M
c

) and � < Q, there exists a constant c D
c.p;�;�/ > 0 such that

I4 � c kLukLp;�.G/
´�1 ıx´�1 ıx��Qp D c kLukLp;�.G/´�1 ıxpC��Qp I

from Lemma 4 ( ˇ D 1 and � DMc ; ˇ D 1 and � D c.1CM/ , respectively) and
�Cp >Q, it gets

I5 � c kLukLp;�.G/
´�1 ıxpC��Qp

and
I6 � c kLukLp;�.G/

´�1 ıxpC��Qp :

In conclusion we reach to (1.4).
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[12] A. Pascucci, “Hölder regularity for a Kolmogorov equation,” Trans. Am. Math. Soc., vol. 355,
no. 3, pp. 901–924, 2003.

[13] A. Pascucci and S. Polidoro, “On the Harnack inequality for a class of hypoelliptic evolution
equations,” Trans. Am. Math. Soc., vol. 356, no. 11, pp. 4383–4394, 2004.

[14] S. Polidoro and M. A. Ragusa, “Sobolev-Morrey spaces related to an ultraparabolic equation,”
Manuscr. Math., vol. 96, no. 3, pp. 371–392, 1998.

Authors’ addresses

Yuexia Hou
Northwestern Polytechnical University, Department of Applied Mathematics; Key Laboratory of

Space Applied Physics and Chemistry, Ministry of Education, Xi’an, Shaanxi, 710129, China
E-mail address: houyuexia@126.com

Xiaojing Feng
Northwestern Polytechnical University, Department of Applied Mathematics; Key Laboratory of

Space Applied Physics and Chemistry, Ministry of Education, Xi’an, Shaanxi, 710129, China
E-mail address: fxj467@mail.nwpu.edu.cn

Xuewei Cui
Northwestern Polytechnical University, Department of Applied Mathematics; Key Laboratory of

Space Applied Physics and Chemistry, Ministry of Education, Xi’an, Shaanxi, 710129, China
E-mail address: c88xw@163.com


	1. Introduction
	2. Preliminary
	3. Proofs of the main results
	References

