ON FUZZY α-CONTINUOUS MULTIFUNCTIONS

KHALED M. A. AL-HAMADI AND S. B. NIMSE

Received 24 August, 2006

Abstract. In this paper we use fuzzy α-sets in order to obtain certain characterizations and properties of upper (or lower) fuzzy α-continuous multifunctions.

2000 Mathematics Subject Classification: 54A40

Keywords: fuzzy α-open, fuzzy α-continuous, fuzzy multifunction

1. INTRODUCTION

In 1968 Chang [3] introduced fuzzy topological spaces by using fuzzy sets [12]. Since then several workers have contributed to this area: various types of functions play a significant role in the theory of classical point set topology. A great number of papers dealing with such functions have appeared, and a good many of them have been extended to the setting of multifunctions.

In 1988 Neubrunn [6] and others [9] introduced the concept of α-continuous multifunctions. Njasted [7] and Mashhour [4] introduced α-open (α-closed) sets, respectively. Bin Shahna in [2] defined these concepts in the fuzzy setting. In this paper our purpose is to define upper (lower) fuzzy α-continuous multifunctions and to obtain several characterizations of upper (lower) fuzzy α-continuous multifunctions.

Fuzzy sets on a universe X will be denoted by μ, ρ, η, etc. Fuzzy points will be denoted by x_ϵ, y_ν, etc. For any fuzzy points x_ϵ and any fuzzy set μ, we write $x_\epsilon \in \mu$ iff $\epsilon \leq \mu(x)$. A fuzzy point x_ϵ is called quasi-coincident with a fuzzy set ρ, denoted by $x_\epsilon \ q \ \rho$, iff $\epsilon + \rho(x) > 1$.

A fuzzy set μ is called quasi-coincident with a fuzzy set ρ, denoted by $\mu \ q \ \rho$, iff there exists a $x \in X$ such that $\mu(x) + \rho(x) > 1$. [10, 11]

In this paper we use the concept of fuzzy topological space as introduced in [3]. By int (μ) and cl (μ), we mean the interior of μ and the closure of μ, respectively.

Let (X, τ) be a topological space in the classical sense and (Y, ν) be a fuzzy topological space. $F : X \rightarrow Y$ is called a fuzzy multifunction iff for each $x \in X, F(x)$ is a fuzzy set in Y. [8]
Let \(F : X \to Y \) be a fuzzy multifunction from a fuzzy topological space \(X \) to a fuzzy topological space \(Y \). For any fuzzy set \(\mu \leq X \), \(F^+(\mu) \) and \(F^-(\mu) \) are defined by
\[
F^+(\mu) = \{ x \in X : F(x) \leq \mu \}, \quad F^-(\mu) = \{ x \in X : F(x) > \mu \}. \quad [5]
\]

2. Fuzzy \(\alpha \)-continuous multifunction

Definition 1. Let \((X, \tau)\) be a fuzzy topological space and let \(\mu \leq X \) be a fuzzy set. Then it is said that:

(i) \(\mu \) is fuzzy \(\alpha \)-open set [2] if \(\mu \leq \text{int \, cl \, int \, } \mu \).

(ii) \(\mu \) is fuzzy \(\alpha \)-closed set [2] if \(\mu \geq \text{cl \, int \, cl \, } \mu \).

(iii) \(\mu \) is fuzzy semiopen set [1] if \(\mu \leq \text{cl \, int \, } \mu \).

(iv) \(\mu \) is fuzzy preopen set [2] if \(\mu \leq \text{int \, cl \, } \mu \).

Definition 2. Let \(F : X \to Y \) be a fuzzy multifunction from a fuzzy topological space \((X, \tau)\) to a fuzzy topological space \((Y, \upsilon)\). Then it is said that \(F \) is:

(1) Upper fuzzy \(\alpha \)-continuous at \(x \in X \) iff for each fuzzy open set \(\mu \) of \(Y \) containing \(F(x) \), there exists a fuzzy \(\alpha \)-open set \(\rho \) containing \(x \) such that \(\rho \leq F^+(\mu) \).

(2) Lower fuzzy \(\alpha \)-continuous at \(x \in X \) iff for each fuzzy open set \(\mu \) of \(Y \) such that \(x \in F^-(\mu) \), there exists a fuzzy \(\alpha \)-open set \(\rho \) containing \(x \) such that \(\rho \leq F^-(\mu) \).

(3) Upper (lower) fuzzy \(\alpha \)-continuous iff it has this property at each point of \(X \).

We know that a net \((x_{\alpha_\mu})\) in a fuzzy topological space \((X, \tau)\) is said to be eventually in the fuzzy set \(\mu \leq X \) if there exists an index \(\alpha_0 \in J \) such that \(x_{\alpha_\mu} \in \rho \) for all \(\alpha \geq \alpha_0 \).

The following theorem states some characterizations of upper fuzzy \(\alpha \)-continuous multifunction.

Definition 3. A sequence \((x_{\alpha_\mu})\) is said to \(\alpha \)-converge to a point \(X \) if for every fuzzy \(\alpha \)-open set \(\mu \) containing \(x_{\alpha}, \) there exists an index \(n_0 \) such that for \(n \geq n_0, x_{\alpha_n} \in \mu \). This is denoted by \(x_{\alpha_n} \to_{\alpha} x_{\alpha} \).

Theorem 1. Let \(F : X \to Y \) be a fuzzy multifunction from a fuzzy topological \((X, \tau)\) to a fuzzy topological space \((Y, \upsilon)\). Then the following statements are equivalent:

(i) \(F \) is upper fuzzy \(\alpha \)-continuous.

(ii) For each \(x_{\alpha_\mu} \in \) and for each fuzzy open set \(\mu \) such that \(x_{\alpha_\mu} \in F^+(\mu) \), there exists a fuzzy \(\alpha \)-open set \(\rho \) containing \(x_{\alpha_\mu} \) such that \(\rho \leq F^+(\mu) \).

(iii) \(F^+(\mu) \) is a fuzzy \(\alpha \)-open set for any fuzzy open set \(\mu \in X \).

(iv) \(F^-(\mu) \) is a fuzzy \(\alpha \)-closed set for any fuzzy open set \(\mu \in Y \).

(v) For each \(x_{\alpha_\mu} \in \) and for each net \((x_{\alpha_\mu}^\alpha)\) which \(\alpha \)-converges to \(x_{\alpha_\mu} \) in \(X \) and for each fuzzy open set \(\mu \in Y \) such that \(x_{\alpha_\mu} \in F^+(\mu) \), the net \((x_{\alpha_\mu}^\alpha)\) is eventually in \(F^+(\mu) \).
Proof. (i)⇔(ii) this statement is obvious.
(i)⇔(iii). Let \(x_\varepsilon \in F^+(\mu) \) and let \(\mu \) be a fuzzy open set. It follows from (i) that there exists a fuzzy \(\alpha \)-open set \(\rho \) containing \(x_\varepsilon \) such that \(\rho x_\varepsilon \leq F^+(\mu) \). It follows that \(F^+(\mu) = \bigvee_{x_\varepsilon \in F^+(\mu)} \rho x_\varepsilon \) and hence \(F^+(\mu) \) is fuzzy \(\alpha \)-open.

The converse can be shown easily.

(iii)⇒(iv) Let \(\mu \leq Y \) be a fuzzy open set. We have that \(Y \setminus \mu \) is a fuzzy open set. From (iii), \(F^+(Y \setminus \mu) = X \setminus F^-(\mu) \) is a fuzzy \(\alpha \)-open set. Then it is obtained that \(F^-(\mu) \) is a fuzzy \(\alpha \)-closed set.

(i)⇒(v). Let \((x^\alpha_{e_\alpha}) \) be a net which \(\alpha \)-converges to \(x_\varepsilon \) in \(X \) and let \(\mu \leq Y \) be any fuzzy open set such that \(x_\varepsilon \in F^+(\mu) \). Since \(F \) is an upper fuzzy \(\alpha \)-continuous multifunction, it follows that there exists a fuzzy \(\alpha \)-open set \(\rho \leq X \) containing \(x_\varepsilon \) such that \(\rho \leq F^+(\mu) \). Since \((x^\alpha_{e_\alpha}) \) \(\alpha \)-converges to \(x_\varepsilon \), it follows that there exists an index \(\alpha_0 \in J \) such that \((x^\alpha_{e_\alpha}) \in \rho \) for all \(\alpha \geq \alpha_0 \) from here, we obtain that \(x^\alpha_{e_\alpha} \leq \rho \leq F^+(\mu) \) for all \(\alpha \geq \alpha_0 \). Thus the net \((x^\alpha_{e_\alpha}) \) is eventually in \(F^+(\mu) \).

(v)⇒(i). Suppose that is not true. There exists a point \(x_\varepsilon \) and a fuzzy open set \(\mu \) with \(x_\varepsilon \in F^+(\mu) \) such that \(\rho \leq F^+(\mu) \) for each fuzzy \(\alpha \)-open set \(\rho \leq X \) containing \(x_\varepsilon \). Let \(x_{e_\rho} \in \rho \) and \(x_\varepsilon \notin F^+(\mu) \) for each fuzzy \(\alpha \)-open set \(\rho \leq X \) containing \(x_\varepsilon \). Then for the \(\alpha \)-neighborhood net \((x_{e_\rho}) \), \(x_{e_\rho} \rightarrow_\alpha x_\varepsilon \), but \((x_{e_\rho}) \) is not eventually in \(F^+(\mu) \). This is a contradiction. Thus, \(F \) is an upper fuzzy \(\alpha \)-continuous multifunction.

Remark 1. For a fuzzy multifunction \(F : X \rightarrow Y \) from a fuzzy topological \((X, \tau)\) to a fuzzy topological space \((Y, \upsilon)\), the following implication holds:

Upper fuzzy continuous \(\implies \) Upper fuzzy \(\alpha \)-continuous.

The following example show that the reverse need not be true.

Example 1. Let \(X = \{x, y\} \) with topologies \(\tau = \{X, \phi, \mu\} \) and \(\upsilon = \{X, \phi, \rho\} \), where the fuzzy sets \(\mu, \rho \) are defined as:

\[
\mu(x) = 0.3, \quad \mu(y) = 0.6 \\
\rho(x) = 0.7, \quad \rho(y) = 0.4
\]

A fuzzy multifunction \(F : (X, \tau) \rightarrow (Y, \upsilon) \) given by \(x_\varepsilon \rightarrow F(x_\varepsilon) = \{x_\varepsilon\} \) is upper \(\alpha \)-continuous, but it is not upper continuous.

The following theorem states some characterizations of a lower fuzzy \(\alpha \)-continuous multifunction.

Theorem 2. Let \(F : X \rightarrow Y \) be a fuzzy multifunction from a fuzzy topological \((X, \tau)\) to a fuzzy topological space \((Y, \upsilon)\). Then the following statements are equivalent.

(i) \(F \) is lower fuzzy \(\alpha \)-continuous.

(ii) For each \(x_\varepsilon \in X \) and for each fuzzy open set \(\mu \) such that \(x_\varepsilon \in F^-(\mu) \) there exists a fuzzy \(\alpha \)-open set \(\rho \) containing \(x_\varepsilon \) such that \(\rho \leq F^-(\mu) \).

(iii) \(F^-(\mu) \) is a fuzzy \(\alpha \)-open set for any fuzzy open set \(\mu \leq Y \).
(iv) $F^+(\mu)$ is a fuzzy α-closed set for any fuzzy open set $\mu \leq Y$.

(v) For each $x_\epsilon \in X$ and for each net (x^α_η) which α-converges to x_ϵ in X and for each fuzzy open set $\mu \leq Y$ such that $x_\epsilon \in F^- (\mu)$, the net (x^α_η) is eventually in $F^- (\mu)$.

Proof. It can be obtained similarly as Theorem 1.

Theorem 3. Let $F : X \to Y$ be a fuzzy multifunction from a fuzzy topological (X, τ) to a fuzzy topological space (Y, υ) and let $F(X)$ be endowed with subspace fuzzy topology. If F is an upper fuzzy α-continuous multifunction, then $F : X \to F(X)$ is an upper fuzzy α-continuous multifunction.

Proof. Since F is an upper fuzzy α-continuous, $F(X \wedge F(X)) = F^+(\mu) \wedge F^+(F(X)) = F^+(\mu)$ is fuzzy α-open for each fuzzy open subset μ of Y. Hence $F : X \to F(X)$ is an upper fuzzy α-continuous multifunction.

Definition 4. Suppose that $(X, \tau), (Y, \upsilon)$ and (Z, ω) are fuzzy topological spaces. It is known that if $F_1 : X \to Y$ and $F_2 : Y \to Z$ are fuzzy multifunctions, then the fuzzy multifunction $F_1 \circ F_2 : X \to Z$ is defined by $(F_1 \circ F_2)(x_\epsilon) = F_2(F_1(x_\epsilon))$ for each $x_\epsilon \in X$.

Theorem 4. Let $(X, \tau), (Y, \upsilon)$ and (Z, ω) be fuzzy topological space and let $F : X \to Y$ and $G : Y \to Z$ be fuzzy multifunction. If $F : X \to Y$ is an upper (lower) fuzzy continuous multifunction and $G : Y \to Z$ is an upper (lower) fuzzy α-continuous multifunction. Then $G \circ F : X \to Z$ is an upper (lower) fuzzy α-continuous multifunction.

Proof. Let $\lambda \leq Z$ be any fuzzy open set. From the definition of $G \circ F$, we have $(G \circ F)^+ (\lambda) = F^+(G^+(\lambda))((G \circ F)^- (\lambda) = F^-(G^-(\lambda)))$, since G is an upper (lower) fuzzy α-continuous, it follows that $G^+(\lambda)(G^-(\lambda))$ is a fuzzy open set. Since F is an upper (lower) fuzzy continuous, it follows that $F^+(G^+(\lambda))(F^-(G^-(\lambda)))$ is a fuzzy α-open set, this shows that $G \circ F$ is an upper (lower) fuzzy α-continuous.

Theorem 5. Let $F : X \to Y$ be a fuzzy multifunction from a fuzzy topological (X, τ) to a fuzzy topological space (Y, υ). If F is a lower(upper) fuzzy α-continuous multifunction and $\mu \leq X$ is a fuzzy set, then the restriction multifunction $F|_\mu : \mu \to Y$ is an lower (upper) fuzzy α-continuous multifunction.

Proof. Suppose that $\beta \leq Y$ is a fuzzy open set. Let $x_\epsilon \in \mu$ and let $x_\epsilon \in F^-|_\mu (\beta)$. Since F is a lower fuzzy α-continuous multifunction, if follows that there exists a fuzzy open set $x_\epsilon \in \rho$ such that $\rho \leq F^- (\beta)$. From here we obtain that $x_\epsilon \in \rho \wedge \mu$ and $\rho \wedge \mu \leq F^-|_\mu (\beta)$. Thus, we show that the restriction multifunction $F|_\mu$ is lower fuzzy α-continuous multifunction.

The proof for the case of the upper fuzzy α-continuity of the multifunction $F|_\mu$ is similar to the above.
Theorem 6. Let \(F : X \rightarrow Y \) be a fuzzy multifunction from a fuzzy topological \((X, \tau)\) to a fuzzy topological space \((Y, \nu)\), let \(\{ \lambda_\gamma : \gamma \in \Phi \} \) be a fuzzy open cover of \(X \). If the restriction multifunction \(F_\gamma = F_{\lambda_\gamma} \) is lower (upper) fuzzy \(\alpha \)-continuous multifunction for each \(\gamma \in \Phi \), then \(F \) is lower (upper) fuzzy \(\alpha \)-continuous multifunction.

Proof. Let \(\mu \leq Y \) be any fuzzy open set. Since \(F_\gamma \) is lower fuzzy \(\alpha \)-continuous for each \(\gamma \), we know that \(F^-_\gamma (\mu) \leq \text{int} \lambda_\gamma (F^-_\gamma (\mu)) \) and from here \(F^- (\mu) \wedge \lambda_\gamma \leq \text{int} \lambda_\gamma (F^- (\mu)) \wedge \lambda_\gamma \) and \(F^- (\mu) \wedge \lambda_\gamma \leq \text{int} (F^- (\mu)) \wedge \lambda_\gamma \). Since \(\{ \lambda_\gamma : \gamma \in \Phi \} \) is a fuzzy open cover of \(X \). It follows that \(F^- (\mu) \leq \text{int} (F^- (\mu)) \). Thus, we obtain that \(F \) is lower(upper) fuzzy \(\alpha \)-continuous multifunction. \(\square \)

The proof of the upper fuzzy \(\alpha \)-continuity of \(F \) is similar to the above.

Definition 5. Suppose that \(F : X \rightarrow Y \) is a fuzzy multifunction from a fuzzy topological space \(X \) to a fuzzy topological space \(Y \). The fuzzy graph multifunction \(G_F : X \rightarrow X \times Y \) of \(F \) is defined as \(G_F(x_\epsilon) = \{ x_\epsilon \} \times F(x_\epsilon) \).

Theorem 7. Let \(F : X \rightarrow Y \) be a fuzzy multifunction from a fuzzy topological \((X, \tau)\) to a fuzzy topological space \((Y, \nu)\). If the graph function of \(F \) is lower(upper) fuzzy \(\alpha \)-continuous multifunction, then \(F \) is lower(upper) fuzzy \(\alpha \)-continuous multifunction.

Proof. For the fuzzy sets \(\beta \leq X, \eta \leq Y \), we take

\[
(\beta \times \eta)(z, y) = \begin{cases}
0 & \text{if } z \notin \beta \\
\eta(y) & \text{if } z \in \beta
\end{cases}
\]

Let \(x_\epsilon \in X \) and let \(\mu \leq Y \) be a fuzzy open set such that \(x_\epsilon \in F^- (\mu) \). We obtain that \(x_\epsilon \in G^- (X \times \mu) \) and \(X \times \mu \) is a fuzzy open set. Since fuzzy graph multifunction \(G_F \) is lower fuzzy \(\alpha \)-continuous, it follows that there exists a fuzzy \(\alpha \)-open set \(\rho \leq X \) containing \(x_\epsilon \) such that \(\rho \leq G^-_\gamma (X \times \mu) \). From here, we obtain that \(\rho \leq F^- (\mu) \). Thus, \(F \) is lower fuzzy \(\alpha \)-continuous multifunction.

The proof of the upper fuzzy \(\alpha \)-continuity of \(F \) is similar to the above.

Theorem 8. Suppose that \((X, \tau)\) and \((X_\alpha, \tau_\alpha)\) are fuzzy topological space where \(\alpha \in J \). Let \(F : X \rightarrow \prod_{\alpha \in J} X_\alpha \) be a fuzzy multifunction from \(X \) to the product space \(\prod_{\alpha \in J} X_\alpha \) and let \(P_\alpha : \prod_{\alpha \in J} X_\alpha \rightarrow X_\alpha \) be the projection multifunction for each \(\alpha \in J \) which is defined by \(P_\alpha ((x_\alpha)) = \{ x_\alpha \} \). If \(F \) is an upper (lower) fuzzy \(\alpha \)-continuous multifunction, then \(P_\alpha \circ F \) is an upper (lower) fuzzy \(\alpha \)-continuous multifunction for each \(\alpha \in J \).

Proof. Take any \(\alpha_0 \in J \). Let \(\mu_{\alpha_0} \) be a fuzzy open set in \((X_{\alpha_0}, \tau_{\alpha_0})\). Then \((P_{\alpha_0} \circ F)^+(\mu_{\alpha_0}) = F^+(P_{\alpha_0}^+(\mu_{\alpha_0})) = F^+(\mu_{\alpha_0} \times \prod_{\alpha \neq \alpha_0} X_\alpha) \) (resp., \((P_{\alpha_0} \circ F)^-(\mu_{\alpha_0}) = F^-((P_{\alpha_0}^-(\mu_{\alpha_0})) = F^-((\mu_{\alpha_0} \times \prod_{\alpha \neq \alpha_0} X_\alpha)) \).
Since F is upper (lower) fuzzy α-continuous multifunction and since $\mu_\alpha \times \prod_{\alpha \neq \alpha_0} X_\alpha$ is a fuzzy open set, it follows that $F^+(\mu_\alpha \times \prod_{\alpha \neq \alpha_0} X_\alpha)$ (resp., $F^-(\mu_\alpha \times \prod_{\alpha \neq \alpha_0} X_\alpha)$) is fuzzy α- open in (X, τ). It shows that $P_\alpha \circ F$ is upper (lower) fuzzy α-continuous multifunction.

Hence, we obtain that $P_\alpha \circ F$ is an upper (lower) fuzzy α-continuous multifunction for each $\alpha \in J$. \hfill \square

Theorem 9. Suppose that for each $\alpha \in J$, (X_α, τ_α) and (Y_α, ν_α) are fuzzy topological spaces. Let $F_\alpha : X_\alpha \rightarrow Y_\alpha$ be a fuzzy multifunction for each $\alpha \in J$ and let $F : \prod_{\alpha \in J} X_\alpha \rightarrow \prod_{\alpha \in J} Y_\alpha$ be defined by $F((x_\alpha)) = \prod_{\alpha \in J} F_\alpha(x_\alpha)$ from the product space $\prod_{\alpha \in J} X_\alpha$ to product space $\prod_{\alpha \in J} Y_\alpha$. If F is an upper (lower) fuzzy α-continuous multifunction, then each F_α is an upper (lower) fuzzy α-continuous multifunction for each $\alpha \in J$.

Proof. Let $\mu_\alpha \leq Y_\alpha$ be a fuzzy open set. Then $\mu_\alpha \times \prod_{\alpha \neq \beta} Y_\beta$ is a fuzzy open set. Since F is an upper (lower) fuzzy α-continuous multifunction, it follows that $F^+(\mu_\alpha \times \prod_{\alpha \neq \beta} Y_\beta) = F^+(\mu_\alpha) \times \prod_{\alpha \neq \beta} X_\beta$. $(F^- (\mu_\alpha \times \prod_{\alpha \neq \beta} Y_\beta) = F^-(\mu_\alpha) \times \prod_{\alpha \neq \beta} X_\beta)$ is a fuzzy α-open set. Consequently, we obtain that $F^+(\mu_\alpha)$ (resp., $F^-(\mu_\alpha)$) is a fuzzy α-open set. Thus, we show that F_α is an upper (lower) fuzzy α-continuous multifunction. \hfill \square

Theorem 10. Suppose that (X_1, τ_1), (X_2, τ_2), (Y_1, ν_1) and (Y_2, ν_2) are fuzzy topological spaces and $F_1 : X_1 \rightarrow Y_1$, $F_2 : X_2 \rightarrow Y_2$ are fuzzy multifunctions and suppose that if $\eta \times \beta$ is fuzzy α-open set then η and β are fuzzy α-open sets for any fuzzy $\eta \leq Y_1, \beta \leq Y_2$. Let $F_1 \times F_2 : X_1 \times X_2 \rightarrow Y_1 \times Y_2$ be a fuzzy multifunction which is defined by $(F_1 \times F_2)(x_\epsilon, y_\nu) = (F_1(x_\epsilon) \times F_2(y_\nu)$. If $F_1 \times F_2$ is an upper (lower) fuzzy α-continuous multifunction, then F_1 and F_2 are upper (lower) fuzzy α-continuous multifunctions.

Proof. We know that $(\mu^* \times \beta^*)(x_\epsilon, y_\nu) = \min \{\mu^*(x), \beta^*(y)\}$ for any fuzzy sets μ^*, β^* and for any fuzzy point x_ϵ, y_ν.

Let $\mu \times \beta \leq Y_1 \times Y_2$ be a fuzzy open set. It known that $(F_1 \times F_2)^+(\mu \times \beta) = F_1^+(\mu) \times F_2^+(\beta)$. Since $F_1 \times F_2$ is an upper fuzzy α-continuous multifunction, it follows that $F_1^+(\mu) \times F_2^+(\beta)$ is a fuzzy α-open set. From here, $F_1^+(\mu)$ and $F_2^+(\beta)$ are fuzzy α-open sets. Hence, it is obtain that F_1 and F_2 are upper fuzzy α-continuous multifunctions. \hfill \square

The proof of the lower fuzzy α-continuity of the multifunctions F_1 and F_2 is similar to the above.

Theorem 11. Suppose that (X, τ), (Y, ν) and (Z, ω) are fuzzy topological spaces and $F_1 : X \rightarrow Y$, $F_2 : X \rightarrow Z$ are fuzzy multifunction and suppose that if $\eta \times \beta$ is a fuzzy α-open set, then η and β are fuzzy α-open sets for any fuzzy sets $\eta \leq Y, \beta \leq Z$. Let $F_1 \times F_2 : X \rightarrow Y \times Z$ be a fuzzy multifunction which is defined by
(\(F_1 \times F_2\))(x_\varepsilon) = F_1(x_\varepsilon) \times F_2(x_\varepsilon). If \(F_1 \times F_2\) is an upper (lower) fuzzy \(\alpha\)-continuous multifunction, then \(F_1\) and \(F_2\) are upper (lower) fuzzy \(\alpha\)-continuous multifunctions.

Proof. Let \(x_\varepsilon \in X\) and let \(\mu \leq \gamma, \beta \leq Z\) be fuzzy \(\alpha\)-open sets such that \(x_\varepsilon \in F_1^+(\mu)\) and \(x_\varepsilon \in F_2^+(\beta)\). Then we obtain that \(F_1(x_\varepsilon) \leq \mu\) and \(F_2(x_\varepsilon) \leq \beta\) and from here, \(F_1(x_\varepsilon) \times F_2(x_\varepsilon) = (F_1 \times F_2)(x_\varepsilon) \leq \mu \times \beta\). We have \(x_\varepsilon \in (F_1 \times F_2)^+(\mu \times \beta)\). Since \(F_1 \times F_2\) is an upper fuzzy \(\alpha\)-continuous multifunction, it follows that there exist a fuzzy \(\alpha\)-open set \(\rho\) containing \(x_\varepsilon\) such that \(\rho \leq (F_1 \times F_2)^+(\mu \times \beta)\). We obtain that \(\rho \leq F_1^+(\mu)\) and \(\rho \leq F_2^+(\beta)\). Thus we obtain that \(F_1\) and \(F_2\) are fuzzy \(\alpha\)-continuous multifunctions. \(\Box\)

The proof of the lower fuzzy \(\alpha\)-continuity of the multifunctions \(F_1\) and \(F_2\) is similar to the above.

Lemma 1 ([2]). A fuzzy set in fuzzy topological space \(X\) is a fuzzy \(\alpha\)-open set if and only if it is fuzzy semiopen and fuzzy preopen.

Theorem 12. Let \(F : X \to Y\) be a fuzzy multifunction from a fuzzy topological \((X, \tau)\) to a fuzzy topological space \((Y, \upsilon)\). Then \(F\) is an upper fuzzy \(\alpha\)-continuous if and only if it is an upper fuzzy semicontinuous and upper fuzzy precontinuous.

Proof. Let \(F\) be upper fuzzy semicontinuous and upper fuzzy precontinuous, and let \(\mu\) be a fuzzy open set in \(Y\). Then \(F^+(\mu)\) is fuzzy semiopen and fuzzy preopen, it follows from lemma 1 that \(F^+(\mu)\) is a fuzzy \(\alpha\)-open set, and hence \(F\) is an upper fuzzy \(\alpha\)-continuous multifunction. The converse is immediate. \(\Box\)

Theorem 13. Let \(F : X \to Y\) be a fuzzy multifunction from a fuzzy topological space \((X, \tau)\) to a fuzzy topological space \((Y, \upsilon)\). Then \(F\) is a lower fuzzy \(\alpha\)-continuous if and only if it is lower fuzzy semicontinuous and lower fuzzy precontinuous.

Proof. Similar to that of Theorem 12 and is omitted. \(\Box\)

References

Authors’ addresses

Khaled M. A. Al-Hamadi
Dept. of Mathematics, University of Pune
E-mail address: abusuliman88@yahoo.com

S. B. Nimse
Dept. of Mathematics, University of Pune
E-mail address: nacasca@rediffmail.com