

Miskolc Mathematical Notes HU e-ISSN 1787-2413 Vol. 16 (2015), No. 2, pp. 769–779 DOI: 10.18514/MMN.2015.1343

LIE IDEALS AND ACTION OF GENERALIZED DERIVATIONS IN RINGS

BASUDEB DHARA, NADEEM UR REHMAN, AND MOHD ARIF RAZA

Received 19 September, 2014

Abstract. Let R be a prime ring of characteristic not 2, U a nonzero square closed Lie ideal of R and F, G, H be the generalized derivations with associated derivations d, δ , h of R respectively. In the present paper, we study the situations if one the follwoing holds (1) $F(u)G(v) \pm H(uv) \in$ $Z(R)$, (2) $F(u)F(v) \pm H(vu) \in Z(R)$, for all $u, v \in U$, then $U \subseteq Z(R)$.

2010 *Mathematics Subject Classification:* 16W25; 16N60.

Keywords: prime ring, derivation, generalized derivation, extended centroid, Utumi quotient ring

1. INTRODUCTION

Let R be a prime ring with center $Z(R)$. For any pair of elements $x, y \in R$, we shall write [x, y] for the commutator $xy - yx$. An additive subgroup U of R is said to be a Lie ideal of R, if $[U, R] \subseteq U$. The centralizer of U is denoted by $C_R(U)$ and defined by $C_R(U) = \{x \in R \mid [x, U] = 0\}$. An additive mapping d: $R \to R$ is called a derivation, if $d(xy) = d(x)y + xd(y)$ holds for all $x, y \in R$. By a generalized inner derivation on R, one usually means an additive mapping $F : R \to R$ if $F(x) = ax + xb$ for fixed $a, b \in R$. For such a mapping F, it is easy to see that $F(xy) = F(x)y + x[y, b] = F(x)y + xI_b(y)$, where I_b is an inner derivation determined by b. This observation leads to the definition given in $[8]$: an additive mapping $F: R \to R$ is called generalized derivation associated with a derivation d if $F(xy) = F(x)y + xd(y)$ for all $x, y \in R$. Obviously any derivation is a generalized derivation. Other basic examples of generalized derivations are the following: (i) $F(x) = ax + xb$ for $a, b \in R$; (ii) $F(x) = ax$ for some $a \in R$. Clearly, if $d = 0$, then F is a left multiplier map of R . An additive subgroup U of R is said to be a Lie ideal if $[u, r] \in U$ for all $u \in U$ and $r \in R$. A Lie ideal U of R is said to be square closed if $u^2 \in U$ for all $u \in U$.

In [\[5\]](#page-9-1), Ashraf and Rehman established that a prime ring R with a nonzero ideal I must be commutative, if R admits a nonzero derivation d satisfying $d(xy) + xy \in$ $Z(R)$ for all $x, y \in I$ or $d(xy) - xy \in Z(R)$ for all $x, y \in I$. Recently in [\[4\]](#page-9-2) Ashraf et al. studied the case by replacing derivation d with a generalized derivation F in a

c 2015 Miskolc University Press

prime ring R . More precisely, they proved that the prime ring R with a nonzero ideal I must be commutative, if R admits a generalized derivation F associated with a nonzero derivation d satisfying any one of the following situations: (i) $F(xy) - xy \in$ $Z(R)$, (ii) $F(xy) + xy \in Z(R)$, (iii) $F(xy) - yx \in Z(R)$, (iv) $F(xy) + yx \in Z(R)$, (v) $F(x)F(y) - xy \in Z(R)$, (vi) $F(x)F(y) + xy \in Z(R)$; for all $x, y \in I$. In several papers, all these identities are also investigated in some appropriate subsets of prime and semiprime rings. For further details, we refer to $[1, 3, 13, 14, 17, 18, 20]$ $[1, 3, 13, 14, 17, 18, 20]$ $[1, 3, 13, 14, 17, 18, 20]$ $[1, 3, 13, 14, 17, 18, 20]$ $[1, 3, 13, 14, 17, 18, 20]$ $[1, 3, 13, 14, 17, 18, 20]$ $[1, 3, 13, 14, 17, 18, 20]$ $[1, 3, 13, 14, 17, 18, 20]$ $[1, 3, 13, 14, 17, 18, 20]$ $[1, 3, 13, 14, 17, 18, 20]$ $[1, 3, 13, 14, 17, 18, 20]$ $[1, 3, 13, 14, 17, 18, 20]$ $[1, 3, 13, 14, 17, 18, 20]$. Golbasi and Koc $[13]$ studied all the cases (i) - (vi) in a square closed Lie ideal U in a 2torsion free prime ring R and obtained that if $d \neq 0$, then $U \subseteq Z(R)$. It is natural to consider the situation $F(x)F(y) \pm yx \in Z(R)$ for all x, y in some suitable subset of R. Recently, in [\[11\]](#page-10-5), Dhara et al. considered this situation in a square closed Lie ideal U in a 2-torsion free prime ring R and obtained that if $d \neq 0$, then $U \subseteq Z(R)$.

The present paper is motivated by the previous results and our aim is to generalizes all the above results by considering three generalized derivations.

2. PRELIMINARIES

Let U be a Lie ideal of R such that $u^2 \in U$ for all $u \in U$. Therefore, for any $u, v \in U$, we get $uv + vu = (u + v)^2 - u^2 - v^2 \in U$. Again in the same way, we have $uv - vu \in U$. Combining these two we get $2uv \in U$ for all $u, v \in U$.

Following results are needed for the proof of our main results.

Lemma 1 ([\[19,](#page-10-6) Lemma 2.6]). Let R be a prime ring with char $(R) \neq 2$. If U is a *commutative Lie ideal of R, then* $U \subseteq Z(R)$ *.*

Lemma 2 ([\[7,](#page-9-5) Lemma 4]). Let R be a prime ring with char $(R) \neq 2$. If $U \nsubseteq Z(R)$ *is a Lie ideal of R and* $aUb = 0$ *, then either* $a = 0$ *or* $b = 0$ *.*

Lemma 3 ([\[15,](#page-10-7) Theorem 5]). Let R be a prime ring with char $(R) \neq 2$. If d be a *nonzero derivation of* R and U be a nonzero Lie ideal of R such that $[u, d(u)] \in Z(R)$ *for all* $u \in U$ *, then* $U \subseteq Z(R)$ *.*

Lemma 4 ([\[12,](#page-10-8) Theorem 1])). Let R be a prime ring with char $(R) \neq 2$. If d be a *nonzero derivation of* R and U be a nonzero Lie ideal of R such that $u[[d(u),u],u] =$ 0 *for all* $u \in U$ *, then* $U \subseteq Z(R)$ *.*

Lemma 5 ([\[9,](#page-9-6) Lemma 2]). *If* R *is prime with a nonzero central ideal, then* R *is commutative.*

Lemma 6 ([\[6,](#page-9-7) Theorem 4]). *Let* R *be a prime ring and* I *be a nonzero left ideal of* R*. If* R *admits a nonzero derivation* d *which is centralizing on* I *, then* R *is commutative.*

Lemma 7 ([\[16,](#page-10-9) Theorem 2]). *Let* R *be a prime ring with a nonzero derivation* d of R and I a nonzero ideal of R. If $x^p[d(x^q), x^r]_k = 0$ for all $x \in I$, where p, q, r, k *are fixed positive integers, then* R *must be commutative.*

3. RESULTS ON LIE IDEALS IN PRIME RINGS

Theorem 1. *Let* R *be a prime ring of characteristic not* 2*,* U *a nonzero square closed Lie ideal of* R*, and* F;G *and* H *generalized derivations associated to the derivations* d, δ *and* h of R *respectively. Suppose that* $F(u)G(v) - H(uv) \in Z(R)$ *for all* $u, v \in U$ *. If* $d \neq 0$ *and* $\delta \neq 0$ *, then* $U \subseteq Z(R)$ *.*

Proof. We assume that $U \not\subseteq Z(R)$ and prove that a contradiction. Now by the given hypothesis we have

$$
F(u)G(v) - H(uv) \in Z(R) \text{ for all } u, v \in U. \tag{3.1}
$$

Replacing v by $2vw$ in (3.1) we get

$$
2(F(u)(G(v)w + v\delta(w)) - H(uv)w - uvh(w)) \in Z(R)
$$
 for all $u, v, w \in U$.

Since char $(R) \neq 2$, this gives $(F(u)(G(v)w+v\delta(w))-H(uv)w-uvh(w)) \in Z(R)$ that is,

 $(F(u)G(v) - H(uv))w + F(u)v\delta(w) - uvh(w) \in Z(R)$ for all $u, v, w \in U$. (3.2) Commuting with w , we get

$$
[(F(u)G(v) - H(uv))w, w] + [F(u)v\delta(w) - uvh(w), w] = 0 \text{ for all } u, v, w \in U.
$$
\n(3.3)

Since $F(u)G(v) - H(uv) \in Z(R)$ for all $u, v \in U$, above relation reduces to

$$
[F(u)v\delta(w) - uvh(w), w] = 0 \text{ for all } u, v, w \in U.
$$
 (3.4)

Now, replacing u by $2ux$ in [\(3.4\)](#page-2-1) and then using the restriction on characteristic, we obtain

$$
[(F(u)x + ud(x))v\delta(w) - uxvh(w), w] = 0 \text{ for all } u, v, w, x \in U.
$$
 (3.5)

Again, putting $v = 2xv$ in [\(3.4\)](#page-2-1) we get

$$
[F(u)xv\delta(w) - uxvh(w), w] = 0 \text{ for all } u, v, w, x \in U.
$$
 (3.6)

Subtracting (3.6) from (3.5) , we have

$$
[ud(x)v\delta(w), w] = 0 \text{ for all } u, v, w, x \in U.
$$
 (3.7)

Replacing u by 2tu and using [\(3.7\)](#page-2-4) and char $(R) \neq 2$, we get

$$
0 = [tud(x)v\delta(w), w]
$$

= t[ud(x)v\delta(w), w] + [t, w]ud(x)v\delta(w)
= [t, w]ud(x)v\delta(w) for all u, v, w, x, t \in U. (3.8)

By Lemma [2,](#page-1-0) for each $w \in U$, either $[t, w] = 0$ for all $t \in U$ or $d(x)v\delta(w) = 0$ for all $x, v \in U$. Let $T_1 = \{w \in U | [U, w] = (0)\}$ and $T_2 = \{w \in U | d(U)U\delta(w) = (0)\}.$ Then T_1 and T_2 are two additive subgroups of U such that $T_1 \cup T_2 = U$. Since a group cannot be union of its two proper subgroups, therefore either $T_1 = U$ or $T_2 = U$.

Let $T_1 = U$ $T_1 = U$ $T_1 = U$. Then $[U, U] = 0$ implying by Lemma 1 that $U \subseteq Z(R)$, a contradiction. Now let $T_2 = U$. Then $d(U)U\delta(U) = 0$. Again by Lemma [2,](#page-1-0) either $d(U) = 0$ or $\delta(U) = 0$. By Lemma [3,](#page-1-2) both of these imply $U \subseteq Z(R)$, a contradiction.

Theorem 2. *Let* R *be a prime ring of characteristic not* 2*,* U *a nonzero square closed Lie ideal of* R *and* F;G *and* H *generalized derivations associated to the derivations* d, δ *and* h of R *respectively. Suppose that* $F(u)G(v) + H(uv) \in Z(R)$ *for all* $u, v \in U$ *. If* $d \neq 0$ *and* $\delta \neq 0$ *, then* $U \subseteq Z(R)$ *.*

Proof. We note that $-H$ is a generalized derivations of R with associated derivations $-h$. Hence replacing H by $-H$ in Theorem [1,](#page-2-5) we have $F(u)G(v) - (-H)uv \in$ $Z(R)$ for all $u, v \in U$, that is $F(u)G(v) + H(uv) \in Z(R)$ for all $u, v \in U$ implies $U \subset Z(R)$.

In particular, when $F = d$ and $G = \delta$ are two nonzero derivations of R, then we have the following corollary:

Corollary 1. *Let* R *be a prime ring of characteristic not* 2*,* U *a nonzero square closed Lie ideal of R, d,* δ *two nonzero derivation of R and H a generalized derivation associated to the derivation* h of R. If $d(u)\delta(v) \pm H(uv) \in Z(R)$ for all $u, v \in U$ *, then* $U \subset Z(R)$ *.*

In particular, when H is an identity map, then we have the following:

Corollary 2. *Let* R *be a prime ring of characteristic not* 2*,* U *a nonzero square closed Lie ideal of* R *and* F;G *generalized derivations associated with the derivations* d and δ of R respectively. Suppose that $F(u)G(v) \pm uv \in Z(R)$ for all $u, v \in U$. *If* $d \neq 0$ *and* $\delta \neq 0$ *, then* $U \subseteq Z(R)$ *.*

Theorem 3. *Let* R *be a prime ring of characteristic not* 2*,* U *a nonzero square closed Lie ideal of* R *and* F;G *generalized derivations associated with the derivations d* and *δ of R respectively. Suppose that* $F(u)F(v) - H(vu) \in Z(R)$ *for all* $u, v \in U$ *. If* $d \neq 0$ *, then* $U \subseteq Z(R)$ *.*

Proof. On contrary assume that $U \nsubseteq Z(R)$. To prove our theorem we have to prove that this assumption leads to a contradiction. By the hypothesis, we have

$$
F(u)F(v) - H(vu) \in Z(R) \text{ for all } u, v \in U.
$$
 (3.9)

Putting $v = 2vw$ in [\(3.9\)](#page-3-0)and using char(R) \neq 2, we have

$$
F(u)(F(v)w + vd(w)) - H(v)wu - v\delta(wu) \in Z(R)
$$
\n(3.10)

which gives

$$
F(u)F(v)w + F(u)v d(w) - H(v)wu - v\delta(wu) \in Z(R). \tag{3.11}
$$

Commuting with w , we have

$$
[F(u)F(v)w + F(u)v d(w) - H(v)wu - v\delta(wu), w] = 0 \qquad (3.12)
$$

i.e.,

$$
[F(u)F(v), w]w + [F(u)v d(w), w] - [H(v)wu, w] - [v \delta(wu), w] = 0. \quad (3.13)
$$

From [\(3.9\)](#page-3-0), we can write that $[F(u)F(v) - H(vu),w] = 0$ for all $u, v, w \in U$, that is, $[F(u)F(v), w] = [H(vu), w]$ for all $u, v, w \in U$. Thus [\(3.13\)](#page-4-0) reduces to

 $[H(vu), w]w + [F(u)v d(w), w] - [H(v)wu, w] - [v \delta(wu), w] = 0.$ (3.14) Putting $u = w^2$ in [\(3.14\)](#page-4-1), we have

$$
[H(v)w2 + v\delta(w2), w]w + [(F(w)w + wd(w))vd(w), w]
$$

- [H(v)w³, w] - [v\delta(w³), w] = 0, (3.15)

i.e.,

$$
[(F(w)w + wd(w))vd(w), w] - [vw2δ(w), w] = 0 \text{ for all } v, w \in U.
$$
 (3.16)
Putting $v = 2wv$ and $u = w$ in (3.14), then using char(R) $\neq 2$, we have

 $[H(wvw), w]w + [F(w)wvd(w), w] - [H(wv)w^2, w] - [wv\delta(w^2), w] = 0$ (3.17) i.e.,

 $[F(w) wvd(w), w] - [wvw\delta(w), w] = 0$ for all $u, v, w \in U$. (3.18) Subtracting (3.18) from (3.16) , we get

$$
[wd(w)v d(w), w] - [vw2 \delta(w), w] + [wvw\delta(w), w] = 0 \text{ for all } v, w \in U. \quad (3.19)
$$

Now putting $v = 2wv$ in (3.19) and using $\text{char}(R) \neq 2$ we get

$$
[wd(w)wvd(w), w] - w[vw^{2}\delta(w), w] + w[wvw\delta(w), w] = 0 \text{ for all } v, w \in U.
$$
\n(3.20)

Left multiplying (3.19) by w and then subtracting from (3.20) , we get

$$
[w[d(w), w]vd(w), w] = 0 \text{ for all } v, w \in U.
$$
 (3.21)

Replacing v with $2vw$ in [\(3.21\)](#page-4-6) and using char(R) \neq 2, we have

$$
[w[d(w), w]vw d(w), w] = 0 \text{ for all } v, w \in U. \tag{3.22}
$$

Now right multiplying (3.21) by w and then subtracting from (3.22) , we have

$$
[w[d(w), w]v[d(w), w], w] = 0
$$
\n(3.23)

and again replacing v with $2vw$, we get

$$
[w[d(w), w]vw[d(w), w], w] = 0 \text{ for all } v, w \in U,
$$
\n(3.24)

i.e.,

 $w[d(w), w]vw[d(w), w]w-w^{2}[d(w), w]vw[d(w), w] = 0$ for all $v, w \in U$. (3.25) Now we put $v = 8vw[d(w), w]u$ in [\(3.25\)](#page-4-8) and using char(R) \neq 2, obtain

 $w[d(w),w]vw[d(w),w]uw[d(w),w]w$

 $-w^2[d(w), w]vw[d(w), w]uw[d(w), w] = 0$ for all $u, v, w \in U$.

By (3.25) , this can be written as

 $w[d(w), w]vw^{2}[d(w), w]uw[d(w), w] - w[d(w), w]vw[d(w), w]wuw[d(w), w] = 0$ i.e.,

 $w[d(w),w]vw[[d(w),w],w]uw[d(w),w] = 0$ for all $u, v, w \in U$.

By Lemma [2,](#page-1-0) this implies that $w[[d(w), w], w] = 0$ for all $w \in U$. Then, by Lemma [4,](#page-1-3) we have $U \subset Z(R)$, a contradiction.

Theorem 4. *Let* R *be a prime ring of characteristic not* 2*,* U *a nonzero square closed Lie ideal of* R*, and* F *,* G *are two generalized derivations associated to the derivations d* and *δ of R respectively. Suppose that* $F(u)F(v) + H(vu) \in Z(R)$ *for all* $u, v \in U$ *. If* $d \neq 0$ *, then* $U \subseteq Z(R)$ *.*

Proof. Replacing H by $-H$ and h by $-h$ in Theorem [3,](#page-3-1) we get our conclusion. \Box

In particular, when $F = d$ is a nonzero derivation of R, then we have the following corollary:

Corollary 3. *Let* R *be a prime ring of characteristic not* 2*,* U *a nonzero square closed Lie ideal of* R*,* d *a nonzero derivation of* R *and* H *a generalized derivation associated to the derivation* h of R. If $d(u)d(v) \pm H(vu) \in Z(R)$ for all $u, v \in U$, *then* $U \subseteq Z(R)$ *.*

In particular, when H is identity map of R , then we have the following corollary.

Corollary 4. *Let* R *be a prime ring of characteristic not* 2*,* U *a nonzero square closed Lie ideal of* R *and* F *a generalized derivation of* R *associated to the nonzero derivation d of* R. If $F(u)F(v) \pm vu \in Z(R)$ *for all* $u, v \in U$ *, then* $U \subseteq Z(R)$ *.*

We know that any both sided ideal is also a Lie ideal of R . If R is a prime ring and I is a nonzero ideal of R, then $aIb = 0$ implies either $a = 0$ or $b = 0$. Moreover, similar Lemmas are holds for both sided ideals (see Lemma [5,](#page-1-4) Lemma [6](#page-1-5) and Lemma [7\)](#page-1-6) in prime rings without assumption of char $(R) \neq 2$, therefore, we see that if we replace Lie ideal with a both sided ideal of R in the above Theorems, then the conclusion remain valid even without assumption of characteristic on R . Thus the following corollaries are straightforward.

Corollary 5. *Let* R *be a prime ring,* I *a nonzero ideal of* R *and* F;G *and* H *generalized derivations associated to the derivations d,* δ *and h of R respectively. Suppose that* $F(x)G(y) \pm H(xy) \in Z(R)$ *for all* $x, y \in I$ *. If* $d \neq 0$ *and* $\delta \neq 0$ *, then* R *must be commutative.*

Corollary 6. *Let* R *be a prime ring,* I *a nonzero ideal of* R *and* F *and* H *generalized derivations associated to the derivations d and* δ *of R respectively. Suppose that* $F(x)F(y) \pm H(yx) \in Z(R)$ for all $x, y \in I$. If $d \neq 0$, then R must be commutative.

4. RESULTS ON SEMIPRIME RINGS WITH IDENTITY ELEMENT

In this section we discussed the identity $F(x^n y^m) = F(x^n) F(y^m)$ for all $x, y \in$ R. Let us introduce some well known and elementary definitions for the sake of completeness. For any nonempty subset S of R. If $F(xy) = F(x)F(y)$ or $F(xy) =$ $F(y)F(x)$ for all $x, y \in S$, then F is called a generalized derivation which acts as a homomorphism or an anti-homomorphism on S, respectively.

Before the beginning our proofs, we would like to recall Ali et al. results, more precisely we refer to Theorem 4.1 and Theorem 4.3 in $[2]$. All that we need here is to remind the conclusions contained in $[2]$ in the case F is a generalized derivation associated with derivation d in semiprime ring, because for $x, y, z \in R$, $F((xy)z) =$ $F(x(vz))$ implies $F(xy)z + xyd(z) = F(x)vz + xd(vz)$, that is, $F(x)vz + xd(v)z +$ $xyd(z) = F(x)yz + xd(yz)$, implying $R(d(yz) - d(y)z - yd(z)) = (0)$. Since R is semiprime ring, this implies that d is a derivation of R and hence F is a generalized derivation of R.

We summarize these reduced results in the following lemmas:

Lemma 8 ([\[2,](#page-9-8) Theorem 4.1]). *Let* R *be an n!-torsion free semiprime ring with identity* 1*, where* $n > 2$ *is a fixed integer and let* $F, d : R \rightarrow R$ *be additive mappings* such that $F(xy) = F(x)y + xd(y)$ for all $x, y \in R$. If $F((xy)^n) = F(x^n y^n)$ holds *for all* $x, y \in R$ *, then* $[d(x), x] = 0$ *for all* $x \in R$ *.*

Moreover, if R *is prime and* d *is a nonzero derivation of* R*, then* R *is commutative.*

Lemma 9 ([\[2,](#page-9-8) Theorem 4.3]). Let R be a $(m \vee n)$!-torsion free semiprime ring with *identity* 1, where m and n are positive integers and $F, d : R \rightarrow R$ be additive map*pings such that* $F(xy) = F(x)y + xd(y)$ *for all* $x, y \in R$ *. If* $F(x^m y^n) = F(y^n x^m)$ *for all* $x, y \in R$ *, then* $[d(x), x] = 0$ *for all* $x \in R$ *.*

Moreover, if R *is prime and* d *is a nonzero derivation of* R*, then* R *is commutative.*

Lemma 10 ([\[10,](#page-10-10) Theorem 2.2]). *Let* R *be a semiprime ring,* I *a nonzero ideal of* R *and* F *a nonzero generalized derivation of* R *associated with a derivation* d*. If* $F(xy) = F(x)F(y)$ *for all* $x, y \in I$ *, then* $d(I) = 0$ *and* F *is a commuting left multiplier mapping on* I *.*

In particular, if R *is a prime ring, then* $d = 0$ *and* F *is identity mapping of* R *.*

Lemma 11 ([\[10,](#page-10-10) Theorem 2.4]). *Let* R *be a semiprime ring,* I *a nonzero ideal of* R *and* F *a nonzero generalized derivation of* R *associated with a derivation* d*. If* $F(xy) = F(y)F(x)$ for all $x, y \in I$, then $d(I) = 0$ or R contains a nonzero central *ideal.*

In particular, if R *is a prime ring, then* R *is commutative and and* F *is left multiplier mapping of* R*.*

We are now ready to prove our theorems.

Theorem 5. Let R be a $(m \vee n)$!-torsion free semiprime ring with identity 1, where m *and* n *are two fixed positive integers and* F *a nonzero generalized derivation as*sociated with a derivation d of R. If $F(x^n y^m) = F(x^n) F(y^m)$ for all $x, y \in R$, *then* $d = 0$ *. In particular, if* R *is a prime ring, then* $d = 0$ *and* F *is a commuting left multiplier mapping of* R*.*

In particular, if R *is a prime ring, then* F *is identity mapping of* R*.*

Proof. We have the relation

$$
F(x^n y^m) = F(x^n) F(y^m)
$$
\n(4.1)

for all $x, y \in R$. In particular, when $x = 1$, we have from above that

$$
F(ym) = F(1)F(ym)
$$
\n(4.2)

for all $y \in R$. Now replacing x by $x + k1$ in [\(4.1\)](#page-7-0), where k is any positive integer, we get

$$
F((x+k1)^n y^m) = F((x+k1)^n)F(y^m)
$$

for all $x, y \in R$. Expanding the power values of $(x + k1)$, we have

$$
F\left(\left\{x^{n} + {n \choose 1}kx^{n-1} + {n \choose 2}k^{2}x^{n-2} + \dots + {n \choose n-1}k^{n-1}x + k^{n}1\right\}y^{m}\right)
$$

= $F\left(\left\{x^{n} + {n \choose 1}kx^{n-1} + {n \choose 2}k^{2}x^{n-2} + \dots + {n \choose n-1}k^{n-1}x + k^{n}1\right\}\right)F(y^{m})$ (4.3)

for all $x, y \in R$. Using relation [\(4.1\)](#page-7-0) and [\(4.2\)](#page-7-1), this can be written as

$$
kf_1(x, y) + k^2 f_2(x, y) + \dots + k^{n-1} f_{n-1}(x, y) = 0
$$
\n(4.4)

for all $x, y \in R$. Now, replacing k by 1,2,3,..., $n-1$ in turn, and considering the resulting system of $n - 1$ homogeneous equations, we see that the coefficient matrix of the system is a Van der Monde matrix

$$
\left(\begin{array}{ccccccccc} 1 & 1 & 1 & \cdots & 1 \\ 2 & 2^2 & 2^3 & \cdots & 2^{n-1} \\ \vdots & \vdots & \vdots & & \vdots \\ (n-1) & (n-1)^2 & (n-1)^3 & \cdots & (n-1)^{n-1} \end{array}\right).
$$

Since the determinant of the matrix is equal to a product of positive integers, each of which is less than $n - 1$, and since R is $(n - 1)!$ -torsion free, it follows immediately that

$$
f_1(x, y) = f_2(x, y) = \dots = f_{n-1}(x, y) = 0
$$

for all $x \in R$. Now, $f_{n-1}(x, y) = 0$ implies that

$$
F\left(\binom{n}{n-1}xy^m\right) = F\left(\binom{n}{n-1}x\right)F(y^m) \tag{4.5}
$$

for all $x, y \in R$. Which gives

$$
nF(xy^m) = nF(x)F(y^m)
$$
\n(4.6)

for all $x, y \in R$. Since R is n-torsion free, we have

$$
F(xy^m) = F(x)F(y^m)
$$
\n(4.7)

for all $x, y \in R$. Again, since R is m!-torsion free, by applying the same argument for y as above for x , we can write that

$$
F(xy) = F(x)F(y)
$$
\n(4.8)

for all $x, y \in R$. Then by Lemma [10,](#page-6-0) $d = 0$ and F is a commuting left multiplier mapping of R.

In particular, if R is a prime ring, then F is identity mapping of R. \Box

By the similar proof of Theorem [5,](#page-7-2) following theorem is straight forward by using Lemma [11.](#page-6-1)

Theorem 6. Let R be a $(m \vee n)$!-torsion free semiprime ring with identity 1, where m *and* n *are two fixed positive integers and* F *a nonzero generalized derivation of* R *associated with a derivation d. If* $F(x^n y^m) = F(y^n)F(x^m)$ *for all* $x, y \in R$ *, then* $d = 0$ or R contains a nonzero central ideal.

In particular, if R *is a prime ring, then* R *is commutative and and* F *is left multiplier mapping of* R*.*

5. SOME EXAMPLES

This section contains two examples which shows that the main results are not true in the case of arbitrary rings.

Example 1. Let \mathbb{Z} be the ring of integers. Consider

$$
R = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} : a, b, c \in \mathbb{Z} \right\} \quad \text{and} \quad U = \left\{ \begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix} : b \in \mathbb{Z} \right\}.
$$

Clearly, R is a ring with identity under the natural operations which is not prime. Define the maps on R as follows

$$
F\left(\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}\right) = \begin{pmatrix} a & 2b \\ 0 & 0 \end{pmatrix}, \quad d\left(\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}\right) = \begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix};
$$

$$
G\left(\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}\right) = \begin{pmatrix} a & b+a \\ 0 & 0 \end{pmatrix}, \quad \delta\left(\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}\right) = \begin{pmatrix} 0 & a-c \\ 0 & 0 \end{pmatrix};
$$

778 BASUDEB DHARA, NADEEM UR REHMAN, AND MOHD ARIF RAZA

$$
H\left(\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}\right) = \begin{pmatrix} a & c \\ 0 & 0 \end{pmatrix}, \quad h\left(\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}\right) = \begin{pmatrix} 0 & -b \\ 0 & 0 \end{pmatrix}.
$$

Then, it is easy to see that U is a nonzero square closed Lie ideal of R and F, G , and H are generalized derivations associated with nonzero derivations d, δ , and h of R respectively. Moreover, F, G and H satisfies the requirements of Theorems [1,](#page-2-5) [2,](#page-3-2) [3,](#page-3-1) and [4,](#page-5-0) but $U \nsubseteq Z(R)$. Hence, the hypothesis of primeness is crucial.

Example 2. Let $R = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} : a, b, c \in \mathbb{Z} \right\}$. Clearly, R is a ring with identity which is not semiprime as $\begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix} R \begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix} = (0)$ for $b \neq 0$. Define F, d : $R \to R$ such that $F\left(\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}\right) = \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix}$, and $d\left(\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}\right) = \begin{pmatrix} 0 & -b \\ 0 & 0 \end{pmatrix}$ for all $\begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \in R$. Then, it is easy to see that F is a generalized derivation associated with derivation d of R. Further, for any $x, y \in R$ the following conditions: $F(x^n y^m) =$ $F(x^n)F(y^m)$, $F(x^n y^m) = F(y^n)F(x^m)$ are satisfied, where m, n are positive integers. However, $d \neq 0$. Hence, in Theorems [5](#page-7-2) and [6,](#page-8-0) the hypothesis of semiprimeness can not be omitted.

ACKNOWLEDGEMENT

The authors wishes to thank the referee for his/her valuable comments and suggestions.

REFERENCES

- [1] A. Ali, D. Kumar, and P. Miyan, "On generalized derivations and commutativity of prime and semiprime rings," *Hacettepe J. Math. Stat.*, vol. 40, no. 3, pp. 367–374, 2011.
- [2] S. Ali, M. Ashraf, M. S. Khan, and J. Vukman, "Commutativity of rings involving additive mappings," *Quaestiones Mathematicae*, vol. 37, pp. 1–15, 2014, doi: [10.2989/16073606.2013.779994.](http://dx.doi.org/10.2989/16073606.2013.779994)
- [3] S. Ali, B. Dhara, and A. Fošner, "Some commutativity theorems concerning additive mappings and derivations on semiprime rings," *Proceedings of 6th China-Japan-Korea Conference, (Kwak et al.(Eds.)), World Scientific, Singapore*, pp. 133–141, 2011.
- [4] M. Ashraf, A. Ali, and S. Ali, "Some commutativity theorem for prime rings with generalized derivations," *Southeast Asian Bull. Math.*, vol. 31, pp. 415–421, 2007.
- [5] M. Ashraf and N. Rehman, "On derivations and commutativity in prime rings," *East-West J. Math.*, vol. 3, no. 1, pp. 87–91, 2001.
- [6] H. E. Bell and W. S. M. III, "Centralizing mappings of semiprime rings," *Canad. Math. Bull.*, vol. 30, pp. 92–101, 1987, doi: [10.4153/CMB-1987-014-x.](http://dx.doi.org/10.4153/CMB-1987-014-x)
- [7] J. Bergen, I. N. Herstein, and J. W. Kerr, "Lie ideals and derivations of prime rings," *J. Algebra*, vol. 71, pp. 259–267, 1981, doi: [10.1016/0021-8693\(81\)90120-4.](http://dx.doi.org/10.1016/0021-8693(81)90120-4)
- [8] M. Brešar, "On the distance of the composition of two derivations to the generalized derivation," *Glasgow Math. J.*, vol. 33, pp. 89–93, 1991, doi: [10.1017/S0017089500008077.](http://dx.doi.org/10.1017/S0017089500008077)
- [9] M. N. Daif, "Commutativity results for semiprime rings with derivations," *Internt. J. Math.* & *Math. Sci.*, vol. 21, no. 3, pp. 471–474, 1998.

- [10] B. Dhara, "Generalized derivations acting as a homomorphism or anti-homomorphism in semiprime rings," *Beitr. Algebra Geom.*, vol. 53, pp. 203–209, 2012, doi: [10.1007/s13366-011-](http://dx.doi.org/10.1007/s13366-011-0051-9) [0051-9.](http://dx.doi.org/10.1007/s13366-011-0051-9)
- [11] B. Dhara, S. Kar, and S. Mondal, "A result on generalized derivations on Lie ideals in prime rings," *Beitr. Algebra Geom.*, vol. 54, no. 2, pp. 677–682, 2013, doi: [10.1007/s13366-012-0128-0.](http://dx.doi.org/10.1007/s13366-012-0128-0)
- [12] V. D. Filippis and F. Rania, "Commuting and centralizing generalized derivations on Lie ideals in prime rings," *Mathematical Notes*, vol. 88, no. 5-6, pp. 748–758, 2010, doi: [10.1134/S0001434610110143.](http://dx.doi.org/10.1134/S0001434610110143)
- [13] O. Golbasi and E. Koc, "Notes on commutativity of prime rings with generalized derivations," *Commun. Fac. Sci. Univ. Ank. Series A1*, vol. 58, no. 2, pp. 39–46, 2009.
- [14] S. Huang, "Generalized derivations of σ -prime rings," *Int. J. Algebra*, vol. 18, no. 2, pp. 867–873, 2008.
- [15] P. H. Lee and T. K. Lee, "Lie ideals of prime rings with derivations," *Bull. Inst. Math. Acad. Sinica*, vol. 11, pp. 75–79, 1983.
- [16] T. K. Lee and W. K. Shiue, "A result on derivations with Engel conditions in prime rings," *Southeast Asian Bull. Math.*, vol. 23, pp. 437–446, 1999.
- [17] L. Oukhtite, "Left multipliers and Lie ideals in prime rings," *J. Adv. Res. Pure Math.*, vol. 2, no. 3, pp. 1–6, 2010.
- [18] L. Oukhtite, "Lie ideals and generalized derivations of rings with involution," *Int. J. Open Problems Compt. Math.*, vol. 3, no. 4, pp. 617–626, 2010.
- [19] N. Rehman, "On commutativity of prime rings with generalized derivations," *Math. J. Okayama Univ.*, vol. 44, pp. 43–49, 2002.
- [20] N. Rehman and M. A. Raza, "Generalized derivation as homomorphism or an anti-homomorphism on Lie ideals," *Arab J. Math Sci*, p. 10.1016/j.ajmsc.2014.09.001, 2016.

Authors' addresses

Basudeb Dhara

Department of Mathematics, Belda College, Belda, Paschim Medinipur, 721424, W.B., INDIA. *E-mail address:* basu dhara@yahoo.com

Nadeem ur Rehman

Department of Mathematics, Aligarh Muslim University, 202002, Aligarh, India *E-mail address:* nu.rehman.mm@amu.ac.in

Mohd Arif Raza

Department of Mathematics, Aligarh Muslim University, 202002, Aligarh, India *E-mail address:* arifraza03@gmail.com