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Abstract. Let X and Y be normed spaces over a complete field F with dual spaces X’ and Y’
respectively. Under certain hypotheses, for given x € X, y € Y and a mapping u from X’ x Y’ to
[F, we apply Hyers—Ulam approach to find a unique bounded bilinear mapping v near to u such
that [[v]] = [[x ® y||.
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1. INTRODUCTION

Let X,Y, and Z be normed linear spaces over the same field F. A mapping ¢ :
X xY — Z is said to be bilinear if the mappings x —> ¢(x,y) and y —> ¢(x,y)
are linear. A bilinear mapping ¢ : X x Y — Z is said to be bounded if there exists
M > 0 such that ||¢(x, y)|| < M||x]||||y|| for all x € X and y € Y. The norm of ¢ is
then defined by

l1@l] := sup{llp(x. )| : (x.y) € Bx x By},

where By := {x € X :||x|| < 1}. The set of all bounded bilinear mappings from
X xY to Z is denoted by BL(X xY,Z). Let X’ and Y’ be dual spaces of X and
Y respectively. For givenx € X and y € Y, x ® y is an element of BL(X' x Y, F)
defined by x ® y(f.g) := f(x)g(y) forall f € X" and g € Y'. The algebraic tensor
product of X and Y, X ® Y, is defined to be the linear span of {x ® y : x € X,y € Y}
in BL(X'xY',F) (see [3]).

A classical question in the theory of functional equations is the following (see [4],
(61, [71, [91, 101, [81, 121, [14], [15], [201, [191, [171, (18], [21], [13], [22]): When
is it true that a function which approximately satisfies a functional equation { must
be close to an exact solution of ¢ ?

If the problem accepts a solution, we say that the equation ¢ is stable. There are cases
in which each approximate solution is actually a true solution. In such cases, we call
the equation ¢ superstable.
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The first stability problem concerning group homomorphisms was raised by Ulam
[22] during his talk before a Mathematical Colloquium at the University of Wis-
consin in 1940. Ulam’s problem was partially solved by Hyers [7] for mappings
between Banach spaces. Hyers” Theorem was generalized by Aoki [1] for additive
mappings and by Th. M. Rassias [16] for linear mappings by considering an un-
bounded Cauchy difference. The paper of Th. M. Rassias [16] has provided a lot
of influence in the development of what is called the generalized Hyers-Ulam stabil-
ity or the Hyers-Ulam-Rassias stability of functional equations. A generalization of
the Th. M. Rassias theorem was obtained by Gavruta [5] in 1994 by replacing the
unbounded Cauchy difference by a general control function in the spirit of Th. M.
Rassias’ approach. Badora [2] proved the generalized Hyers-Ulam stability of ring
homomorphisms, which generalizes the result of D. G. Bourgin. Miura [11] proved
the generalized Hyers-Ulam stability of Jordan homomorphisms.

In this paper, under certain hypotheses and using Hyers—Ulam approach, we find
a unique bounded bilinear mapping v near to a given mapping u : X' x Y’ — [F
such that ||v|| = ||x ® y|| for x € X, y € Y. Throughout this paper, it is assumed
that X and Y are normed spaces over a complete field F with dual spaces X" and Y’
respectively.

2. RESULTS

Theorem 1. Let u : X' x Y’ — [F be a mapping for which there exist positive
real valued functions ¢1,¢2, and ¢ on X' x X' xY', X' xY'xY’' and X' xY’,
respectively such that

00 1 . .

(1) =) 512 £.2' f.g) < o0, @.1)
i=0
o1 n n 1 " 1 n
nlggoz—,,%(Z f1.2 fz,g)=n11)n;oz—n<pz(2 f.81.82) =nlggoz—,,<p(2 f.8)=0,

(2.2)
lu(cf1+ f2,8) —cu(f1,8) —u(f2,9)| < e1(f1, 2,8), (2.3)
lu(ficg1+g2) —cu(f.gr) —u(f.g2)| < ¢2(f.g1.82) (2.4)

forall f, fi, o€ X', g.g1.g2 €Y', and ¢ € F. Then, there exists a unique bilinear
mapping v from X' x Y’ to F such that

u(fg)—v(f9)=¢(fg) (feX geY’). (2.5)

Moreover, if the mapping u satisfies
[u(f. O =1f(x)gWIl = e(f.8) (2.6)
for some fixed x € X and y € Y, then ||v|| = ||x ® y|| and so in particular v is

bounded.
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Proof. Putting ¢ = 1 and replacing f1 and f> in (2.3) by f and dividing both sides
by 2, we get
SCL8) ~u(f9)] = 501(f: ) @)
forall f € X’ and g € Y’. Replacing f by 2f in (2.7) and dividing both sides by 2,
we find that
5@ £8)~ SuCL9)| < 501 0f2f8) @8
forall f € X" and g € Y’'. Combining (2.7) with (2.8), we obtain
5540 )~ £ < 501(f: £i9) + 3301 2f0)
forall f € X’ and g € Y’. By induction on n, we conclude that

n—1

1 1 .
|2—nu(2”f,g)—u(f,g)|522i+1<p1(2’f,2’f,g) (2.9)

i=0

forall f € X’ and g € Y'. We now turn to use the Cauchy convergence criterion.
Replace f by 2% f in (2.9) and divide both sides by 2, where k is an arbitrary
positive integer, to get
1 1 n+k—1 . .
@ L) = puC Ll 3o Sre @2 fe)
i=k

for all f € X/, g € Y/, and all positive integers n > k. It follows from the last
inequality and (2.1) that the sequence {%u(Z" f,g)} is a Cauchy sequence for all
f €X' and g € Y. Since F is a complete field, this sequence converges. Define
v(f,g):=1limye0 %u(Z”f, g). Taking the limit as n — oo in (2.9), we find that the
inequality (2.5) holds for all f € X’ and g € Y’. Replace f1 and f> in (2.3) by 2" f1
and 2" f, respectively and divide both sides by 2" and take the limit as # — oo and
apply then (2.2) to get the mapping f +—— v( f, g) is linear. By a similar way one can
replace f in (2.4) by 2" f and divide both sides by 2" to deduce that the mapping
g +—> v(f, g) is linear. Consequently, the mapping v is bilinear. Our next claim is to
prove that v is unique. Let v be another mapping satisfying (2.5). Hence,

WDV ()] = @t £~ CF S

250" f.0)

=

N

o0
1 .
2ZF¢1(2lﬂ21ﬁ8)
i=k
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for all f € X’ and g € Y'. Passing to the limit as k — oo, we conclude that v is
unique. Replace f by 2" f in (2.6) and divide both sides by 2", to arrive at

1 1

@ L= 1f (gl = 502" f8) (2.10)
for all f € X’ and g € Y’. Taking the limit as n — oo in (2.10) and applying the
definition of the norm, we conclude that ||v|| = ||x ® y|| and so v is bounded. O

Remark 1. Under the same hypotheses of Theorem 1, with (2.1) and (2.2) replaced
by
1 S
0(f.8):=) sy a(/2'8.2'8) < o0, (2.11)
i=0

A e1(f1, f2.278) = lm —20a(£.2781.2782) = lim —o(f.27¢) =0,
(2.12)
there exists a unique mapping v € BL(X’ x Y',F) satisfying (2.5). Note that by us-
ing (2.4) and the same method as in the proof of Theorem 1, we can define v( f, g) :=

limy;— o0 zlnu(f’ 2"g).

In the following corollaries, as a consequence of Theorem 1, we show the Rassias
stability of algebraic tensor products.

Corollary 1. Letx € X, y €Y, andu : X' x Y’ — F be a mapping such that
(£ =1f gD =+ BULAIP + g +vILAIPHIP, (2.13)

(e fi + f2.8) —cu(fi, @) —u(fo. &) < a+BALAN + /2119 +[1g]19)
+yIANEN AN e,

lu(ficg1+g2) —cu(fign) —u(f.g2)l <a+BU SN +Ig1ll" +lg211")

+yIL 1 g2 18211

forall f, f1, > € X, g.g1.g2 €Y/, and c € F, where p,q,r,a, B, and y are con-
stants with0 < p,q,r <1, o >0, and B,y > 0. Then, there exists a unique mapping
vE BL(X'xY',F) such that ||v|| = ||x ® y|| and

lu(f.g)—v(f @)l <a+ BRI +IIgl?) + vkl f117]lg]1 (2.14)
forall f € X'"and g €Y', where k = ﬁ.

Remark 2. Under the hypotheses of Corollary 1 and using Remark 1, there exists
a unique mapping v € BL (X’ x Y’,[F) such that [[v]| = ||x ® y|| and

u(f.g)—v(fl =a+BULSI"+2klgI") +vEl 1" Igl
forall f € X"and g € Y’, where k =

1
2-2r:
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Theorem 2. Let {x;}/L, and {y;}7_, be linearly independent sets in X and Y
respectively and u be a mapping from X' x Y’ to F for which there exist mappings ¢ :
X'xX'xY' — RY, 0o : X' xY'xY' — RT, and ¢ : X' xY' — R satisfying
(2.1), (2.2), (2.3), (2.4) and

(£ =Y 1 f gl < e(fg) (2.15)

i=1
forall f € X', g €Y'. Then, there exists a unique mapping v € BL(X’' xY',F)
such that

u(f.e)—v(£0)<o(fi8) (feX . geY) <) [yl (216)

i=1
In the following our interest is to provide a dual for Theorem 1.
Theorem 3. Let x € X, y €Y, and letu : X' xY' — F be a mapping for which

there exist mappings ¢1: X' x X' xY' — R", ¢ : X' xY'xY' — R™, and ¢ :
X'xY' — RT satisfying (2.3), (2.4), (2.6), and

i [ f
o(f8)=7 201G i1 8) < (2.17)
i=0
, fi . S . S
n _ n J — n J —
Jim 2 wl(z—n,z—n,g)—nhggOZ <pz(2,,,g1,gz) Jim 2 w(zn,g) 0 (2.18)

for all f, f1./>» € X, g.g1.82 € Y'. Then, there exists a unique mapping v €
BL(X'x Y’ F) satisfying (2.5).

Proof. By induction on n, we conclude that

AN~ W
u(f.9) = 2" < D 2 o1 (G 5 ©) (2.19)
i=0
forall f € X" and g € Y'. Replace f by zik in (2.19) and multiply both sides by 2%,
where k is an arbitrary positive integer, to get

n+k—1
a0 -l o)< > P
i=
for all f € X', g € Y’, and all positive integers n > k. In order to use the Cauchy
convergence criterion, the last inequality and (2.17) imply the sequence {Z”M(ZL,,, 2)}
is a Cauchy sequence for all f € X’ and g € Y’. Due to completeness of [, this
sequence converges. Define v( f, g) := limy— o Z”u(zin,g). Taking the limit as n —
o0 in (2.19), we deduce that the inequality (2.5) holds for all f € X’ and g € Y’. The
rest of the proof is similar to that of Theorem 1. O
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Remark 3. Under the same hypotheses of Theorem 3, with (2.17) and (2.18) re-
placed by

o
N ; g g
¢(f.8) = ZZ’(pz(f, SiF1 F) < o0, (2.20)
i=0
N 8y — lim 2" 81 82y _ 1im ol 5 =
Jim 2 ¢1(f1,fz,27)—ngngo2 p2(f, Zn,zn)—nlggoZ e(f. 2,,)—0, (2.21)

there exists a unique mapping v € BL(X’ x Y’,[F) satisfying (2.5). We remark that
by using (2.4) and the same method as in the proof of Theorem 3, one can define

v(£,g) = limposoo 2"u(f, £).

Corollary 2. Letx € X, y €Y, andu : X' x Y’ — F be a mapping such that
(£ ) =1f(x)gWIl < el f1I71IglIP, (2.22)

u(cfi + fo.9) —cu(fr,9) —u(fa. )| < Bl AlIE11 2112 1€l

u(frcgr +g2) —cu(fig) —u(f.g) < yII 1 g1l 2 1g2]|2

forall f, fi, f»€ X', g.g¢1.82€ Y/, and c € F, where p,q,r > 1, and a, B,y > 0.
Then, there exists a unique mapping v € BL(X' x Y',F) such that ||v|| = ||x ® y||
and

u(fg)—v(f9)l = g I/ I1Ngll? (f € X' g eY").

Proof. Itis enough to define ¢( f,g) :=«|| f1I1?]|g||?,

q q r r
p1(f1. f2.8) =Bl Al12]| 2112 1|g 119, and p2(f. g1.&2) ;=¥ [ f 1" |Ig11I2]|82]| for
all £, f1. f» € X' and g,g1.,g2 € Y’ and then apply Theorem 3. O

Remark 4. Under the hypotheses of Corollary 2 and using Remark 3, there exists
a unique mapping v € BL (X’ x Y, F) such that ||v|| = ||x ® y|| and

lu(f.g)—v(f.8)l = 2,)/_2||f||r||g||r (feX' geY)).

Theorem 4. Let {x;}7_, and {y;}7_, be linearly independent sets in X and Y
respectively and u be a mapping from X' xY' to F for which there exist mappings @1 :
X' xX'xY' —RT, @p: X' xY'xY' — RV, and ¢ : X' xY' — R satisfying
(2.17), (2.18), (2.15), (2.3), (2.4). Then, there exists a unique mapping v € BL (X' x
Y',F) satisfying (2.16).
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