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Abstract. The harmonic index of a graph G is defined as the sum of the weights m
of all edges uv of G, where d(u) denotes the degree of a vertex u in G. In this paper, we
present the minimum harmonic indices for unicyclic and bicyclic graphs with n vertices and
matching number m (2 <m < L%J), respectively. The corresponding extremal graphs are also
characterized.
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1. INTRODUCTION

Let G be a simple graph with vertex set V(G) and edge set E(G). The Randi¢
index R(G), proposed by Randi¢ [20] in 1975, is defined as

1
R(G) = . —
: uUGZE(G) Vd)d(v)

where d(u) denotes the degree of a vertex u of G. The Randi¢ index is one of
the most successful molecular descriptors in structure-property and structure-activity
relationship studies. Mathematical properties of this descriptor have been studied
extensively (see [9, 10, 14, 15, 19] and the references cited therein).

In this paper, we consider a closely related variant of the Randi¢ index, named the
harmonic index. For a graph G, the harmonic index H(G) is defined as

2
HG = Y ————.
woeB (G) d(u)+dv)

This index first appeared in [6], and it can also be viewed as a particular case of the
general sum-connectivity index proposed by Zhou and Trinajsti¢ in [32].
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Favaron, Mahéo and Saclé [7] considered the relation between the harmonic in-
dex and the eigenvalues of graphs. Zhong [28,29], Zhong and Xu [30] determined
the minimum and maximum harmonic indices for simple connected graphs, trees,
unicyclic and bicyclic graphs, and characterized the corresponding extremal graphs.
Wu, Tang and Deng [23] found the minimum harmonic index for graphs (triangle-free
graphs, respectively) with minimum degree at least 2, and characterized the corres-
ponding extremal graphs. Deng, Balachandran, Ayyaswamy and Venkatakrishnan [2]
considered the relation between the harmonic index and the chromatic number of a
graph by using the effect of removal of a minimum degree vertex on the harmonic in-
dex. Liu [17] proposed a conjecture concerning the relation between the harmonic in-
dex and the diameter of a connected graph, and showed that the conjecture is true for
trees. Ili¢ [12], Xu [25], Zhong and Xu [31] established some relationships between
the harmonic index and several other topological indices. The chemical applicability
of the harmonic index was also recently investigated [8, 1 1]. See [3, 18, 24, 26] for
more information of this index.

In this paper, we determine the minimum harmonic indices for unicyclic and bi-
cyclic graphs with 7 vertices and matching number m (2 < m < |5 ]), respectively.
The corresponding extremal graphs are also characterized. The related problems
have been well-studied for several other topological indices, such as the Randi¢ index
[16,33], the modified Randi¢ index [13] and the sum-connectivity index [4,5,21,22].

2. PRELIMINARIES

Let G be a graph. For any vertex v € V(G), we use Ng (v) (or N(v) if there is no
ambiguity) to denote the set of neighbors of v in G. A pendent vertex is a vertex of
degree 1. For two distinct vertices u and v of G, the distance d(u,v) between u and
v is the number of edges in a shortest path joining u and v in G. A unicyclic graph
is a connected graph with n vertices and n edges, and a bicyclic graph is a connected
graph with n vertices and n + 1 edges. We use C,, to denote the cycle on n vertices.

A matching M in a graph G is a subset of £(G) such that no two edges in M
share a common vertex. A matching M in G is said to be maximum, if for any other
matching M’ in G, |M’| < |M|. The matching number of G is the number of edges
in a maximum matching of G. If M is a matching in G and the vertex v € V(G) is
incident with an edge of M, then v is said to be M -saturated, and if every vertex in
G is M -saturated, then M is a perfect matching.

For any vertex v € V(G), we use G — v to denote the graph resulting from G by
deleting the vertex v and its incident edges. We define G —uv to be the graph ob-
tained from G by deleting the edge uv € E(G), and G + uv to be the graph obtained
from G by adding an edge uv between two non-adjacent vertices u and v of G.

We now establish some lemmas which will be used frequently in later proofs.
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Lemma 1. Let G be a connected graph on n > 4 vertices with a pendent vertex
u. Let v be the unique neighbor of u with d(v) = s, and let w be a neighbor of v
different from u with d(w) = t.
(i) If s =2 and w is adjacent to at most one pendent vertex in G, then
2(t—=1) 2@-3) 2 2
t+2  t+1 13

with equality if and only if one neighbor of w has degree 1 and the other
neighbors of w have degree 2.

(ii) If v is adjacent to at most k pendent vertices in G, then
2(s—k) 22k—s) 2(k—1)
_|_ —

s42 s+1 s

with equality if and only if k neighbors of v have degree 1 and the other
neighbors of v have degree 2.

H(G)> H(G —u—v)+

H(G)> H(G —u)+

Proof. (i) Let N(w) = {wo = v,wy,...,ws—1}. Since w is adjacent to at most
one pendent vertex in G, we may assume that d(wy) > 1, and d(w;) > 2 for each

2<i<t—1(ft>3). Note that ﬂ%x — ﬁ is increasing for x > 1, we have

H(G)=H(G (2 2 s
(G) = H( _M_v)+i=21(t+d(wi)_[—1+d(U)j))+t+2+§

zH(G—u—v)—i—(L—%)—l—(t—Z)( 2 2 )_|_ 2 +%

r+1 1 +2 1+1) t+2 3
2t—1) 2@&—-3) 2 2
(12 i+l 13
with equality if and only if d(w;) = 1 and d(w;) =2 foreach2 <i <¢—1(if t > 3).
This proves (i).
(i) Let r (1 <r <k) be the number of pendent neighbors of v in G, and let N (v) =

=H(G—-u—v)+

{vo =u,v1,...,vs—1}. Without loss of generality, we may assume that d(v;) = 1 for
eachl <i<r—1(@Gfr>2),andd(v;) >2foreachr <i <s—1(ifs >r +1). Note
that erLx — ﬁ is increasing for x > 1 and s_;%l — erLz —% < 0, we have
2 2
HG)=HG—-uw)+eT-1)|——-
s+1 s

s—1

+Z 2 2 4 2
= s+d(;) s—14+d(v;) s+ 1

2 2 2 2 2
H(G - -D|\———- — -
= HG -+ )(s+1 s)+(s r)(s+2 s+l)+s+1
2
s

4 2 2 2s 2s
— H(G — - s _ =
( u)+r(s+1 s4+2 s)

tir2 sl
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> H(G—u)+k -
s+1 s4+2 =& s+2 s+1 s
2(s—k) n 22k —s) _2(k—1)

4 2 2) 2s 2s 2
+

=HG-um+ s+2 s+1 s
with equalities if and only if r = k and d(v;) =2 foreachk <i <s—1(ifs >k +1).
This completes the proof of the lemma. g
Lemma 2. (i) The function 2§Cx_+—21) — 2§Cx_+—13) — % is decreasing for x > 2.
(ii) ior ic > 1, the function 2;):2]() + z(ilfi__lx) — 2(kx_1) is decreasing for x >
+ 1
Proof. (i) Let f(x) = ZSCX—J:ZD—ZSC—;I”—% = XLH—XLH—%. For x > 2, we have
P = — 8 N 6 +£ _ —8x3 +24x +8
(x+1D2  (x+22 x2  xZ2(x+1)2(x+2)?
—8x(x2—4)—8(x—1)
B x2(x +1)2(x +2)? =
and hence (i) holds.
(i) Let g(x) = 2gcx;21c) + z(ili_lx) — 2(kx_1) and g1(x) = 2(kx—1) + 2(xx_+11_k). Then

gx)=g1(x+1)—gi1(x). Forx > k+ 1> 2, we have
dk—1) 4(k+2) 12> +12(k = Dx* +12(k = Dx +4(k — 1)

g1 = x3 (x+1)3 x3(x+1)3
—12x2(x—k)—12x(x —k)—4(Bx -k +1)
= B+ 1)3 <0,
and g’(x) = g} (x + 1) — g} (x) < 0. So the assertion of the lemma holds. O

Lemma 3. Let G be a connected graph, and let u be a vertex of degree 2 in G with
two neighbors v and w such that d(v) > 2 and vw ¢ E(G). Let G' = G —uw + vw,
then H(G) > H(G').

Proof. Letd(v) = p >2and let N(v) = {vo = u,v1,...,Vp—1}. Then
H(G)—-H(G")
Pl 2 Ly 2 2
N (; p+dv) +2+d(w))_<zp+l+d(vi) +p+1—|—d(w))

i=1

p—1
o) (o)
p+dw;) p+1+dv;) 24+d(w) p+1+dw)

i=1

This proves the lemma. O
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3. MINIMUM HARMONIC INDEX FOR UNICYCLIC GRAPHS WITH GIVEN
MATCHING NUMBER

Let %, be the set of unicyclic graphs with n > 3 vertices, and let %, ,; be the set
of unicyclic graphs with n vertices and matching number m, where 2 <m < [Z].
In this section, we determine the minimum harmonic index for graphs in %, ,, and
characterize the corresponding extremal graphs.

For a unicyclic graph G with the cycle Cp, the forest obtained from G by deleting
the edges in C), consists of p vertex-disjoint trees, each containing a vertex of Cp,
which is called the root of this tree in G. These trees are called the branches of G.
Chang and Tian [ 1] showed the following lemma.

Lemma 4. Let G € %amm (m > 3), and let T be a branch of G with root r. If
u € V(T) is a pendent vertex which is furthest from the root r with d(u,r) > 2, then
u is adjacent to a vertex of degree 2.

The second lemma was proved by Yu and Tian [27].

Lemma 5. Let G € %y m (n > 2m) and G % Cp. Then there exists a maximum
matching M and a pendant vertex u in G such that u is not M -saturated.

Zhong [29] proved the following result.
Lemma 6. Let G € %, with n > 3. Then H(G) < 5 with equality if and only if
G=C,.

——o ——o

n—2m-+1

UG Us Un,m

FIGURE 1. The graphs Us, Ug and Uy, ..

Let Ug be the unicyclic graph on 6 vertices obtained by attaching a pendent vertex
to every vertex of a triangle, and let Ug be the unicyclic graph on 8 vertices obtained
by attaching a path on two vertices to one vertex of degree 3 of Us. For2 <m < | %],
we use Uy 5, to denote the unicyclic graph on n vertices obtained by attaching n —
2m + 1 pendent vertices and m — 2 paths on two vertices to one vertex of a triangle.
See Figure 1 for an illustration.

Theorem 1. Let G € %amm \{Us, Us}, where m > 2. Then

2m 2 2m-=2) 1
H(G) > Z
( )_m+3+m+2+ 3 +2
with equality if and only if G = Uz m.
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Proof. We prove the theorem by induction on m. If m = 2, then either G = C4
or G = Usp. Since H(Cy) =2 > % = H(U,,2), we see that the assertion of the
theorem holds. So we may assume that m > 3 and the result holds for graphs in
Uy (m—1),m—1 \ 1Us, Ug}. By Lemma 6, since Csy, is the unique unicyclic graph on
2m vertices with the maximum harmonic index, we may further assume that G 2
Cam. Let M be a maximum matching in G, then |M | = m. By Lemma 4, we need
only consider the following two cases.

Case 1. There exists a pendent vertex u in G which is adjacent to a vertex v of
degree 2.

Let w be the neighbor of v different from u with d(w) = > 2, and let G’ =
G —u—v. Then uv € M and G’ € % (u—1),m—1- Since M contains exactly one
edge incident with w and there are m edges of G outside M, we have t <m + 1.
Note that w is adjacent to at most one pendent vertex in G.

———o ———o ——

VVl VVQ W3

FIGURE 2. The graphs Wy, W, and Ws.

If G’ == Us, then we have G = W} (since we assume G 2% Ug), see Figure 2. Since
HWy) = % > % = H(Ug,4), we know that the result holds.
If G’ =~ Ug, thent < 5. By Lemma 1(i) and Lemma 2(i), we have

2(z—1)_2(z—3)_g 2

[+2 t+1 ¢t 3
U347 2:(5-1) 2:(5-3) 2 2 _85 113
3

H(G) = H(Us) +

> C =22 2 H(Ujs).
=105 542 541 5 21~ 28 (U10,5)

and hence the assertion of the theorem holds.

Now suppose that G’ % Ug, Ug. Then by Lemma 1(i), Lemma 2(i) and the induc-
tion hypothesis, we conclude that

2—1) 20-3) 2 2
t+2  t+1 13
2m—1) > 2Am—1)-2] 1
Z((m—1)+3 m-Dt2 3 +§)
2Am+D—1] 2Am+D=3 2 2

m+D+2  m+D+1 m+173

H(G)> H(G)+
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2m 2 2(m—2)
T m3 mi2 3 2
with equalities if and only if G’ = Up(n—1)m—1 and t =m + 1, ie., G = Uz m.
This proves Case 1.

Case 2. G is a unicyclic graph with maximum degree 3 obtained by attaching
2m — p pendent vertices to some vertices of a cycle C, (m < p <2m—1).

If m = 3, then G is either the unicyclic graph obtained by attaching a pendent
vertex to one vertex of Cs or the unicyclic graph obtained by attaching a pendent
vertex to two adjacent vertices of Cy4 (since we assume G % Ug). Then we have
H(G) > 79 30 = H(Us,3), and the theorem holds. So we may assume that m > 4.
We con31der two subcases according to the value of p.

Subcase 2.1. p = m.

Then every vertex of C, is attached by a pendent vertex and H(G) = ST’". Let

fo) =2 (B4 25+ 28524 ) =54 52T Forx >4, we
have
1 6 2 1 6 2
'(x)=-— >—— > 0.
S =G T 122 %6 (4—|—3)2+(x+2)2
This implies that f(x) is increasing for x > 4, and thus f(m) > f(4) = ;5 >0, ie,

H(G) > H(Uzmm).

Subcase2.2. m+1 < p <2m—1.

In this subcase, there exists at least one edge, say xy, on C, such that xy € M.
Then d(x) = d(y) = 2; for otherwise, the pendent vertex adjacent to x or y can not be
M -saturated. Let z be the neighbor of x different from y in G, andlet G’ = G —xz +
yz. Then G” € % m m \ {Us}. By Lemma 3, we have H(G) > H(G"). Comparing
with the graph G, we see that the length of the unique cycle in G” decreases by 1.
Repeating this operation from G to G”, we eventually obtain the unicyclic graph
described in Subcase 2.1 and the result holds. This finishes the proof of the theorem.

O

Since H(Us,3) = 35 > 3 = H(Us) and H(Us 4) = 12 > 331 = H(Us), by The-
orem 1, we immediately obtaln the following two results

Corollary 1. Let G € U 3, then H(G) > 3 2 with equality if and only if G = Us.

Corollary 2. Let G € %g 4, then H(G) > 331 with equality if and only if G = Us.

We now prove the main result of this section.
Theorem 2. Let G € U m \{Us.Us}, where 2 <m < | 5|. Then

2m 2(h—=2m+1) 2m-2) 1
H(G) > =
( )_n—m—|—3 n—m-+2 + 3 +
with equality if and only if G = Uy .
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Proof. We prove Theorem 2 by induction on n. If n = 2m, then by Theorem 1, the
assertion of the theorem holds. So we may assume that n > 2m and the result holds
for graphs in %,—1,m \ {Us., Us }. By Lemma 6, since C, is the unique unicyclic graph
on n vertices with the maximum harmonic index, we may also assume that G 2 C,.
Then by Lemma 5, there exists a maximum matching M and a pendant vertex u in G
such that u is not M -saturated. Let v be the unique neighbor of u with d(v) =5 > 2,
and let G’ = G —u. Then G’ € %,—1 m. Since M contains exactly one edge incident
with v and there are n —m edges of G outside M, we have s <n—m + 1. Let r be
the number of pendant neighbors of v in G, where 1 < r < s — 1. Note that at least
r — 1 pendant neighbors of v are not M -saturated, and there are n —2m vertices are
not M -saturated in G. Thenr <n—2m+ 1.

If G’ = Ug, then n =7, m = 3 and either G = W, or G == Wj (see Figure 2).
Since H(W,) = % > H(W3) = % > % = H(U7,3), we see that the result holds.

If G' = Ug,thenn =9, m =4 and s <5. By Lemma 1(ii) (withk =n—2m+1 =
2) and Lemma 2(ii), we have

2(s—2) 2(@4-s) 2
H(G) = H(Us) + s42 + s+1 s
> #7,26-9 2079 2 2 > 1B H(Us,4),
105 5+2 541 5 7 42 ’
and thus the assertion of the theorem holds.

Therefore we may assume that G’ % Ug, Ug. Then by Lemma 1(ii) (with k =

n—2m + 1), Lemma 2(ii) and the induction hypothesis, we conclude that

25— (n—2m+1)] 2[2(n—2m+1)—s]

H(G)> H(G") +

s+2 s+1
2[(n—2m+1)—1]
s
- 2m 2[(n—1)—2m+1] 2(m-—2) +1
“\(n—1)—m+3 m—1)—m+2 3 2
2Qn—m+1)—(m—-2m+1)] 22n—-2m+1)—(n—m+1)]
+
(n—m+1)+2 (n—m+1)+1
2[(n—2m+1)—1]
n—m+1
2m 2m—-2m+1) 2m-2) 1
n—m+3 n—m+42 3 2
with equalities if and only if G’ = Uy—1 ,n, s =n—m+1landr =n—-2m+1, ie.,
G = Uy, ;. This completes the proof of the theorem. O

By applying Theorem 2, we can also obtain the minimum harmonic index for
graphs in %, (n > 4). This is one of the main results in [29].
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Corollary 3. Let G € %, withn > 4. Then

4 2n—-3) 1
n+1 + n + 2
with equality if and only if G = Uy ».

H(G) =

Proof. Let M be a maximum matching in G, then 2 < [M| =m < [ 5] (since
n > 4). If m = 2, then by Theorem 2, we have

22 2(n-2241) , 2:2-2) 1

H(G) >
n—2+4+3 n—2+42 3 2
4 2(n—=3) 1
= + —
n+1 n 2

with equality if and only if G = U, ». So we may assume that m > 3.
It G = Ug, then H(G) = % > % = H(Us,2), we see that the result holds. If

G = Ug,then H(G) = fg—; > ;—2 = H(Us,2), and the result also holds. Now suppose
that G % U, Ug. Then by Theorem 2 and Lemma 3, we see that H(G) > H(Up ) >

HUpm—1) > ---> H(Uy2). So the assertion of the corollary holds. O

4. MINIMUM HARMONIC INDEX FOR BICYCLIC GRAPHS WITH GIVEN
MATCHING NUMBER

Let %, be the set of bicyclic graphs with n > 4 vertices, and let %, ,, be the
set of bicyclic graphs with n vertices and matching number m, where 2 <m < |5 |.
In this section, we present the minimum harmonic index for graphs in % ,,, and
characterize the corresponding extremal graphs.

We denote by B, the set of bicyclic graphs with n > 4 vertices containing no
pendent vertices. Let %! be the set of bicyclic graphs on n > 6 vertices obtained by
connecting two vertex-disjoint cycles by a new edge, and let %’% be the set of bicyclic
graphs on n > 7 vertices obtained by connecting two vertex-disjoint cycles by a path
of length at least two. Let %’2 be the set of bicyclic graphs on n > 5 vertices obtained
by identifying a vertex of a cycle and a vertex of the other cycle. Let %4 be the set
of bicyclic graphs on n > 4 obtained from C, by adding a new edge, and let %, be
the set of bicyclic graphs on n > 5 obtained by connecting two non-adjacent vertices
by a path of length at least two. Clearly, By = Ule %ﬁ,

For i = 4,5, we use B; to denote the unique bicyclic graph on i vertices in %’;1
Let B, 45 be the bicyclic graph on n vertices obtained by attaching @ —3 and b —3
pendent vertices to the two vertices of degree 3 of By, respectively, where a > b >
3anda+b =n+2. Let BI; ab be the bicyclic graph on n vertices obtained by
attaching ¢ — 3 and b — 3 pendent vertices to the two vertices of degree 3 of Bs,
respectively, where a > b >3 and a+b =n+1. Then By = B4 33 and Bs =
B§,3’3. See Figure 3 and Figure 4 for an illustration. We first determine the minimum
harmonic index for graphs in %, with matching number 2.



596 LINGPING ZHONG

B4 B’n,a,b

FIGURE 3. The graphs B4 and B, 4 p.

Bs B

n,a,b

FIGURE 4. The graphs Bs and B, _ ,.

s

Theorem 3. Let G € %, 5 withn > 4. Then

2 4 2(n—4) 4
H(G) > -
( )_n+2+n+1 n +

with equality if and only if G = By y—1,3.

Proof. Since By is the unique bicyclic graph on 4 vertices in %4 >, we see that the
result holds forn = 4. If n =5, then G € {F;|1 <i <3}U BsU Bs 4 3, where F;
(1 <i < 3)are shown in Figure 5. It is easy to calculate that H(F;) = % > H(Bs) =
15—2 > H(F,) = % > H(F3) = % > % = H(Bs,4,3), and hence the assertion of the
theorem holds. So we may assume that n > 6. We consider three cases according to

the structure of G.

" Fy F3

FIGURE 5. The graphs Fi, F> and F3.
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Casel. G =B, , 5, wherea>b>3anda+b=n+2.

Let f(x) = xil —%. For x > 3, we have
8 16 —8(x34+6x2+6x+2)
"X —ms —— = <0.
/) (x+1)3 x3 x3(x+1)3

This implies that f(x + 1) — f(x) is decreasing for x > 3. Suppose @ > b > 4. Then

H(Bn,a-i-l,b—l)_H(Bn,a,b)

_( 4 2a+1)—3] 4 2Ab-1n-3)
@+)+2 " @+hH+1 " (b-D+2 G-1)+1

n 2 )_( 4 2(a—3)+ 4 +2(b—3)+ 2 )
a+1)+bB-1) a+2 a+1 b+2 b+1 a+b

_ 4 12 n 8 4 12 n 8
“\a+3 a+2 a+l b+2 b+1 b
=[fl@a+2)— fla+D]-[f(b+1)— f(b)] <O,
ie.,, H(By 4p) > H(By 441,5—1) fora > b > 4. So we conclude that H(B, ;) >
H(By n—1,3) with equality if and only ifa =n—1and b = 3.
Case 2. G is the bicyclic graph obtained by attaching n —4 pendent vertices to one
vertex of degree 2 of By.
Then

H(G)— H(Bpn-1,3)

N +2(n—4)+4+1 2 N 4 +2(n—4)+4
S \n+1 n—1 5 3 n+2 n+1 n 5

8 2 6+1_2 2 6 +1
n n+2 n—-1 3

2 2 6 1
> —- — +->0.
(n n+2) 6-(6—1) 3
So Case 2 holds.
Case 3. G x~ B;’a’b,wherea >b>3anda+b=n+1.
Let x be one vertex of degree 2, and let y, z be the two vertices of degree at least
3 in G, see Figure 4. Let G’ = G —xz + yz, then G’ = B, 441 . By Lemma 3,
we have H(G) > H(G'). Hence by the argument in Case 1, we deduce that H(G) >
H(Bp n—1,3). This completes the proof of the theorem. O

The following lemma was proved by Zhu, Liu and Wang [33], which will be used
in the following argument.

Lemma 7. Let G € $ym (n > 2m > 6) and G contains at least one pendent
vertex. Then there exists a maximum matching M and a pendent vertex u in G such
that u is not M -saturated.
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BS Bn,m

FIGURE 6. The graphs Bg and B, .

Let Bg be the bicyclic graph on 8 vertices obtained by attaching a pendent vertex
to every vertex of B4. For3 <m < L%J, we use By, to denote the bicyclic graph on
n vertices obtained by attaching n —2m + 1 pendent vertices and m — 3 paths on two
vertices to the vertex of degree 4 of F>, see Figure 6.

Lemma 8. Let G € Bom m \{Bs} (m > 3) and no pendent vertex has neighbor of
degree 2. Then
2(m+1) 2 2(m—3)~|_1
m+4 m+3 3
with equality if and only if G = Be 3.

H(G) >

Proof. Let M be a maximum matching in G, then |M | = m and every vertex in G
is adjacent to at most one pendent vertex. Since G € %Bom,m \ { Bg} and no pendent
vertex has neighbor of degree 2, we see that G can be obtained by attaching some
pendent vertices to a bicyclic graph Ge @k (m <k <2m). We consider two cases
according to G contains vertices of degree 2 or not.

Case 1. There is no vertex of degree 2 in G.

Then either k = m or k = m + 1. If kK = m, then G can be obtained by attaching a
pendent vertex to every vertex of a bicyclic graph G € B Itk =m+1, then G can
be obtained by attaching a pendent vertex to every vertex of degree 2 of a bicyclic
graph G € 93,1"“ U%fnﬂ.

o Q2

FIGURE 7. The graphs Q1 and Q5.

If m =3, then G = B4 and G =~ Q (see Figure 7). Since H(Q1) = % > % =
2341 + % + @ + 1, we know that the lemma holds.
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If m = 4, since we assume G 2 Bg, we have G =~ F; and G = Q5 (see Figure 7).
So the assertion of the lemma holds because H(Q3) = 5 > % = 2.4(:;1) + ﬁ +

2.(4—3)
——g——'+1.
Now assume that m2 > 5. Then
m_ 0. ifGeBUB,

s e A 2 5
H(G)= T—F, lfQE,%mU%m,
m_2. ifGe%Bl,
5 1 T 4
Tm‘*’g, 1fG€<@m+1U<@
_(5x _1 2x+1) |, 2 2(x=3) 2 7
Letf(x)—(?x_é)_( x4 txms T T3 +1>—6+x+4_m_6 For

x > 5, we have
6 2 1 6 2

R L
S = G T o 32 o6 Grar Taraz

This implies that f(x) is increasing for x > 5, and thus f(m) > f(5) = % >0,ie.,

H(G)> 2D | 2 4 20153) 4,

Case 2. There exists a vertex, say u, of degree 21in G.

Let v and w be the two neighbors of u in G such that d(v) =s > 2 and d(w) =
t > 2. By the symmetry between v and w, we may assume that uv € M.

Suppose that no vertex of degree 2 is contained in the cycles of G. Since no
pendent vertex has neighbor of degree 2 in G, we conclude that G e ,%]% and u
lies on the path connecting two vertex-disjoint cycles of G. Hence vw ¢ E(G). Let
G’ =G —uw+vw,then G’ € Bopm m \{Bs}. By Lemma 3, we have H(G) > H(G').
Comparing with the graph G, we see that the number of vertices of degree 2 in G’
decreases by 1. Repeating this operation from G to G’, we finally obtain a bicyclic
graph described in Case 1, and hence the result holds.

So we may choose u such that u lies on some cycle of G. Let N(w) = {wg =
u,wi,...,ws—1},and let G’ = G —uw. Then G” is a unicyclic graph on 2m vertices
with a perfect matching M, i.e., G” € % m m. Note that 2 < s, <5 and w is adjacent
to at most one pendent vertex. Since —25 — —=— is increasing for s > 2 2

s+2 7 s+1 ’t+x T r—1+x
is increasing for x > 1 and by Lemma 2(i), we have

1—1
2 2 2 2 2
H(G) = H(G" - -
© ( )+i_§(t+d(w,~) t—1+d(wi))+t+2+(s+2 s+1)
2 2 2
> H(G" —_— —
( )+(t+l z) ¢ )(1-1—2 t+1)+l+2
. 2 2
242 241

o (2a-1) 20-3) 2\ 1
_H(G)+( r+2 1+l _?)_6
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Z[_I(G//)_+_(2'(5_1)_2'(5—3) _%)_

1
542 541 5] 6
19
= H(G")— 310 (%)

with equalities if and only if s = 2, t = 5, one neighbor of w has degree 1 and the
other neighbors of w have degree 2.

Ry Ro

FIGURE 8. The graphs R; and R5.

If G” =~ Us, then either G” =~ Ry or G” =~ R, (see Figure 8). Since H(R;) =
% > H(Ry) = % > % = 2-g3+ﬁ;1) + % + @ + 1, the assertion of the lemma
holds. If G” = Usg, then by (*), we have

19 347 19 45
H(G)> H(Ug)— — =~~~ 2
(G) = HUs) =576 = 105 210 ~ 14

269 2-(4+1) 2 2-(4-3)
> — = +1,
84 444 443 3
and the result holds. So suppose that G’ % U, Ug. It follows from Lemma 2(i) that

2[(m+2)—1] 2[(m+2)-3] 2
(m+2)+2 m+2)+1 m+2

<2-[(3+2)—1] 2-[(342)—13] 28
- (3+2)+2 B+2)+1 342 105
since m > 3. Then by (x) and Theorem 1, we have
19
H(G)> H(G") — —
(6) 2 H(G") = 375
2m 2 2m—=2) 1 19
= + +- )=
m+3 m+2 3 2 210
_( 2m 4 2 _'_2(m—3)_i_1 n 8
S \m+3 m+2 3 105

- 2m n 2 +2(m—3)+1
“\m4+3 m+2 3
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(nm+m—u 2[(m +2)—3] 2)

m+2)+2  (m+2)+1 m+2
_2(m+1)+ 2 2(m—3)

1
m+4 m+3 3 +
with equalities if and only if s =2, =5, G” = Uy m and m = 3, i.e., G = Bg 3.
This finishes the proof of the lemma. O

Theorem 4. Let G € Bom,m \ {Bs}, where m > 3. Then
2(m+1 2 2(m—3
( ) + + ( ) +1
m+4 m+3 3
with equality if and only if G = By m.

H(G) =

Proof. We prove Theorem 4 by induction on m. If m = 3, then by Lemma 7, we
may assume that there exists a pendent vertex in G whose neighbor is a vertex of
degree 2. Hence G is the bicyclic graph obtained from B4 by attaching a path on
two vertices to either one vertex of degree 3 or one vertex of degree 2. Then we have
H(G) > % > g—f = H(Be,3), and the assertion of the theorem holds. So we may
assume that m > 4 and the result holds for graphs in %5 (,—1)m—1 \ {Bs}. Let M
be a maximum matching in G, then |M | = m. If no pendent vertex has neighbor of
degree 2 in G, then by Lemma 7, we see that the result holds.

Now suppose that there exists a pendent vertex ¥ in G whose neighbor v is a
vertex of degree 2. Let w be the neighbor of v different from u with d(w) =1t > 2,
and let G' = G —u —v. Then uv € M and G’ € Br(n—1),m—1. Since M contains
exactly one edge incident with w and there are m + 1 edges of G outside M, we have
t <m+ 2. Note that w is adjacent to at most one pendent vertex in G.

If G’ =~ Bg, thent < 5. By Lemma 1(i) and Lemma 2(i), we have
2(t 1)_2(t 3) 2+2

H(G) > H(B z
(G)z H(Bs) + == r+1 1 '3

447 2-(5-1) 2-(5-3) 2 2 551 47
. G- 2| )__+_:—>—:H(U10,5),
140 5+2 541 53 140 12

and hence the assertion of the theorem holds.
So we may further assume that G’ 2 Bg. Then by Lemma 1(i), Lemma 2(i) and
the induction hypothesis, we conclude that

2(t—1 2(t—3 2 2
H(G) > H(G) + f+2)_ fﬂ)_; :

- (2[(m—1)+1] 2 +2[(m—1)—3]+1)

“\m-1D+4 " (m-1)+3 3
oAm+2)—1] 2m+2-3] 2 2

m++2  m+D+1 m42 3
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2(m+1 2 2(m—3
= ( ) + + ( ) +1
m+4 m+3 3
with equalities if and only if G’ = By(y—1),m—1 andt =m+2,i.e., G = By m. S0
Theorem 4 holds. U

Since H(Bg 4) = 28%? > % = H(Bsg), by Theorem 4, we immediately obtain the
following result.

Corollary 4. Let G € HBg 4, then H(G) > % with equality if and only if G =~ Bsg.

We now present the minimum harmonic index for graphs in %, ,, \ { Bg}, where
3<m<|%].
Theorem 5. Let G € By m \ {Bg}, where 3 <m < |5 ]. Then
2(m+1 2(mn—2m+1 2(m-3
m+1) 2 ), 2m=3)
n—m+4 n—m+3 3
with equality if and only if G = By .

H(G) >

Proof. We prove the theorem by induction on n. If n = 2m, then by Theorem 4,
the assertion of the theorem holds. So we may assume that n > 2m and the result
holds for graphs in %, —1,m \ {Bs}. If there is no pendent vertex in G, then G € %,
and n = 2m + 1. It is easy to check that

m+§_g, ifG ey, 1 UBsi1
H(G) = m+z, ifGe%%m+1U%§m+l,
m+3,  ifGeRB, .
This implies that

H(G) - H(BZm+1,m)

1 2(m+1) 2[Cm+1)—2m+1] 2(m—-3)
Z(’"J“§)_((zm+1)—m+4 Qm+1)—m+3 3 +1)
m 8 4 2 m-2 4(m+3)

’

3+m+5 m+4 3 3 (m+4)(m +5)

i.e., H(G) > H(BZm+1,m)‘

So we may assume that G contains at least one pendent vertex. Then by Lemma
7, there exists a maximum matching M and a pendent vertex u in G such that u
is not M -saturated. Let v be the unique neighbor of u with d(v) = s > 2, and let
G’ =G —u. Then G’ € By_1,m. Since M contains exactly one edge incident with
v and there are n + 1 —m edges of G outside M, we have s <n—m + 2. Let r be
the number of pendant neighbors of v in G, where 1 < r < s —1. Note that at least
r — 1 pendant neighbors of v are not M -saturated, and there are n —2m vertices are
not M -saturated in G. Thenr <n—2m + 1.



THE HARMONIC INDEX 603

If G’ =~ Bg,thenn =9, m =4 and s <5. By Lemma 1(ii) (withk =n—-2m+1 =
2) and Lemma 2(ii), we deduce that
2(s—2) 2(4-s) 2
+ —_
s+2 s+1 s
447 2.(5-2) 2-(4-5
> 47 ( )Jr (4-5)
140 542 5+1

and hence the assertion of the theorem holds.
Therefore we may assume that G’ 2 Bg. Then by Lemma 1(ii) (with k = n —
2m 4+ 1), Lemma 2(ii) and the induction hypothesis, we have

HG) 2 H(G) B S

_2[(n=2m+1)—1]
s
>(( 2(m+1) 2[(n—1)—2m+1] 2(m—3)+1)

H(G)> H(Bsg)+

;_w%>59_Hw )
5 420 18 9,40

“\(n—1)—m+4 m—1)—m+3 3
2Q[n—m+2)—(n—-2m+1)] 2R2nr—-2m+1)—(n—m+2)]
+ (mn—m+2)+2 (n—m+2)+1
2[(n—2m+1)—1]
 n—m+2
2m+1) 2mn-2m+1) 2(m-3)
= +1
n—m+4 n—m+3 3
with equalities if and only if G’ =~ By—1 m, s =n—m+2andr =n—2m+1, i.e.,
G = By ;. This completes the proof of the theorem. U

We can also determine the minimum harmonic index for graphs in %, (see also in
[31]) by using Theorem 3 and Theorem 5.

Corollary 5. Let G € B, withn > 4. Then

2 4 2(n—4) 4
H(G) > -
( )_n+2+n—|—1 n +5

with equality if and only if G = By y—1,3.

Proof. Let M be a maximum matching in G, then 2 < [M| =m < [5] (since
n > 4). If m = 2, then the result follows immediately from Theorem 3.
If m = 3, then by Theorem 5, we have
2-3+1) 2mn—-2-341) 2-(3=-3) 1
n—3+4 n—3+3 3
8 2(n—>5
= + ( ) +1
n+1

H(G) =
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with equality if and only if G = B, 3. Note that in this case n > 6. Since
H(Bn,S) - H(Bn,n—l,?a)

8 2(n—75) 2 4 2(n—4) 4
= + +1])— + + + =
n+1 n n+2 n+1 n 5

4 2 2 1 —4 1
_(n+1 n+2 n)+5_n(n+l)(n+2)+5
—4 1 79
= +z=575>0.
6-(6+1)-(6+2) 5 420
we know that the assertion of the corollary holds.
So we may assume that m > 4. If G = Bg, then H(G) = % > % = H(Bsg,7,3),
we see that Corollary 5 holds. Now suppose that G 2¢ Bg. Then by Theorem 5
and Lemma 3, we see that H(G) > H(By,m) > H(Bym—1) > -+ > H(By3) >

H(Bpn n—1,3)- This finishes the proof of the corollary. O
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