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Abstract. The harmonic index of a graph G is defined as the sum of the weights 2
d.u/Cd.v/

of all edges uv of G, where d.u/ denotes the degree of a vertex u in G. In this paper, we
present the minimum harmonic indices for unicyclic and bicyclic graphs with n vertices and
matching number m (2 � m � bn

2 c), respectively. The corresponding extremal graphs are also
characterized.
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1. INTRODUCTION

Let G be a simple graph with vertex set V.G/ and edge set E.G/. The Randić
index R.G/, proposed by Randić [20] in 1975, is defined as

R.G/D
X

uv2E.G/

1p
d.u/d.v/

;

where d.u/ denotes the degree of a vertex u of G. The Randić index is one of
the most successful molecular descriptors in structure-property and structure-activity
relationship studies. Mathematical properties of this descriptor have been studied
extensively (see [9, 10, 14, 15, 19] and the references cited therein).

In this paper, we consider a closely related variant of the Randić index, named the
harmonic index. For a graph G, the harmonic index H.G/ is defined as

H.G/D
X

uv2E.G/

2

d.u/Cd.v/
:

This index first appeared in [6], and it can also be viewed as a particular case of the
general sum-connectivity index proposed by Zhou and Trinajstić in [32].

This work was supported by the Fundamental Research Funds for the Central Universities (No.
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Favaron, Mahéo and Saclé [7] considered the relation between the harmonic in-
dex and the eigenvalues of graphs. Zhong [28, 29], Zhong and Xu [30] determined
the minimum and maximum harmonic indices for simple connected graphs, trees,
unicyclic and bicyclic graphs, and characterized the corresponding extremal graphs.
Wu, Tang and Deng [23] found the minimum harmonic index for graphs (triangle-free
graphs, respectively) with minimum degree at least 2, and characterized the corres-
ponding extremal graphs. Deng, Balachandran, Ayyaswamy and Venkatakrishnan [2]
considered the relation between the harmonic index and the chromatic number of a
graph by using the effect of removal of a minimum degree vertex on the harmonic in-
dex. Liu [17] proposed a conjecture concerning the relation between the harmonic in-
dex and the diameter of a connected graph, and showed that the conjecture is true for
trees. Ilić [12], Xu [25], Zhong and Xu [31] established some relationships between
the harmonic index and several other topological indices. The chemical applicability
of the harmonic index was also recently investigated [8, 11]. See [3, 18, 24, 26] for
more information of this index.

In this paper, we determine the minimum harmonic indices for unicyclic and bi-
cyclic graphs with n vertices and matching number m (2 � m � bn

2
c), respectively.

The corresponding extremal graphs are also characterized. The related problems
have been well-studied for several other topological indices, such as the Randić index
[16,33], the modified Randić index [13] and the sum-connectivity index [4,5,21,22].

2. PRELIMINARIES

Let G be a graph. For any vertex v 2 V.G/, we use NG.v/ (or N.v/ if there is no
ambiguity) to denote the set of neighbors of v in G. A pendent vertex is a vertex of
degree 1. For two distinct vertices u and v of G, the distance d.u;v/ between u and
v is the number of edges in a shortest path joining u and v in G. A unicyclic graph
is a connected graph with n vertices and n edges, and a bicyclic graph is a connected
graph with n vertices and nC1 edges. We use Cn to denote the cycle on n vertices.

A matching M in a graph G is a subset of E.G/ such that no two edges in M

share a common vertex. A matching M in G is said to be maximum, if for any other
matching M 0 in G, jM 0j � jM j. The matching number of G is the number of edges
in a maximum matching of G. If M is a matching in G and the vertex v 2 V.G/ is
incident with an edge of M , then v is said to be M -saturated, and if every vertex in
G is M -saturated, then M is a perfect matching.

For any vertex v 2 V.G/, we use G� v to denote the graph resulting from G by
deleting the vertex v and its incident edges. We define G �uv to be the graph ob-
tained from G by deleting the edge uv 2E.G/, and GCuv to be the graph obtained
from G by adding an edge uv between two non-adjacent vertices u and v of G.

We now establish some lemmas which will be used frequently in later proofs.
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Lemma 1. Let G be a connected graph on n � 4 vertices with a pendent vertex
u. Let v be the unique neighbor of u with d.v/ D s, and let w be a neighbor of v

different from u with d.w/D t .
.i/ If s D 2 and w is adjacent to at most one pendent vertex in G, then

H.G/�H.G�u�v/C
2.t �1/

tC2
�

2.t �3/

tC1
�

2

t
C

2

3

with equality if and only if one neighbor of w has degree 1 and the other
neighbors of w have degree 2.

.i i/ If v is adjacent to at most k pendent vertices in G, then

H.G/�H.G�u/C
2.s�k/

sC2
C

2.2k� s/

sC1
�

2.k�1/

s

with equality if and only if k neighbors of v have degree 1 and the other
neighbors of v have degree 2.

Proof. (i) Let N.w/ D fw0 D v;w1; : : : ;wt�1g. Since w is adjacent to at most
one pendent vertex in G, we may assume that d.w1/ � 1, and d.wi / � 2 for each
2� i � t �1 (if t � 3). Note that 2

tCx
�

2
t�1Cx

is increasing for x � 1, we have

H.G/DH.G�u�v/C

t�1X
iD1

�
2

tCd.wi /
�

2

t �1Cd.wi /

�
C

2

tC2
C

2

3

�H.G�u�v/C

�
2

tC1
�

2

t

�
C .t �2/

�
2

tC2
�

2

tC1

�
C

2

tC2
C

2

3

DH.G�u�v/C
2.t �1/

tC2
�

2.t �3/

tC1
�

2

t
C

2

3

with equality if and only if d.w1/D 1 and d.wi /D 2 for each 2� i � t�1 (if t � 3).
This proves (i).

(ii) Let r .1� r � k/ be the number of pendent neighbors of v in G, and let N.v/D

fv0 D u;v1; : : : ;vs�1g. Without loss of generality, we may assume that d.vi /D 1 for
each 1� i � r�1 (if r � 2), and d.vi /� 2 for each r � i � s�1 (if s � rC1). Note
that 2

sCx
�

2
s�1Cx

is increasing for x � 1 and 4
sC1
�

2
sC2
�

2
s

< 0, we have

H.G/DH.G�u/C .r �1/

�
2

sC1
�

2

s

�
C

s�1X
iDr

�
2

sCd.vi /
�

2

s�1Cd.vi /

�
C

2

sC1

�H.G�u/C .r �1/

�
2

sC1
�

2

s

�
C .s� r/

�
2

sC2
�

2

sC1

�
C

2

sC1

DH.G�u/C r

�
4

sC1
�

2

sC2
�

2

s

�
C

2s

sC2
�

2s

sC1
C

2

s
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�H.G�u/Ck

�
4

sC1
�

2

sC2
�

2

s

�
C

2s

sC2
�

2s

sC1
C

2

s

DH.G�u/C
2.s�k/

sC2
C

2.2k� s/

sC1
�

2.k�1/

s

with equalities if and only if r D k and d.vi /D 2 for each k � i � s�1 (if s � kC1).
This completes the proof of the lemma. �

Lemma 2. .i/ The function 2.x�1/
xC2

�
2.x�3/

xC1
�

2
x

is decreasing for x � 2.

.i i/ For k � 1, the function 2.x�k/
xC2

C
2.2k�x/

xC1
�

2.k�1/
x

is decreasing for x �

kC1.

Proof. (i) Let f .x/D 2.x�1/
xC2

�
2.x�3/

xC1
�

2
x
D

8
xC1
�

6
xC2
�

2
x

. For x � 2, we have

f 0.x/D�
8

.xC1/2
C

6

.xC2/2
C

2

x2
D
�8x3C24xC8

x2.xC1/2.xC2/2

D
�8x.x2�4/�8.x�1/

x2.xC1/2.xC2/2
< 0;

and hence (i) holds.
(ii) Let g.x/D 2.x�k/

xC2
C

2.2k�x/
xC1

�
2.k�1/

x
and g1.x/D 2.k�1/

x
C

2.x�1�k/
xC1

. Then
g.x/D g1.xC1/�g1.x/. For x � kC1� 2, we have

g001.x/D
4.k�1/

x3
�

4.kC2/

.xC1/3
D
�12x3C12.k�1/x2C12.k�1/xC4.k�1/

x3.xC1/3

D
�12x2.x�k/�12x.x�k/�4.3x�kC1/

x3.xC1/3
< 0;

and g0.x/D g01.xC1/�g01.x/ < 0. So the assertion of the lemma holds. �

Lemma 3. Let G be a connected graph, and let u be a vertex of degree 2 in G with
two neighbors v and w such that d.v/� 2 and vw …E.G/. Let G0 DG�uwCvw,
then H.G/ > H.G0/.

Proof. Let d.v/D p � 2 and let N.v/D fv0 D u;v1; : : : ;vp�1g. Then

H.G/�H.G0/

D

 
p�1X
iD1

2

pCd.vi /
C

2

2Cd.w/

!
�

 
p�1X
iD1

2

pC1Cd.vi /
C

2

pC1Cd.w/

!

D

p�1X
iD1

�
2

pCd.vi /
�

2

pC1Cd.vi /

�
C

�
2

2Cd.w/
�

2

pC1Cd.w/

�
> 0:

This proves the lemma. �
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3. MINIMUM HARMONIC INDEX FOR UNICYCLIC GRAPHS WITH GIVEN
MATCHING NUMBER

Let Un be the set of unicyclic graphs with n � 3 vertices, and let Un;m be the set
of unicyclic graphs with n vertices and matching number m, where 2 � m � bn

2
c.

In this section, we determine the minimum harmonic index for graphs in Un;m, and
characterize the corresponding extremal graphs.

For a unicyclic graph G with the cycle Cp, the forest obtained from G by deleting
the edges in Cp consists of p vertex-disjoint trees, each containing a vertex of Cp,
which is called the root of this tree in G. These trees are called the branches of G.
Chang and Tian [1] showed the following lemma.

Lemma 4. Let G 2 U2m;m .m � 3/, and let T be a branch of G with root r . If
u 2 V.T / is a pendent vertex which is furthest from the root r with d.u;r/ � 2, then
u is adjacent to a vertex of degree 2.

The second lemma was proved by Yu and Tian [27].

Lemma 5. Let G 2 Un;m .n > 2m/ and G 6Š Cn. Then there exists a maximum
matching M and a pendant vertex u in G such that u is not M -saturated.

Zhong [29] proved the following result.

Lemma 6. Let G 2 Un with n � 3. Then H.G/ � n
2

with equality if and only if
G Š Cn.

Un,m

n− 2m+ 1m− 2

U6 U8

FIGURE 1. The graphs U6, U8 and Un;m.

Let U6 be the unicyclic graph on 6 vertices obtained by attaching a pendent vertex
to every vertex of a triangle, and let U8 be the unicyclic graph on 8 vertices obtained
by attaching a path on two vertices to one vertex of degree 3 of U6. For 2�m� bn

2
c,

we use Un;m to denote the unicyclic graph on n vertices obtained by attaching n�

2mC1 pendent vertices and m�2 paths on two vertices to one vertex of a triangle.
See Figure 1 for an illustration.

Theorem 1. Let G 2U2m;m n fU6;U8g, where m� 2. Then

H.G/�
2m

mC3
C

2

mC2
C

2.m�2/

3
C

1

2

with equality if and only if G Š U2m;m.
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Proof. We prove the theorem by induction on m. If m D 2, then either G Š C4

or G Š U4;2. Since H.C4/ D 2 > 9
5
D H.U4;2/, we see that the assertion of the

theorem holds. So we may assume that m � 3 and the result holds for graphs in
U2.m�1/;m�1 n fU6;U8g. By Lemma 6, since C2m is the unique unicyclic graph on
2m vertices with the maximum harmonic index, we may further assume that G 6Š

C2m. Let M be a maximum matching in G, then jM j Dm. By Lemma 4, we need
only consider the following two cases.

Case 1. There exists a pendent vertex u in G which is adjacent to a vertex v of
degree 2.

Let w be the neighbor of v different from u with d.w/ D t � 2, and let G0 D

G �u� v. Then uv 2M and G0 2 U2.m�1/;m�1. Since M contains exactly one
edge incident with w and there are m edges of G outside M , we have t � mC 1.
Note that w is adjacent to at most one pendent vertex in G.

W1 W2 W3

FIGURE 2. The graphs W1, W2 and W3.

If G0ŠU6, then we have G ŠW1 (since we assume G 6ŠU8), see Figure 2. Since
H.W1/D 107

30
> 139

42
DH.U8;4/, we know that the result holds.

If G0 Š U8, then t � 5. By Lemma 1(i) and Lemma 2(i), we have

H.G/�H.U8/C
2.t �1/

tC2
�

2.t �3/

tC1
�

2

t
C

2

3

�
347

105
C

2 � .5�1/

5C2
�

2 � .5�3/

5C1
�

2

5
C

2

3
D

85

21
>

113

28
DH.U10;5/;

and hence the assertion of the theorem holds.
Now suppose that G0 6Š U6;U8. Then by Lemma 1(i), Lemma 2(i) and the induc-

tion hypothesis, we conclude that

H.G/�H.G0/C
2.t �1/

tC2
�

2.t �3/

tC1
�

2

t
C

2

3

�

�
2.m�1/

.m�1/C3
C

2

.m�1/C2
C

2Œ.m�1/�2�

3
C

1

2

�
C

2Œ.mC1/�1�

.mC1/C2
�

2Œ.mC1/�3�

.mC1/C1
�

2

mC1
C

2

3
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D
2m

mC3
C

2

mC2
C

2.m�2/

3
C

1

2

with equalities if and only if G0 Š U2.m�1/;m�1 and t D mC 1, i.e., G Š U2m;m.
This proves Case 1.

Case 2. G is a unicyclic graph with maximum degree 3 obtained by attaching
2m�p pendent vertices to some vertices of a cycle Cp (m� p � 2m�1).

If m D 3, then G is either the unicyclic graph obtained by attaching a pendent
vertex to one vertex of C5 or the unicyclic graph obtained by attaching a pendent
vertex to two adjacent vertices of C4 (since we assume G 6Š U6). Then we have
H.G/� 79

30
> 77

30
DH.U6;3/, and the theorem holds. So we may assume that m� 4.

We consider two subcases according to the value of p.
Subcase 2.1. p Dm.
Then every vertex of Cp is attached by a pendent vertex and H.G/ D 5m

6
. Let

f .x/ D 5x
6
�

�
2x

xC3
C

2
xC2
C

2.x�2/
3
C

1
2

�
D

x
6
C

6
xC3
�

2
xC2
�

7
6

. For x � 4, we
have

f 0.x/D
1

6
�

6

.xC3/2
C

2

.xC2/2
�

1

6
�

6

.4C3/2
C

2

.xC2/2
> 0:

This implies that f .x/ is increasing for x � 4, and thus f .m/� f .4/D 1
42

> 0, i.e.,
H.G/ > H.U2m;m/.

Subcase 2.2. mC1� p � 2m�1.
In this subcase, there exists at least one edge, say xy, on Cp such that xy 2M .

Then d.x/D d.y/D 2; for otherwise, the pendent vertex adjacent to x or y can not be
M -saturated. Let ´ be the neighbor of x different from y in G, and let G00DG�x´C

y´. Then G00 2U2m;m n fU8g. By Lemma 3, we have H.G/ > H.G00/. Comparing
with the graph G, we see that the length of the unique cycle in G00 decreases by 1.
Repeating this operation from G to G00, we eventually obtain the unicyclic graph
described in Subcase 2:1 and the result holds. This finishes the proof of the theorem.

�

Since H.U6;3/D 77
30

> 5
2
DH.U6/ and H.U8;4/D 139

42
> 347

105
DH.U8/, by The-

orem 1, we immediately obtain the following two results.

Corollary 1. Let G 2U6;3, then H.G/� 5
2

with equality if and only if G Š U6.

Corollary 2. Let G 2U8;4, then H.G/� 347
105

with equality if and only if G ŠU8.

We now prove the main result of this section.

Theorem 2. Let G 2Un;m n fU6;U8g, where 2�m� bn
2
c. Then

H.G/�
2m

n�mC3
C

2.n�2mC1/

n�mC2
C

2.m�2/

3
C

1

2

with equality if and only if G Š Un;m.
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Proof. We prove Theorem 2 by induction on n. If nD 2m, then by Theorem 1, the
assertion of the theorem holds. So we may assume that n > 2m and the result holds
for graphs in Un�1;mnfU6;U8g. By Lemma 6, since Cn is the unique unicyclic graph
on n vertices with the maximum harmonic index, we may also assume that G 6Š Cn.
Then by Lemma 5, there exists a maximum matching M and a pendant vertex u in G

such that u is not M -saturated. Let v be the unique neighbor of u with d.v/D s � 2,
and let G0DG�u. Then G0 2Un�1;m. Since M contains exactly one edge incident
with v and there are n�m edges of G outside M , we have s � n�mC1. Let r be
the number of pendant neighbors of v in G, where 1 � r � s� 1. Note that at least
r �1 pendant neighbors of v are not M -saturated, and there are n�2m vertices are
not M -saturated in G. Then r � n�2mC1.

If G0 Š U6, then n D 7, m D 3 and either G Š W2 or G Š W3 (see Figure 2).
Since H.W2/D 46

15
> H.W3/D 284

105
> 113

42
DH.U7;3/, we see that the result holds.

If G0ŠU8, then nD 9, mD 4 and s � 5. By Lemma 1(ii) (with kD n�2mC1D

2) and Lemma 2(ii), we have

H.G/�H.U8/C
2.s�2/

sC2
C

2.4� s/

sC1
�

2

s

�
347

105
C

2 � .5�2/

5C2
C

2 � .4�5/

5C1
�

2

5
D

24

7
>

143

42
DH.U9;4/;

and thus the assertion of the theorem holds.
Therefore we may assume that G0 6Š U6;U8. Then by Lemma 1(ii) (with k D

n�2mC1), Lemma 2(ii) and the induction hypothesis, we conclude that

H.G/�H.G0/C
2Œs� .n�2mC1/�

sC2
C

2Œ2.n�2mC1/� s�

sC1

�
2Œ.n�2mC1/�1�

s

�

�
2m

.n�1/�mC3
C

2Œ.n�1/�2mC1�

.n�1/�mC2
C

2.m�2/

3
C

1

2

�
C

2Œ.n�mC1/� .n�2mC1/�

.n�mC1/C2
C

2Œ2.n�2mC1/� .n�mC1/�

.n�mC1/C1

�
2Œ.n�2mC1/�1�

n�mC1

D
2m

n�mC3
C

2.n�2mC1/

n�mC2
C

2.m�2/

3
C

1

2

with equalities if and only if G0 Š Un�1;m, s D n�mC1 and r D n�2mC1, i.e.,
G Š Un;m. This completes the proof of the theorem. �

By applying Theorem 2, we can also obtain the minimum harmonic index for
graphs in Un (n� 4). This is one of the main results in [29].
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Corollary 3. Let G 2Un with n� 4. Then

H.G/�
4

nC1
C

2.n�3/

n
C

1

2

with equality if and only if G Š Un;2.

Proof. Let M be a maximum matching in G, then 2 � jM j D m � bn
2
c (since

n� 4). If mD 2, then by Theorem 2, we have

H.G/�
2 �2

n�2C3
C

2.n�2 �2C1/

n�2C2
C

2 � .2�2/

3
C

1

2

D
4

nC1
C

2.n�3/

n
C

1

2

with equality if and only if G Š Un;2. So we may assume that m� 3.
If G Š U6, then H.G/ D 5

2
> 29

14
D H.U6;2/, we see that the result holds. If

G ŠU8, then H.G/D 347
105

> 79
36
DH.U8;2/, and the result also holds. Now suppose

that G 6ŠU6;U8. Then by Theorem 2 and Lemma 3, we see that H.G/�H.Un;m/ >

H.Un;m�1/ > � � �> H.Un;2/. So the assertion of the corollary holds. �

4. MINIMUM HARMONIC INDEX FOR BICYCLIC GRAPHS WITH GIVEN
MATCHING NUMBER

Let Bn be the set of bicyclic graphs with n � 4 vertices, and let Bn;m be the
set of bicyclic graphs with n vertices and matching number m, where 2 �m � bn

2
c.

In this section, we present the minimum harmonic index for graphs in Bn;m, and
characterize the corresponding extremal graphs.

We denote by QBn the set of bicyclic graphs with n � 4 vertices containing no
pendent vertices. Let B1

n be the set of bicyclic graphs on n � 6 vertices obtained by
connecting two vertex-disjoint cycles by a new edge, and let B2

n be the set of bicyclic
graphs on n� 7 vertices obtained by connecting two vertex-disjoint cycles by a path
of length at least two. Let B3

n be the set of bicyclic graphs on n� 5 vertices obtained
by identifying a vertex of a cycle and a vertex of the other cycle. Let B4

n be the set
of bicyclic graphs on n � 4 obtained from Cn by adding a new edge, and let B5

n be
the set of bicyclic graphs on n� 5 obtained by connecting two non-adjacent vertices
by a path of length at least two. Clearly, QBn D

S5
iD1 Bi

n.
For i D 4;5, we use Bi to denote the unique bicyclic graph on i vertices in Bi

n.
Let Bn;a;b be the bicyclic graph on n vertices obtained by attaching a�3 and b�3

pendent vertices to the two vertices of degree 3 of B4, respectively, where a � b �

3 and aC b D nC 2. Let B 0
n;a;b

be the bicyclic graph on n vertices obtained by
attaching a� 3 and b � 3 pendent vertices to the two vertices of degree 3 of B5,
respectively, where a � b � 3 and aC b D nC 1. Then B4 Š B4;3;3 and B5 Š

B 05;3;3. See Figure 3 and Figure 4 for an illustration. We first determine the minimum
harmonic index for graphs in Bn with matching number 2.
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Bn,a,bB4

a− 3 b− 3

FIGURE 3. The graphs B4 and Bn;a;b .

B′
n,a,bB5

a− 3 b− 3
xy z

FIGURE 4. The graphs B5 and B 0
n;a;b

.

Theorem 3. Let G 2Bn;2 with n� 4. Then

H.G/�
2

nC2
C

4

nC1
C

2.n�4/

n
C

4

5

with equality if and only if G Š Bn;n�1;3.

Proof. Since B4 is the unique bicyclic graph on 4 vertices in B4;2, we see that the
result holds for n D 4. If n D 5, then G 2 fFi j1 � i � 3g[B5[B5;4;3, where Fi

(1� i � 3) are shown in Figure 5. It is easy to calculate that H.F1/D 73
30

> H.B5/D
12
5

> H.F2/D 7
3

> H.F3/D 23
10

> 226
105
DH.B5;4;3/, and hence the assertion of the

theorem holds. So we may assume that n � 6. We consider three cases according to
the structure of G.

F2 F3F1

FIGURE 5. The graphs F1, F2 and F3.
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Case 1. G Š Bn;a;b , where a � b � 3 and aCb D nC2.
Let f .x/D 4

xC1
�

8
x

. For x � 3, we have

f 00.x/D
8

.xC1/3
�

16

x3
D
�8.x3C6x2C6xC2/

x3.xC1/3
< 0:

This implies that f .xC1/�f .x/ is decreasing for x � 3. Suppose a � b � 4. Then

H.Bn;aC1;b�1/�H.Bn;a;b/

D

�
4

.aC1/C2
C

2Œ.aC1/�3�

.aC1/C1
C

4

.b�1/C2
C

2Œ.b�1/�3�

.b�1/C1

C
2

.aC1/C .b�1/

�
�

�
4

aC2
C

2.a�3/

aC1
C

4

bC2
C

2.b�3/

bC1
C

2

aCb

�
D

�
4

aC3
�

12

aC2
C

8

aC1

�
�

�
4

bC2
�

12

bC1
C

8

b

�
D Œf .aC2/�f .aC1/�� Œf .bC1/�f .b/� < 0;

i.e., H.Bn;a;b/ > H.Bn;aC1;b�1/ for a � b � 4. So we conclude that H.Bn;a;b/ �

H.Bn;n�1;3/ with equality if and only if aD n�1 and b D 3.
Case 2. G is the bicyclic graph obtained by attaching n�4 pendent vertices to one

vertex of degree 2 of B4.
Then

H.G/�H.Bn;n�1;3/

D

�
4

nC1
C

2.n�4/

n�1
C

4

5
C

1

3

�
�

�
2

nC2
C

4

nC1
C

2.n�4/

n
C

4

5

�
D

8

n
�

2

nC2
�

6

n�1
C

1

3
D

�
2

n
�

2

nC2

�
�

6

n.n�1/
C

1

3

�

�
2

n
�

2

nC2

�
�

6

6 � .6�1/
C

1

3
> 0:

So Case 2 holds.
Case 3. G Š B 0

n;a;b
, where a � b � 3 and aCb D nC1.

Let x be one vertex of degree 2, and let y, ´ be the two vertices of degree at least
3 in G, see Figure 4. Let G0 D G � x´Cy´, then G0 Š Bn;aC1;b . By Lemma 3,
we have H.G/ > H.G0/. Hence by the argument in Case 1, we deduce that H.G/ >

H.Bn;n�1;3/. This completes the proof of the theorem. �

The following lemma was proved by Zhu, Liu and Wang [33], which will be used
in the following argument.

Lemma 7. Let G 2 Bn;m .n > 2m � 6/ and G contains at least one pendent
vertex. Then there exists a maximum matching M and a pendent vertex u in G such
that u is not M -saturated.
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Bn,m

n− 2m+ 1m− 3

B8

FIGURE 6. The graphs B8 and Bn;m.

Let B8 be the bicyclic graph on 8 vertices obtained by attaching a pendent vertex
to every vertex of B4. For 3�m� bn

2
c, we use Bn;m to denote the bicyclic graph on

n vertices obtained by attaching n�2mC1 pendent vertices and m�3 paths on two
vertices to the vertex of degree 4 of F2, see Figure 6.

Lemma 8. Let G 2B2m;m nfB8g .m� 3/ and no pendent vertex has neighbor of
degree 2. Then

H.G/�
2.mC1/

mC4
C

2

mC3
C

2.m�3/

3
C1

with equality if and only if G Š B6;3.

Proof. Let M be a maximum matching in G, then jM j Dm and every vertex in G

is adjacent to at most one pendent vertex. Since G 2B2m;m n fB8g and no pendent
vertex has neighbor of degree 2, we see that G can be obtained by attaching some
pendent vertices to a bicyclic graph QG 2 QBk (m � k � 2m). We consider two cases
according to G contains vertices of degree 2 or not.

Case 1. There is no vertex of degree 2 in G.
Then either k Dm or k DmC1. If k Dm, then G can be obtained by attaching a

pendent vertex to every vertex of a bicyclic graph QG 2 QBm. If k DmC1, then G can
be obtained by attaching a pendent vertex to every vertex of degree 2 of a bicyclic
graph QG 2B1

mC1[B4
mC1.

Q2Q1

FIGURE 7. The graphs Q1 and Q2.

If mD 3, then QG Š B4 and G ŠQ1 (see Figure 7). Since H.Q1/D 8
3

> 52
21
D

2�.3C1/
3C4

C
2

3C3
C

2�.3�3/
3
C1, we know that the lemma holds.
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If mD 4, since we assume G 6ŠB8, we have QG Š F1 and G ŠQ2 (see Figure 7).
So the assertion of the lemma holds because H.Q2/D 7

2
> 269

84
D

2�.4C1/
4C4

C
2

4C3
C

2�.4�3/
3
C1.

Now assume that m� 5. Then

H.G/D

8̂̂<̂
:̂

5m
6
�

59
420

; if QG 2B1
m[B4

m;
5m
6
�

16
105

; if QG 2B2
m[B5

m;
5m
6
�

1
6
; if QG 2B3

m;
5m
6
C

1
6
; if QG 2B1

mC1[B4
mC1:

Let f .x/ D
�

5x
6
�

1
6

�
�

�
2.xC1/

xC4
C

2
xC3
C

2.x�3/
3
C1

�
D

x
6
C

6
xC4
�

2
xC3
�

7
6

. For
x � 5, we have

f 0.x/D
1

6
�

6

.xC4/2
C

2

.xC3/2
�

1

6
�

6

.5C4/2
C

2

.xC3/2
> 0:

This implies that f .x/ is increasing for x � 5, and thus f .m/� f .5/D 1
12

> 0, i.e.,
H.G/ > 2.mC1/

mC4
C

2
mC3
C

2.m�3/
3
C1.

Case 2. There exists a vertex, say u, of degree 2 in G.
Let v and w be the two neighbors of u in G such that d.v/D s � 2 and d.w/D

t � 2. By the symmetry between v and w, we may assume that uv 2M .
Suppose that no vertex of degree 2 is contained in the cycles of G. Since no

pendent vertex has neighbor of degree 2 in G, we conclude that QG 2 B2
k

and u

lies on the path connecting two vertex-disjoint cycles of G. Hence vw … E.G/. Let
G0DG�uwCvw, then G0 2B2m;mnfB8g. By Lemma 3, we have H.G/ > H.G0/.
Comparing with the graph G, we see that the number of vertices of degree 2 in G0

decreases by 1. Repeating this operation from G to G0, we finally obtain a bicyclic
graph described in Case 1, and hence the result holds.

So we may choose u such that u lies on some cycle of G. Let N.w/ D fw0 D

u;w1; : : : ;wt�1g, and let G00DG�uw. Then G00 is a unicyclic graph on 2m vertices
with a perfect matching M , i.e., G00 2U2m;m. Note that 2� s; t � 5 and w is adjacent
to at most one pendent vertex. Since 2

sC2
�

2
sC1

is increasing for s � 2, 2
tCx
�

2
t�1Cx

is increasing for x � 1 and by Lemma 2(i), we have

H.G/DH.G00/C

t�1X
iD1

�
2

tCd.wi /
�

2

t �1Cd.wi /

�
C

2

tC2
C

�
2

sC2
�

2

sC1

�
�H.G00/C

�
2

tC1
�

2

t

�
C .t �2/

�
2

tC2
�

2

tC1

�
C

2

tC2

C

�
2

2C2
�

2

2C1

�
DH.G00/C

�
2.t �1/

tC2
�

2.t �3/

tC1
�

2

t

�
�

1

6
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�H.G00/C

�
2 � .5�1/

5C2
�

2 � .5�3/

5C1
�

2

5

�
�

1

6

DH.G00/�
19

210
(�)

with equalities if and only if s D 2, t D 5, one neighbor of w has degree 1 and the
other neighbors of w have degree 2.

R1 R2

FIGURE 8. The graphs R1 and R2.

If G00 Š U6, then either G00 Š R1 or G00 Š R2 (see Figure 8). Since H.R1/ D
14
5

> H.R2/D 533
210

> 52
21
D

2�.3C1/
3C4

C
2

3C3
C

2�.3�3/
3
C1, the assertion of the lemma

holds. If G00 Š U8, then by (�), we have

H.G/�H.U8/�
19

210
D

347

105
�

19

210
D

45

14

>
269

84
D

2 � .4C1/

4C4
C

2

4C3
C

2 � .4�3/

3
C1;

and the result holds. So suppose that G00 6Š U6;U8. It follows from Lemma 2(i) that

2Œ.mC2/�1�

.mC2/C2
�

2Œ.mC2/�3�

.mC2/C1
�

2

mC2

�
2 � Œ.3C2/�1�

.3C2/C2
�

2 � Œ.3C2/�3�

.3C2/C1
�

2

3C2
D

8

105

since m� 3. Then by (�) and Theorem 1, we have

H.G/�H.G00/�
19

210

�

�
2m

mC3
C

2

mC2
C

2.m�2/

3
C

1

2

�
�

19

210

D

�
2m

mC3
C

2

mC2
C

2.m�3/

3
C1

�
C

8

105

�

�
2m

mC3
C

2

mC2
C

2.m�3/

3
C1

�
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C

�
2Œ.mC2/�1�

.mC2/C2
�

2Œ.mC2/�3�

.mC2/C1
�

2

mC2

�
D

2.mC1/

mC4
C

2

mC3
C

2.m�3/

3
C1

with equalities if and only if s D 2, t D 5, G00 Š U2m;m and mD 3, i.e., G Š B6;3.
This finishes the proof of the lemma. �

Theorem 4. Let G 2B2m;m n fB8g, where m� 3. Then

H.G/�
2.mC1/

mC4
C

2

mC3
C

2.m�3/

3
C1

with equality if and only if G Š B2m;m.

Proof. We prove Theorem 4 by induction on m. If mD 3, then by Lemma 7, we
may assume that there exists a pendent vertex in G whose neighbor is a vertex of
degree 2. Hence G is the bicyclic graph obtained from B4 by attaching a path on
two vertices to either one vertex of degree 3 or one vertex of degree 2. Then we have
H.G/ � 289

105
> 52

21
DH.B6;3/, and the assertion of the theorem holds. So we may

assume that m � 4 and the result holds for graphs in B2.m�1/;m�1 n fB8g. Let M

be a maximum matching in G, then jM j Dm. If no pendent vertex has neighbor of
degree 2 in G, then by Lemma 7, we see that the result holds.

Now suppose that there exists a pendent vertex u in G whose neighbor v is a
vertex of degree 2. Let w be the neighbor of v different from u with d.w/D t � 2,
and let G0 D G �u� v. Then uv 2M and G0 2B2.m�1/;m�1. Since M contains
exactly one edge incident with w and there are mC1 edges of G outside M , we have
t �mC2. Note that w is adjacent to at most one pendent vertex in G.

If G0 Š B8, then t � 5. By Lemma 1(i) and Lemma 2(i), we have

H.G/�H.B8/C
2.t �1/

tC2
�

2.t �3/

tC1
�

2

t
C

2

3

�
447

140
C

2 � .5�1/

5C2
�

2 � .5�3/

5C1
�

2

5
C

2

3
D

551

140
>

47

12
DH.U10;5/;

and hence the assertion of the theorem holds.
So we may further assume that G0 6Š B8. Then by Lemma 1(i), Lemma 2(i) and

the induction hypothesis, we conclude that

H.G/�H.G0/C
2.t �1/

tC2
�

2.t �3/

tC1
�

2

t
C

2

3

�

�
2Œ.m�1/C1�

.m�1/C4
C

2

.m�1/C3
C

2Œ.m�1/�3�

3
C1

�
C

2Œ.mC2/�1�

.mC2/C2
�

2Œ.mC2/�3�

.mC2/C1
�

2

mC2
C

2

3
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D
2.mC1/

mC4
C

2

mC3
C

2.m�3/

3
C1

with equalities if and only if G0 ŠB2.m�1/;m�1 and t DmC2, i.e., G ŠB2m;m. So
Theorem 4 holds. �

Since H.B8;4/D 269
84

> 447
140
DH.B8/, by Theorem 4, we immediately obtain the

following result.

Corollary 4. Let G 2B8;4, then H.G/� 447
140

with equality if and only if GŠB8.

We now present the minimum harmonic index for graphs in Bn;m n fB8g, where
3�m� bn

2
c.

Theorem 5. Let G 2Bn;m n fB8g, where 3�m� bn
2
c. Then

H.G/�
2.mC1/

n�mC4
C

2.n�2mC1/

n�mC3
C

2.m�3/

3
C1

with equality if and only if G Š Bn;m.

Proof. We prove the theorem by induction on n. If nD 2m, then by Theorem 4,
the assertion of the theorem holds. So we may assume that n > 2m and the result
holds for graphs in Bn�1;m n fB8g. If there is no pendent vertex in G, then G 2 QBn

and nD 2mC1. It is easy to check that

H.G/D

8<:
mC 13

30
; if G 2B1

2mC1[B4
2mC1;

mC 2
5
; if G 2B2

2mC1[B5
2mC1;

mC 1
3
; if G 2B3

2mC1:

This implies that

H.G/�H.B2mC1;m/

�

�
mC

1

3

�
�

�
2.mC1/

.2mC1/�mC4
C

2Œ.2mC1/�2mC1�

.2mC1/�mC3
C

2.m�3/

3
C1

�
D

m

3
C

8

mC5
�

4

mC4
�

2

3
D

m�2

3
C

4.mC3/

.mC4/.mC5/
> 0;

i.e., H.G/ > H.B2mC1;m/.
So we may assume that G contains at least one pendent vertex. Then by Lemma

7, there exists a maximum matching M and a pendent vertex u in G such that u

is not M -saturated. Let v be the unique neighbor of u with d.v/ D s � 2, and let
G0 D G�u. Then G0 2Bn�1;m. Since M contains exactly one edge incident with
v and there are nC 1�m edges of G outside M , we have s � n�mC 2. Let r be
the number of pendant neighbors of v in G, where 1 � r � s� 1. Note that at least
r �1 pendant neighbors of v are not M -saturated, and there are n�2m vertices are
not M -saturated in G. Then r � n�2mC1.
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If G0ŠB8, then nD 9, mD 4 and s � 5. By Lemma 1(ii) (with kD n�2mC1D

2) and Lemma 2(ii), we deduce that

H.G/�H.B8/C
2.s�2/

sC2
C

2.4� s/

sC1
�

2

s

�
447

140
C

2 � .5�2/

5C2
C

2 � .4�5/

5C1
�

2

5
D

1393

420
>

59

18
DH.B9;4/;

and hence the assertion of the theorem holds.
Therefore we may assume that G0 6Š B8. Then by Lemma 1(ii) (with k D n�

2mC1), Lemma 2(ii) and the induction hypothesis, we have

H.G/�H.G0/C
2Œs� .n�2mC1/�

sC2
C

2Œ2.n�2mC1/� s�

sC1

�
2Œ.n�2mC1/�1�

s

�

�
2.mC1/

.n�1/�mC4
C

2Œ.n�1/�2mC1�

.n�1/�mC3
C

2.m�3/

3
C1

�
C

2Œ.n�mC2/� .n�2mC1/�

.n�mC2/C2
C

2Œ2.n�2mC1/� .n�mC2/�

.n�mC2/C1

�
2Œ.n�2mC1/�1�

n�mC2

D
2.mC1/

n�mC4
C

2.n�2mC1/

n�mC3
C

2.m�3/

3
C1

with equalities if and only if G0 Š Bn�1;m, s D n�mC2 and r D n�2mC1, i.e.,
G Š Bn;m. This completes the proof of the theorem. �

We can also determine the minimum harmonic index for graphs in Bn (see also in
[31]) by using Theorem 3 and Theorem 5.

Corollary 5. Let G 2Bn with n� 4. Then

H.G/�
2

nC2
C

4

nC1
C

2.n�4/

n
C

4

5

with equality if and only if G Š Bn;n�1;3.

Proof. Let M be a maximum matching in G, then 2 � jM j D m � bn
2
c (since

n� 4). If mD 2, then the result follows immediately from Theorem 3.
If mD 3, then by Theorem 5, we have

H.G/�
2 � .3C1/

n�3C4
C

2.n�2 �3C1/

n�3C3
C

2 � .3�3/

3
C1

D
8

nC1
C

2.n�5/

n
C1
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with equality if and only if G Š Bn;3. Note that in this case n� 6. Since

H.Bn;3/�H.Bn;n�1;3/

D

�
8

nC1
C

2.n�5/

n
C1

�
�

�
2

nC2
C

4

nC1
C

2.n�4/

n
C

4

5

�
D

�
4

nC1
�

2

nC2
�

2

n

�
C

1

5
D

�4

n.nC1/.nC2/
C

1

5

�
�4

6 � .6C1/ � .6C2/
C

1

5
D

79

420
> 0;

we know that the assertion of the corollary holds.
So we may assume that m� 4. If G Š B8, then H.G/D 447

140
> 22

9
DH.B8;7;3/,

we see that Corollary 5 holds. Now suppose that G 6Š B8. Then by Theorem 5
and Lemma 3, we see that H.G/ � H.Bn;m/ > H.Bn;m�1/ > � � � > H.Bn;3/ >

H.Bn;n�1;3/. This finishes the proof of the corollary. �
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