

HU e-ISSN 1787-2413

THE HARMONIC INDEX FOR UNICYCLIC AND BICYCLIC GRAPHS WITH GIVEN MATCHING NUMBER

LINGPING ZHONG

Received 24 October, 2013

Abstract. The harmonic index of a graph G is defined as the sum of the weights $\frac{2}{d(u)+d(v)}$ of all edges uv of G, where d(u) denotes the degree of a vertex u in G. In this paper, we present the minimum harmonic indices for unicyclic and bicyclic graphs with n vertices and matching number m ($2 \le m \le \lfloor \frac{n}{2} \rfloor$), respectively. The corresponding extremal graphs are also characterized.

2000 Mathematics Subject Classification: 05C07; 05C70; 05C35; 92E10

Keywords: harmonic index, unicyclic graph, bicyclic graph, matching number

1. INTRODUCTION

Let G be a simple graph with vertex set V(G) and edge set E(G). The Randić index R(G), proposed by Randić [20] in 1975, is defined as

$$R(G) = \sum_{uv \in E(G)} \frac{1}{\sqrt{d(u)d(v)}},$$

where d(u) denotes the degree of a vertex u of G. The Randić index is one of the most successful molecular descriptors in structure-property and structure-activity relationship studies. Mathematical properties of this descriptor have been studied extensively (see [9, 10, 14, 15, 19] and the references cited therein).

In this paper, we consider a closely related variant of the Randić index, named the harmonic index. For a graph G, the harmonic index H(G) is defined as

$$H(G) = \sum_{uv \in E(G)} \frac{2}{d(u) + d(v)}.$$

This index first appeared in [6], and it can also be viewed as a particular case of the general sum-connectivity index proposed by Zhou and Trinajstić in [32].

© 2015 Miskolc University Press

This work was supported by the Fundamental Research Funds for the Central Universities (No. NS2015078).

Favaron, Mahéo and Saclé [7] considered the relation between the harmonic index and the eigenvalues of graphs. Zhong [28, 29], Zhong and Xu [30] determined the minimum and maximum harmonic indices for simple connected graphs, trees, unicyclic and bicyclic graphs, and characterized the corresponding extremal graphs. Wu, Tang and Deng [23] found the minimum harmonic index for graphs (triangle-free graphs, respectively) with minimum degree at least 2, and characterized the corresponding extremal graphs. Deng, Balachandran, Ayyaswamy and Venkatakrishnan [2] considered the relation between the harmonic index and the chromatic number of a graph by using the effect of removal of a minimum degree vertex on the harmonic index. Liu [17] proposed a conjecture concerning the relation between the harmonic index and the diameter of a connected graph, and showed that the conjecture is true for trees. Ilić [12], Xu [25], Zhong and Xu [31] established some relationships between the harmonic index and several other topological indices. The chemical applicability of the harmonic index was also recently investigated [8, 11]. See [3, 18, 24, 26] for more information of this index.

In this paper, we determine the minimum harmonic indices for unicyclic and bicyclic graphs with *n* vertices and matching number m $(2 \le m \le \lfloor \frac{n}{2} \rfloor)$, respectively. The corresponding extremal graphs are also characterized. The related problems have been well-studied for several other topological indices, such as the Randić index [16,33], the modified Randić index [13] and the sum-connectivity index [4,5,21,22].

2. PRELIMINARIES

Let G be a graph. For any vertex $v \in V(G)$, we use $N_G(v)$ (or N(v) if there is no ambiguity) to denote the set of neighbors of v in G. A pendent vertex is a vertex of degree 1. For two distinct vertices u and v of G, the distance d(u, v) between u and v is the number of edges in a shortest path joining u and v in G. A unicyclic graph is a connected graph with n vertices and n edges, and a bicyclic graph is a connected graph with n + 1 edges. We use C_n to denote the cycle on n vertices.

A matching M in a graph G is a subset of E(G) such that no two edges in M share a common vertex. A matching M in G is said to be maximum, if for any other matching M' in G, $|M'| \le |M|$. The matching number of G is the number of edges in a maximum matching of G. If M is a matching in G and the vertex $v \in V(G)$ is incident with an edge of M, then v is said to be M-saturated, and if every vertex in G is M-saturated, then M is a perfect matching.

For any vertex $v \in V(G)$, we use G - v to denote the graph resulting from G by deleting the vertex v and its incident edges. We define G - uv to be the graph obtained from G by deleting the edge $uv \in E(G)$, and G + uv to be the graph obtained from G by adding an edge uv between two non-adjacent vertices u and v of G.

We now establish some lemmas which will be used frequently in later proofs.

Lemma 1. Let G be a connected graph on $n \ge 4$ vertices with a pendent vertex u. Let v be the unique neighbor of u with d(v) = s, and let w be a neighbor of v different from u with d(w) = t.

(i) If s = 2 and w is adjacent to at most one pendent vertex in G, then

$$H(G) \ge H(G - u - v) + \frac{2(t - 1)}{t + 2} - \frac{2(t - 3)}{t + 1} - \frac{2}{t} + \frac{2}{3}$$

with equality if and only if one neighbor of w has degree 1 and the other neighbors of w have degree 2.

(ii) If v is adjacent to at most k pendent vertices in G, then

$$H(G) \ge H(G-u) + \frac{2(s-k)}{s+2} + \frac{2(2k-s)}{s+1} - \frac{2(k-1)}{s}$$

with equality if and only if k neighbors of v have degree 1 and the other neighbors of v have degree 2.

Proof. (i) Let $N(w) = \{w_0 = v, w_1, \dots, w_{t-1}\}$. Since w is adjacent to at most one pendent vertex in G, we may assume that $d(w_1) \ge 1$, and $d(w_i) \ge 2$ for each $2 \le i \le t-1$ (if $t \ge 3$). Note that $\frac{2}{t+x} - \frac{2}{t-1+x}$ is increasing for $x \ge 1$, we have

$$H(G) = H(G - u - v) + \sum_{i=1}^{t-1} \left(\frac{2}{t + d(w_i)} - \frac{2}{t - 1 + d(w_i)} \right) + \frac{2}{t + 2} + \frac{2}{3}$$

$$\geq H(G - u - v) + \left(\frac{2}{t + 1} - \frac{2}{t} \right) + (t - 2) \left(\frac{2}{t + 2} - \frac{2}{t + 1} \right) + \frac{2}{t + 2} + \frac{2}{3}$$

$$= H(G - u - v) + \frac{2(t - 1)}{t + 2} - \frac{2(t - 3)}{t + 1} - \frac{2}{t} + \frac{2}{3}$$

with equality if and only if $d(w_1) = 1$ and $d(w_i) = 2$ for each $2 \le i \le t - 1$ (if $t \ge 3$). This proves (i).

(ii) Let $r (1 \le r \le k)$ be the number of pendent neighbors of v in G, and let $N(v) = \{v_0 = u, v_1, \dots, v_{s-1}\}$. Without loss of generality, we may assume that $d(v_i) = 1$ for each $1 \le i \le r-1$ (if $r \ge 2$), and $d(v_i) \ge 2$ for each $r \le i \le s-1$ (if $s \ge r+1$). Note that $\frac{2}{s+x} - \frac{2}{s-1+x}$ is increasing for $x \ge 1$ and $\frac{4}{s+1} - \frac{2}{s+2} - \frac{2}{s} < 0$, we have

$$H(G) = H(G-u) + (r-1)\left(\frac{2}{s+1} - \frac{2}{s}\right)$$

+ $\sum_{i=r}^{s-1} \left(\frac{2}{s+d(v_i)} - \frac{2}{s-1+d(v_i)}\right) + \frac{2}{s+1}$
 $\ge H(G-u) + (r-1)\left(\frac{2}{s+1} - \frac{2}{s}\right) + (s-r)\left(\frac{2}{s+2} - \frac{2}{s+1}\right) + \frac{2}{s+1}$
 $= H(G-u) + r\left(\frac{4}{s+1} - \frac{2}{s+2} - \frac{2}{s}\right) + \frac{2s}{s+2} - \frac{2s}{s+1} + \frac{2}{s}$

$$\geq H(G-u) + k\left(\frac{4}{s+1} - \frac{2}{s+2} - \frac{2}{s}\right) + \frac{2s}{s+2} - \frac{2s}{s+1} + \frac{2}{s}$$
$$= H(G-u) + \frac{2(s-k)}{s+2} + \frac{2(2k-s)}{s+1} - \frac{2(k-1)}{s}$$

with equalities if and only if r = k and $d(v_i) = 2$ for each $k \le i \le s - 1$ (if $s \ge k + 1$). This completes the proof of the lemma.

Lemma 2. (i) The function $\frac{2(x-1)}{x+2} - \frac{2(x-3)}{x+1} - \frac{2}{x}$ is decreasing for $x \ge 2$. (ii) For $k \ge 1$, the function $\frac{2(x-k)}{x+2} + \frac{2(2k-x)}{x+1} - \frac{2(k-1)}{x}$ is decreasing for $x \ge 1$. k + 1.

Proof. (i) Let
$$f(x) = \frac{2(x-1)}{x+2} - \frac{2(x-3)}{x+1} - \frac{2}{x} = \frac{8}{x+1} - \frac{6}{x+2} - \frac{2}{x}$$
. For $x \ge 2$, we have

$$f'(x) = -\frac{8}{(x+1)^2} + \frac{6}{(x+2)^2} + \frac{2}{x^2} = \frac{-8x^3 + 24x + 8}{x^2(x+1)^2(x+2)^2}$$

$$= \frac{-8x(x^2 - 4) - 8(x - 1)}{x^2(x+1)^2(x+2)^2} < 0,$$

and hence (i) holds.

(ii) Let $g(x) = \frac{2(x-k)}{x+2} + \frac{2(2k-x)}{x+1} - \frac{2(k-1)}{x}$ and $g_1(x) = \frac{2(k-1)}{x} + \frac{2(x-1-k)}{x+1}$. Then $g(x) = g_1(x+1) - g_1(x)$. For $x \ge k+1 \ge 2$, we have

$$g_1''(x) = \frac{4(k-1)}{x^3} - \frac{4(k+2)}{(x+1)^3} = \frac{-12x^3 + 12(k-1)x^2 + 12(k-1)x + 4(k-1)}{x^3(x+1)^3}$$
$$= \frac{-12x^2(x-k) - 12x(x-k) - 4(3x-k+1)}{x^3(x+1)^3} < 0,$$

and $g'(x) = g'_1(x+1) - g'_1(x) < 0$. So the assertion of the lemma holds.

Lemma 3. Let G be a connected graph, and let u be a vertex of degree 2 in G with two neighbors v and w such that $d(v) \ge 2$ and $vw \notin E(G)$. Let G' = G - uw + vw, then H(G) > H(G').

Proof. Let
$$d(v) = p \ge 2$$
 and let $N(v) = \{v_0 = u, v_1, \dots, v_{p-1}\}$. Then

$$H(G) - H(G')$$

$$= \left(\sum_{i=1}^{p-1} \frac{2}{p+d(v_i)} + \frac{2}{2+d(w)}\right) - \left(\sum_{i=1}^{p-1} \frac{2}{p+1+d(v_i)} + \frac{2}{p+1+d(w)}\right)$$

$$= \sum_{i=1}^{p-1} \left(\frac{2}{p+d(v_i)} - \frac{2}{p+1+d(v_i)}\right) + \left(\frac{2}{2+d(w)} - \frac{2}{p+1+d(w)}\right) > 0.$$
So proves the lemma.

This proves the lemma.

3. MINIMUM HARMONIC INDEX FOR UNICYCLIC GRAPHS WITH GIVEN MATCHING NUMBER

Let \mathcal{U}_n be the set of unicyclic graphs with $n \ge 3$ vertices, and let $\mathcal{U}_{n,m}$ be the set of unicyclic graphs with n vertices and matching number m, where $2 \le m \le \lfloor \frac{n}{2} \rfloor$. In this section, we determine the minimum harmonic index for graphs in $\mathcal{U}_{n,m}$, and characterize the corresponding extremal graphs.

For a unicyclic graph G with the cycle C_p , the forest obtained from G by deleting the edges in C_p consists of p vertex-disjoint trees, each containing a vertex of C_p , which is called the root of this tree in G. These trees are called the branches of G. Chang and Tian [1] showed the following lemma.

Lemma 4. Let $G \in \mathscr{U}_{2m,m}$ $(m \ge 3)$, and let T be a branch of G with root r. If $u \in V(T)$ is a pendent vertex which is furthest from the root r with $d(u,r) \ge 2$, then u is adjacent to a vertex of degree 2.

The second lemma was proved by Yu and Tian [27].

Lemma 5. Let $G \in \mathcal{U}_{n,m}$ (n > 2m) and $G \not\cong C_n$. Then there exists a maximum matching M and a pendant vertex u in G such that u is not M-saturated.

Zhong [29] proved the following result.

Lemma 6. Let $G \in \mathcal{U}_n$ with $n \ge 3$. Then $H(G) \le \frac{n}{2}$ with equality if and only if $G \cong C_n$.

FIGURE 1. The graphs U_6 , U_8 and $U_{n,m}$.

Let U_6 be the unicyclic graph on 6 vertices obtained by attaching a pendent vertex to every vertex of a triangle, and let U_8 be the unicyclic graph on 8 vertices obtained by attaching a path on two vertices to one vertex of degree 3 of U_6 . For $2 \le m \le \lfloor \frac{n}{2} \rfloor$, we use $U_{n,m}$ to denote the unicyclic graph on *n* vertices obtained by attaching n - 2m + 1 pendent vertices and m - 2 paths on two vertices to one vertex of a triangle. See Figure 1 for an illustration.

Theorem 1. Let $G \in \mathscr{U}_{2m,m} \setminus \{U_6, U_8\}$, where $m \geq 2$. Then

$$H(G) \ge \frac{2m}{m+3} + \frac{2}{m+2} + \frac{2(m-2)}{3} + \frac{1}{2}$$

with equality if and only if $G \cong U_{2m,m}$.

Proof. We prove the theorem by induction on m. If m = 2, then either $G \cong C_4$ or $G \cong U_{4,2}$. Since $H(C_4) = 2 > \frac{9}{5} = H(U_{4,2})$, we see that the assertion of the theorem holds. So we may assume that $m \ge 3$ and the result holds for graphs in $\mathscr{U}_{2(m-1),m-1} \setminus \{U_6, U_8\}$. By Lemma 6, since C_{2m} is the unique unicyclic graph on 2m vertices with the maximum harmonic index, we may further assume that $G \not\cong$ C_{2m} . Let M be a maximum matching in G, then |M| = m. By Lemma 4, we need only consider the following two cases.

Case 1. There exists a pendent vertex u in G which is adjacent to a vertex v of degree 2.

Let w be the neighbor of v different from u with $d(w) = t \ge 2$, and let G' =G-u-v. Then $uv \in M$ and $G' \in \mathscr{U}_{2(m-1),m-1}$. Since M contains exactly one edge incident with w and there are m edges of G outside M, we have $t \le m + 1$. Note that w is adjacent to at most one pendent vertex in G.

FIGURE 2. The graphs W_1 , W_2 and W_3 .

If $G' \cong U_6$, then we have $G \cong W_1$ (since we assume $G \not\cong U_8$), see Figure 2. Since $H(W_1) = \frac{107}{30} > \frac{139}{42} = H(U_{8,4})$, we know that the result holds. If $G' \cong U_8$, then $t \le 5$. By Lemma 1(i) and Lemma 2(i), we have

$$H(G) \ge H(U_8) + \frac{2(t-1)}{t+2} - \frac{2(t-3)}{t+1} - \frac{2}{t} + \frac{2}{3}$$

$$\ge \frac{347}{105} + \frac{2 \cdot (5-1)}{5+2} - \frac{2 \cdot (5-3)}{5+1} - \frac{2}{5} + \frac{2}{3} = \frac{85}{21} > \frac{113}{28} = H(U_{10,5}),$$

and hence the assertion of the theorem holds.

Now suppose that $G' \not\cong U_6, U_8$. Then by Lemma 1(i), Lemma 2(i) and the induction hypothesis, we conclude that

$$H(G) \ge H(G') + \frac{2(t-1)}{t+2} - \frac{2(t-3)}{t+1} - \frac{2}{t} + \frac{2}{3}$$
$$\ge \left(\frac{2(m-1)}{(m-1)+3} + \frac{2}{(m-1)+2} + \frac{2[(m-1)-2]}{3} + \frac{1}{2}\right)$$
$$+ \frac{2[(m+1)-1]}{(m+1)+2} - \frac{2[(m+1)-3]}{(m+1)+1} - \frac{2}{m+1} + \frac{2}{3}$$

THE HARMONIC INDEX

$$=\frac{2m}{m+3}+\frac{2}{m+2}+\frac{2(m-2)}{3}+\frac{1}{2}$$

with equalities if and only if $G' \cong U_{2(m-1),m-1}$ and t = m+1, i.e., $G \cong U_{2m,m}$. This proves Case 1.

Case 2. *G* is a unicyclic graph with maximum degree 3 obtained by attaching 2m - p pendent vertices to some vertices of a cycle C_p ($m \le p \le 2m - 1$).

If m = 3, then G is either the unicyclic graph obtained by attaching a pendent vertex to one vertex of C_5 or the unicyclic graph obtained by attaching a pendent vertex to two adjacent vertices of C_4 (since we assume $G \not\cong U_6$). Then we have $H(G) \ge \frac{79}{30} > \frac{77}{30} = H(U_{6,3})$, and the theorem holds. So we may assume that $m \ge 4$. We consider two subcases according to the value of p.

Subcase 2.1. p = m.

Then every vertex of C_p is attached by a pendent vertex and $H(G) = \frac{5m}{6}$. Let $f(x) = \frac{5x}{6} - \left(\frac{2x}{x+3} + \frac{2}{x+2} + \frac{2(x-2)}{3} + \frac{1}{2}\right) = \frac{x}{6} + \frac{6}{x+3} - \frac{2}{x+2} - \frac{7}{6}$. For $x \ge 4$, we have

$$f'(x) = \frac{1}{6} - \frac{6}{(x+3)^2} + \frac{2}{(x+2)^2} \ge \frac{1}{6} - \frac{6}{(4+3)^2} + \frac{2}{(x+2)^2} > 0.$$

This implies that f(x) is increasing for $x \ge 4$, and thus $f(m) \ge f(4) = \frac{1}{42} > 0$, i.e., $H(G) > H(U_{2m,m})$.

Subcase 2.2. $m + 1 \le p \le 2m - 1$.

In this subcase, there exists at least one edge, say xy, on C_p such that $xy \in M$. Then d(x) = d(y) = 2; for otherwise, the pendent vertex adjacent to x or y can not be M-saturated. Let z be the neighbor of x different from y in G, and let G'' = G - xz + yz. Then $G'' \in \mathscr{U}_{2m,m} \setminus \{U_8\}$. By Lemma 3, we have H(G) > H(G''). Comparing with the graph G, we see that the length of the unique cycle in G'' decreases by 1. Repeating this operation from G to G'', we eventually obtain the unicyclic graph described in Subcase 2.1 and the result holds. This finishes the proof of the theorem.

Since $H(U_{6,3}) = \frac{77}{30} > \frac{5}{2} = H(U_6)$ and $H(U_{8,4}) = \frac{139}{42} > \frac{347}{105} = H(U_8)$, by Theorem 1, we immediately obtain the following two results.

Corollary 1. Let $G \in \mathcal{U}_{6,3}$, then $H(G) \ge \frac{5}{2}$ with equality if and only if $G \cong U_6$. **Corollary 2.** Let $G \in \mathcal{U}_{8,4}$, then $H(G) \ge \frac{347}{105}$ with equality if and only if $G \cong U_8$. We now prove the main result of this section.

Theorem 2. Let $G \in \mathscr{U}_{n,m} \setminus \{U_6, U_8\}$, where $2 \le m \le \lfloor \frac{n}{2} \rfloor$. Then

$$H(G) \ge \frac{2m}{n-m+3} + \frac{2(n-2m+1)}{n-m+2} + \frac{2(m-2)}{3} + \frac{1}{2}$$

with equality if and only if $G \cong U_{n,m}$.

Proof. We prove Theorem 2 by induction on *n*. If n = 2m, then by Theorem 1, the assertion of the theorem holds. So we may assume that n > 2m and the result holds for graphs in $\mathcal{U}_{n-1,m} \setminus \{U_6, U_8\}$. By Lemma 6, since C_n is the unique unicyclic graph on *n* vertices with the maximum harmonic index, we may also assume that $G \not\cong C_n$. Then by Lemma 5, there exists a maximum matching *M* and a pendant vertex *u* in *G* such that *u* is not *M*-saturated. Let *v* be the unique neighbor of *u* with $d(v) = s \ge 2$, and let G' = G - u. Then $G' \in \mathcal{U}_{n-1,m}$. Since *M* contains exactly one edge incident with *v* and there are n - m edges of *G* outside *M*, we have $s \le n - m + 1$. Let *r* be the number of pendant neighbors of *v* in *G*, where $1 \le r \le s - 1$. Note that at least r - 1 pendant neighbors of *v* are not *M*-saturated, and there are n - 2m vertices are not *M*-saturated in *G*. Then $r \le n - 2m + 1$.

If $G' \cong U_6$, then n = 7, m = 3 and either $G \cong W_2$ or $G \cong W_3$ (see Figure 2). Since $H(W_2) = \frac{46}{15} > H(W_3) = \frac{284}{105} > \frac{113}{42} = H(U_{7,3})$, we see that the result holds. If $G' \cong U_8$, then n = 9, m = 4 and $s \le 5$. By Lemma 1(ii) (with k = n - 2m + 1 =

2) and Lemma 2(ii), we have

$$H(G) \ge H(U_8) + \frac{2(s-2)}{s+2} + \frac{2(4-s)}{s+1} - \frac{2}{s}$$

$$\ge \frac{347}{105} + \frac{2 \cdot (5-2)}{5+2} + \frac{2 \cdot (4-5)}{5+1} - \frac{2}{5} = \frac{24}{7} > \frac{143}{42} = H(U_{9,4}),$$

and thus the assertion of the theorem holds.

Therefore we may assume that $G' \not\cong U_6, U_8$. Then by Lemma 1(ii) (with k = n - 2m + 1), Lemma 2(ii) and the induction hypothesis, we conclude that

$$\begin{split} H(G) &\geq H(G') + \frac{2[s - (n - 2m + 1)]}{s + 2} + \frac{2[2(n - 2m + 1) - s]}{s + 1} \\ &- \frac{2[(n - 2m + 1) - 1]}{s} \\ &\geq \left(\frac{2m}{(n - 1) - m + 3} + \frac{2[(n - 1) - 2m + 1]}{(n - 1) - m + 2} + \frac{2(m - 2)}{3} + \frac{1}{2}\right) \\ &+ \frac{2[(n - m + 1) - (n - 2m + 1)]}{(n - m + 1) + 2} + \frac{2[2(n - 2m + 1) - (n - m + 1)]}{(n - m + 1) + 1} \\ &- \frac{2[(n - 2m + 1) - 1]}{n - m + 1} \\ &= \frac{2m}{n - m + 3} + \frac{2(n - 2m + 1)}{n - m + 2} + \frac{2(m - 2)}{3} + \frac{1}{2} \end{split}$$

with equalities if and only if $G' \cong U_{n-1,m}$, s = n - m + 1 and r = n - 2m + 1, i.e., $G \cong U_{n,m}$. This completes the proof of the theorem.

By applying Theorem 2, we can also obtain the minimum harmonic index for graphs in \mathcal{U}_n $(n \ge 4)$. This is one of the main results in [29].

Corollary 3. Let $G \in \mathcal{U}_n$ with $n \ge 4$. Then

$$H(G) \ge \frac{4}{n+1} + \frac{2(n-3)}{n} + \frac{1}{2}$$

with equality if and only if $G \cong U_{n,2}$.

Proof. Let M be a maximum matching in G, then $2 \le |M| = m \le |\frac{n}{2}|$ (since $n \ge 4$). If m = 2, then by Theorem 2, we have

$$H(G) \ge \frac{2 \cdot 2}{n - 2 + 3} + \frac{2(n - 2 \cdot 2 + 1)}{n - 2 + 2} + \frac{2 \cdot (2 - 2)}{3} + \frac{1}{2}$$
$$= \frac{4}{n + 1} + \frac{2(n - 3)}{n} + \frac{1}{2}$$

with equality if and only if $G \cong U_{n,2}$. So we may assume that $m \ge 3$. If $G \cong U_6$, then $H(G) = \frac{5}{2} > \frac{29}{14} = H(U_{6,2})$, we see that the result holds. If $G \cong U_8$, then $H(G) = \frac{347}{105} > \frac{79}{36} = H(U_{8,2})$, and the result also holds. Now suppose that $G \not\cong U_6, U_8$. Then by Theorem 2 and Lemma 3, we see that $H(G) \ge H(U_{n,m}) >$ $H(U_{n,m-1}) > \cdots > H(U_{n,2})$. So the assertion of the corollary holds.

4. MINIMUM HARMONIC INDEX FOR BICYCLIC GRAPHS WITH GIVEN MATCHING NUMBER

Let \mathscr{B}_n be the set of bicyclic graphs with $n \ge 4$ vertices, and let $\mathscr{B}_{n,m}$ be the set of bicyclic graphs with n vertices and matching number m, where $2 \le m \le \lfloor \frac{n}{2} \rfloor$. In this section, we present the minimum harmonic index for graphs in $\mathcal{B}_{n,m}$, and characterize the corresponding extremal graphs.

We denote by $\hat{\mathscr{B}}_n$ the set of bicyclic graphs with $n \ge 4$ vertices containing no pendent vertices. Let \mathscr{B}_n^1 be the set of bicyclic graphs on $n \ge 6$ vertices obtained by connecting two vertex-disjoint cycles by a new edge, and let \mathscr{B}_n^2 be the set of bicyclic graphs on $n \ge 7$ vertices obtained by connecting two vertex-disjoint cycles by a path of length at least two. Let \mathscr{B}_n^3 be the set of bicyclic graphs on $n \ge 5$ vertices obtained by identifying a vertex of a cycle and a vertex of the other cycle. Let \mathscr{B}_n^4 be the set of bicyclic graphs on $n \ge 4$ obtained from C_n by adding a new edge, and let \mathscr{B}_n^5 be the set of bicyclic graphs on $n \ge 5$ obtained by connecting two non-adjacent vertices by a path of length at least two. Clearly, $\mathscr{B}_n = \bigcup_{i=1}^{5} \mathscr{B}_n^i$.

For i = 4, 5, we use B_i to denote the unique bicyclic graph on *i* vertices in \mathscr{B}_n^i . Let $B_{n,a,b}$ be the bicyclic graph on *n* vertices obtained by attaching a-3 and b-3pendent vertices to the two vertices of degree 3 of B_4 , respectively, where $a \ge b \ge$ 3 and a + b = n + 2. Let $B'_{n,a,b}$ be the bicyclic graph on n vertices obtained by attaching a-3 and b-3 pendent vertices to the two vertices of degree 3 of B_5 , respectively, where $a \ge b \ge 3$ and a + b = n + 1. Then $B_4 \cong B_{4,3,3}$ and $B_5 \cong$ $B'_{5,3,3}$. See Figure 3 and Figure 4 for an illustration. We first determine the minimum harmonic index for graphs in \mathscr{B}_n with matching number 2.

FIGURE 3. The graphs B_4 and $B_{n,a,b}$.

FIGURE 4. The graphs B_5 and $B'_{n,a,b}$.

Theorem 3. Let $G \in \mathcal{B}_{n,2}$ with $n \ge 4$. Then

$$H(G) \ge \frac{2}{n+2} + \frac{4}{n+1} + \frac{2(n-4)}{n} + \frac{4}{5}$$

with equality if and only if $G \cong B_{n,n-1,3}$.

Proof. Since B_4 is the unique bicyclic graph on 4 vertices in $\mathscr{B}_{4,2}$, we see that the result holds for n = 4. If n = 5, then $G \in \{F_i | 1 \le i \le 3\} \cup B_5 \cup B_{5,4,3}$, where F_i $(1 \le i \le 3)$ are shown in Figure 5. It is easy to calculate that $H(F_1) = \frac{73}{30} > H(B_5) = \frac{12}{5} > H(F_2) = \frac{7}{3} > H(F_3) = \frac{23}{10} > \frac{226}{105} = H(B_{5,4,3})$, and hence the assertion of the theorem holds. So we may assume that $n \ge 6$. We consider three cases according to the structure of G.

FIGURE 5. The graphs F_1 , F_2 and F_3 .

Case 1. $G \cong B_{n,a,b}$, where $a \ge b \ge 3$ and a + b = n + 2. Let $f(x) = \frac{4}{x+1} - \frac{8}{x}$. For $x \ge 3$, we have

$$f''(x) = \frac{8}{(x+1)^3} - \frac{16}{x^3} = \frac{-8(x^3 + 6x^2 + 6x + 2)}{x^3(x+1)^3} < 0$$

This implies that f(x+1) - f(x) is decreasing for $x \ge 3$. Suppose $a \ge b \ge 4$. Then

$$\begin{split} H(B_{n,a+1,b-1}) &- H(B_{n,a,b}) \\ &= \left(\frac{4}{(a+1)+2} + \frac{2[(a+1)-3]}{(a+1)+1} + \frac{4}{(b-1)+2} + \frac{2[(b-1)-3]}{(b-1)+1} \right. \\ &+ \frac{2}{(a+1)+(b-1)}\right) - \left(\frac{4}{a+2} + \frac{2(a-3)}{a+1} + \frac{4}{b+2} + \frac{2(b-3)}{b+1} + \frac{2}{a+b}\right) \\ &= \left(\frac{4}{a+3} - \frac{12}{a+2} + \frac{8}{a+1}\right) - \left(\frac{4}{b+2} - \frac{12}{b+1} + \frac{8}{b}\right) \\ &= \left[f(a+2) - f(a+1)\right] - \left[f(b+1) - f(b)\right] < 0, \end{split}$$

i.e., $H(B_{n,a,b}) > H(B_{n,a+1,b-1})$ for $a \ge b \ge 4$. So we conclude that $H(B_{n,a,b}) \ge H(B_{n,n-1,3})$ with equality if and only if a = n - 1 and b = 3.

Case 2. *G* is the bicyclic graph obtained by attaching n - 4 pendent vertices to one vertex of degree 2 of B_4 .

Then

$$H(G) - H(B_{n,n-1,3}) = \left(\frac{4}{n+1} + \frac{2(n-4)}{n-1} + \frac{4}{5} + \frac{1}{3}\right) - \left(\frac{2}{n+2} + \frac{4}{n+1} + \frac{2(n-4)}{n} + \frac{4}{5}\right)$$
$$= \frac{8}{n} - \frac{2}{n+2} - \frac{6}{n-1} + \frac{1}{3} = \left(\frac{2}{n} - \frac{2}{n+2}\right) - \frac{6}{n(n-1)} + \frac{1}{3}$$
$$\ge \left(\frac{2}{n} - \frac{2}{n+2}\right) - \frac{6}{6 \cdot (6-1)} + \frac{1}{3} > 0.$$

So Case 2 holds.

Case 3. $G \cong B'_{n,a,b}$, where $a \ge b \ge 3$ and a + b = n + 1.

Let x be one vertex of degree 2, and let y, z be the two vertices of degree at least 3 in G, see Figure 4. Let G' = G - xz + yz, then $G' \cong B_{n,a+1,b}$. By Lemma 3, we have H(G) > H(G'). Hence by the argument in Case 1, we deduce that $H(G) > H(B_{n,n-1,3})$. This completes the proof of the theorem.

The following lemma was proved by Zhu, Liu and Wang [33], which will be used in the following argument.

Lemma 7. Let $G \in \mathcal{B}_{n,m}$ $(n > 2m \ge 6)$ and G contains at least one pendent vertex. Then there exists a maximum matching M and a pendent vertex u in G such that u is not M-saturated.

FIGURE 6. The graphs B_8 and $B_{n,m}$.

Let B_8 be the bicyclic graph on 8 vertices obtained by attaching a pendent vertex to every vertex of B_4 . For $3 \le m \le \lfloor \frac{n}{2} \rfloor$, we use $B_{n,m}$ to denote the bicyclic graph on n vertices obtained by attaching n - 2m + 1 pendent vertices and m - 3 paths on two vertices to the vertex of degree 4 of F_2 , see Figure 6.

Lemma 8. Let $G \in \mathscr{B}_{2m,m} \setminus \{B_8\}$ $(m \ge 3)$ and no pendent vertex has neighbor of degree 2. Then

$$H(G) \ge \frac{2(m+1)}{m+4} + \frac{2}{m+3} + \frac{2(m-3)}{3} + 1$$

with equality if and only if $G \cong B_{6,3}$.

Proof. Let M be a maximum matching in G, then |M| = m and every vertex in G is adjacent to at most one pendent vertex. Since $G \in \mathscr{B}_{2m,m} \setminus \{B_8\}$ and no pendent vertex has neighbor of degree 2, we see that G can be obtained by attaching some pendent vertices to a bicyclic graph $\tilde{G} \in \tilde{\mathscr{B}}_k$ $(m \le k \le 2m)$. We consider two cases according to G contains vertices of degree 2 or not.

Case 1. There is no vertex of degree 2 in *G*.

Then either k = m or k = m + 1. If k = m, then G can be obtained by attaching a pendent vertex to every vertex of a bicyclic graph $\tilde{G} \in \tilde{\mathscr{B}}_m$. If k = m + 1, then G can be obtained by attaching a pendent vertex to every vertex of degree 2 of a bicyclic graph $\tilde{G} \in \mathscr{B}_{m+1}^1 \cup \mathscr{B}_{m+1}^4$.

FIGURE 7. The graphs Q_1 and Q_2 .

If m = 3, then $\tilde{G} \cong B_4$ and $G \cong Q_1$ (see Figure 7). Since $H(Q_1) = \frac{8}{3} > \frac{52}{21} = \frac{2 \cdot (3+1)}{3+4} + \frac{2}{3+3} + \frac{2 \cdot (3-3)}{3} + 1$, we know that the lemma holds.

If m = 4, since we assume $G \not\cong B_8$, we have $\tilde{G} \cong F_1$ and $G \cong Q_2$ (see Figure 7). So the assertion of the lemma holds because $H(Q_2) = \frac{7}{2} > \frac{269}{84} = \frac{2 \cdot (4+1)}{4+4} + \frac{2}{4+3} + \frac{2}{4+3}$ $\frac{2 \cdot (4-3)}{3} + 1.$

Now assume that $m \ge 5$. Then

$$H(G) = \begin{cases} \frac{5m}{6} - \frac{59}{420}, & \text{if } \tilde{G} \in \mathscr{B}_m^1 \cup \mathscr{B}_m^4, \\ \frac{5m}{6} - \frac{16}{105}, & \text{if } \tilde{G} \in \mathscr{B}_m^2 \cup \mathscr{B}_m^5, \\ \frac{5m}{6} - \frac{1}{6}, & \text{if } \tilde{G} \in \mathscr{B}_m^3, \\ \frac{5m}{6} + \frac{1}{6}, & \text{if } \tilde{G} \in \mathscr{B}_{m+1}^1 \cup \mathscr{B}_{m+1}^4. \end{cases}$$

Let $f(x) = \left(\frac{5x}{6} - \frac{1}{6}\right) - \left(\frac{2(x+1)}{x+4} + \frac{2}{x+3} + \frac{2(x-3)}{3} + 1\right) = \frac{x}{6} + \frac{6}{x+4} - \frac{2}{x+3} - \frac{7}{6}$. For x > 5, we have

$$f'(x) = \frac{1}{6} - \frac{6}{(x+4)^2} + \frac{2}{(x+3)^2} \ge \frac{1}{6} - \frac{6}{(5+4)^2} + \frac{2}{(x+3)^2} > 0.$$

This implies that f(x) is increasing for $x \ge 5$, and thus $f(m) \ge f(5) = \frac{1}{12} > 0$, i.e., $H(G) > \frac{2(m+1)}{m+4} + \frac{2}{m+3} + \frac{2(m-3)}{3} + 1$. **Case 2.** There exists a vertex, say u, of degree 2 in G.

Let v and w be the two neighbors of u in G such that $d(v) = s \ge 2$ and $d(w) = s \ge 2$ $t \geq 2$. By the symmetry between v and w, we may assume that $uv \in M$.

Suppose that no vertex of degree 2 is contained in the cycles of G. Since no pendent vertex has neighbor of degree 2 in G, we conclude that $\tilde{G} \in \mathscr{B}_k^2$ and u lies on the path connecting two vertex-disjoint cycles of G. Hence $vw \notin E(G)$. Let G' = G - uw + vw, then $G' \in \mathscr{B}_{2m,m} \setminus \{B_8\}$. By Lemma 3, we have H(G) > H(G'). Comparing with the graph G, we see that the number of vertices of degree 2 in G'decreases by 1. Repeating this operation from G to G', we finally obtain a bicyclic graph described in Case 1, and hence the result holds.

So we may choose u such that u lies on some cycle of G. Let $N(w) = \{w_0 = v_0\}$ u, w_1, \ldots, w_{t-1} , and let G'' = G - uw. Then G'' is a unicyclic graph on 2m vertices with a perfect matching M, i.e., $G'' \in \mathscr{U}_{2m,m}$. Note that $2 \le s, t \le 5$ and w is adjacent to at most one pendent vertex. Since $\frac{2}{s+2} - \frac{2}{s+1}$ is increasing for $s \ge 2$, $\frac{2}{t+x} - \frac{2}{t-1+x}$ is increasing for $x \ge 1$ and by Lemma 2(i), we have

$$H(G) = H(G'') + \sum_{i=1}^{t-1} \left(\frac{2}{t+d(w_i)} - \frac{2}{t-1+d(w_i)} \right) + \frac{2}{t+2} + \left(\frac{2}{s+2} - \frac{2}{s+1} \right)$$

$$\geq H(G'') + \left(\frac{2}{t+1} - \frac{2}{t} \right) + (t-2) \left(\frac{2}{t+2} - \frac{2}{t+1} \right) + \frac{2}{t+2}$$

$$+ \left(\frac{2}{2+2} - \frac{2}{2+1} \right)$$

$$= H(G'') + \left(\frac{2(t-1)}{t+2} - \frac{2(t-3)}{t+1} - \frac{2}{t} \right) - \frac{1}{6}$$

$$\geq H(G'') + \left(\frac{2 \cdot (5-1)}{5+2} - \frac{2 \cdot (5-3)}{5+1} - \frac{2}{5}\right) - \frac{1}{6}$$
$$= H(G'') - \frac{19}{210} \tag{(*)}$$

with equalities if and only if s = 2, t = 5, one neighbor of w has degree 1 and the other neighbors of w have degree 2.

FIGURE 8. The graphs R_1 and R_2 .

If $G'' \cong U_6$, then either $G'' \cong R_1$ or $G'' \cong R_2$ (see Figure 8). Since $H(R_1) = \frac{14}{5} > H(R_2) = \frac{533}{210} > \frac{52}{21} = \frac{2 \cdot (3+1)}{3+4} + \frac{2}{3+3} + \frac{2 \cdot (3-3)}{3} + 1$, the assertion of the lemma holds. If $G'' \cong U_8$, then by (*), we have

$$H(G) \ge H(U_8) - \frac{19}{210} = \frac{347}{105} - \frac{19}{210} = \frac{45}{14}$$
$$> \frac{269}{84} = \frac{2 \cdot (4+1)}{4+4} + \frac{2}{4+3} + \frac{2 \cdot (4-3)}{3} + 1$$

and the result holds. So suppose that $G'' \not\cong U_6, U_8$. It follows from Lemma 2(i) that

$$\frac{2[(m+2)-1]}{(m+2)+2} - \frac{2[(m+2)-3]}{(m+2)+1} - \frac{2}{m+2}$$
$$\leq \frac{2 \cdot [(3+2)-1]}{(3+2)+2} - \frac{2 \cdot [(3+2)-3]}{(3+2)+1} - \frac{2}{3+2} = \frac{8}{105}$$

since $m \ge 3$. Then by (*) and Theorem 1, we have

$$H(G) \ge H(G'') - \frac{19}{210}$$

$$\ge \left(\frac{2m}{m+3} + \frac{2}{m+2} + \frac{2(m-2)}{3} + \frac{1}{2}\right) - \frac{19}{210}$$

$$= \left(\frac{2m}{m+3} + \frac{2}{m+2} + \frac{2(m-3)}{3} + 1\right) + \frac{8}{105}$$

$$\ge \left(\frac{2m}{m+3} + \frac{2}{m+2} + \frac{2(m-3)}{3} + 1\right)$$

THE HARMONIC INDEX

$$+\left(\frac{2[(m+2)-1]}{(m+2)+2} - \frac{2[(m+2)-3]}{(m+2)+1} - \frac{2}{m+2}\right)$$
$$= \frac{2(m+1)}{m+4} + \frac{2}{m+3} + \frac{2(m-3)}{3} + 1$$

with equalities if and only if s = 2, t = 5, $G'' \cong U_{2m,m}$ and m = 3, i.e., $G \cong B_{6,3}$. This finishes the proof of the lemma.

Theorem 4. Let $G \in \mathscr{B}_{2m,m} \setminus \{B_8\}$, where $m \geq 3$. Then

$$H(G) \ge \frac{2(m+1)}{m+4} + \frac{2}{m+3} + \frac{2(m-3)}{3} + 1$$

with equality if and only if $G \cong B_{2m,m}$.

Proof. We prove Theorem 4 by induction on m. If m = 3, then by Lemma 7, we may assume that there exists a pendent vertex in G whose neighbor is a vertex of degree 2. Hence G is the bicyclic graph obtained from B_4 by attaching a path on two vertices to either one vertex of degree 3 or one vertex of degree 2. Then we have $H(G) \ge \frac{289}{105} > \frac{52}{21} = H(B_{6,3})$, and the assertion of the theorem holds. So we may assume that $m \ge 4$ and the result holds for graphs in $\mathcal{B}_{2(m-1),m-1} \setminus \{B_8\}$. Let M be a maximum matching in G, then |M| = m. If no pendent vertex has neighbor of degree 2 in G, then by Lemma 7, we see that the result holds.

Now suppose that there exists a pendent vertex u in G whose neighbor v is a vertex of degree 2. Let w be the neighbor of v different from u with $d(w) = t \ge 2$, and let G' = G - u - v. Then $uv \in M$ and $G' \in \mathcal{B}_{2(m-1),m-1}$. Since M contains exactly one edge incident with w and there are m + 1 edges of G outside M, we have $t \le m + 2$. Note that w is adjacent to at most one pendent vertex in G.

If $G' \cong B_8$, then $t \le 5$. By Lemma 1(i) and Lemma 2(i), we have

$$H(G) \ge H(B_8) + \frac{2(t-1)}{t+2} - \frac{2(t-3)}{t+1} - \frac{2}{t} + \frac{2}{3}$$

$$\ge \frac{447}{140} + \frac{2 \cdot (5-1)}{5+2} - \frac{2 \cdot (5-3)}{5+1} - \frac{2}{5} + \frac{2}{3} = \frac{551}{140} > \frac{47}{12} = H(U_{10,5}),$$

and hence the assertion of the theorem holds.

So we may further assume that $G' \ncong B_8$. Then by Lemma 1(i), Lemma 2(i) and the induction hypothesis, we conclude that

$$H(G) \ge H(G') + \frac{2(t-1)}{t+2} - \frac{2(t-3)}{t+1} - \frac{2}{t} + \frac{2}{3}$$
$$\ge \left(\frac{2[(m-1)+1]}{(m-1)+4} + \frac{2}{(m-1)+3} + \frac{2[(m-1)-3]}{3} + 1\right)$$
$$+ \frac{2[(m+2)-1]}{(m+2)+2} - \frac{2[(m+2)-3]}{(m+2)+1} - \frac{2}{m+2} + \frac{2}{3}$$

$$=\frac{2(m+1)}{m+4}+\frac{2}{m+3}+\frac{2(m-3)}{3}+1$$

with equalities if and only if $G' \cong B_{2(m-1),m-1}$ and t = m+2, i.e., $G \cong B_{2m,m}$. So Theorem 4 holds.

Since $H(B_{8,4}) = \frac{269}{84} > \frac{447}{140} = H(B_8)$, by Theorem 4, we immediately obtain the following result.

Corollary 4. Let $G \in \mathcal{B}_{8,4}$, then $H(G) \ge \frac{447}{140}$ with equality if and only if $G \cong B_8$.

We now present the minimum harmonic index for graphs in $\mathscr{B}_{n,m} \setminus \{B_8\}$, where $3 \le m \le \lfloor \frac{n}{2} \rfloor$.

Theorem 5. Let $G \in \mathscr{B}_{n,m} \setminus \{B_8\}$, where $3 \le m \le \lfloor \frac{n}{2} \rfloor$. Then

$$H(G) \ge \frac{2(m+1)}{n-m+4} + \frac{2(n-2m+1)}{n-m+3} + \frac{2(m-3)}{3} + 1$$

with equality if and only if $G \cong B_{n,m}$.

Proof. We prove the theorem by induction on n. If n = 2m, then by Theorem 4, the assertion of the theorem holds. So we may assume that n > 2m and the result holds for graphs in $\mathscr{B}_{n-1,m} \setminus \{B_8\}$. If there is no pendent vertex in G, then $G \in \tilde{\mathscr{B}}_n$ and n = 2m + 1. It is easy to check that

$$H(G) = \begin{cases} m + \frac{13}{30}, & \text{if } G \in \mathscr{B}_{2m+1}^1 \cup \mathscr{B}_{2m+1}^4, \\ m + \frac{2}{5}, & \text{if } G \in \mathscr{B}_{2m+1}^2 \cup \mathscr{B}_{2m+1}^5, \\ m + \frac{1}{3}, & \text{if } G \in \mathscr{B}_{2m+1}^3. \end{cases}$$

This implies that

$$H(G) - H(B_{2m+1,m}) \ge \left(m + \frac{1}{3}\right) - \left(\frac{2(m+1)}{(2m+1) - m + 4} + \frac{2[(2m+1) - 2m+1]}{(2m+1) - m + 3} + \frac{2(m-3)}{3} + 1\right) = \frac{m}{3} + \frac{8}{m+5} - \frac{4}{m+4} - \frac{2}{3} = \frac{m-2}{3} + \frac{4(m+3)}{(m+4)(m+5)} > 0,$$

i.e., $H(G) > H(B_{2m+1,m})$.

So we may assume that G contains at least one pendent vertex. Then by Lemma 7, there exists a maximum matching M and a pendent vertex u in G such that u is not M-saturated. Let v be the unique neighbor of u with $d(v) = s \ge 2$, and let G' = G - u. Then $G' \in \mathcal{B}_{n-1,m}$. Since M contains exactly one edge incident with v and there are n + 1 - m edges of G outside M, we have $s \le n - m + 2$. Let r be the number of pendant neighbors of v in G, where $1 \le r \le s - 1$. Note that at least r - 1 pendant neighbors of v are not M-saturated, and there are n - 2m vertices are not M-saturated in G. Then $r \le n - 2m + 1$.

If $G' \cong B_8$, then n = 9, m = 4 and $s \le 5$. By Lemma 1(ii) (with k = n - 2m + 1 = 2) and Lemma 2(ii), we deduce that

$$H(G) \ge H(B_8) + \frac{2(s-2)}{s+2} + \frac{2(4-s)}{s+1} - \frac{2}{s}$$
$$\ge \frac{447}{140} + \frac{2 \cdot (5-2)}{5+2} + \frac{2 \cdot (4-5)}{5+1} - \frac{2}{5} = \frac{1393}{420} > \frac{59}{18} = H(B_{9,4}).$$

and hence the assertion of the theorem holds.

Therefore we may assume that $G' \ncong B_8$. Then by Lemma 1(ii) (with k = n - 2m + 1), Lemma 2(ii) and the induction hypothesis, we have

$$\begin{split} H(G) &\geq H(G') + \frac{2[s - (n - 2m + 1)]}{s + 2} + \frac{2[2(n - 2m + 1) - s]}{s + 1} \\ &- \frac{2[(n - 2m + 1) - 1]}{s} \\ &\geq \left(\frac{2(m + 1)}{(n - 1) - m + 4} + \frac{2[(n - 1) - 2m + 1]}{(n - 1) - m + 3} + \frac{2(m - 3)}{3} + 1\right) \\ &+ \frac{2[(n - m + 2) - (n - 2m + 1)]}{(n - m + 2) + 2} + \frac{2[2(n - 2m + 1) - (n - m + 2)]}{(n - m + 2) + 1} \\ &- \frac{2[(n - 2m + 1) - 1]}{n - m + 2} \\ &= \frac{2(m + 1)}{n - m + 4} + \frac{2(n - 2m + 1)}{n - m + 3} + \frac{2(m - 3)}{3} + 1 \end{split}$$

with equalities if and only if $G' \cong B_{n-1,m}$, s = n - m + 2 and r = n - 2m + 1, i.e., $G \cong B_{n,m}$. This completes the proof of the theorem.

We can also determine the minimum harmonic index for graphs in \mathcal{B}_n (see also in [31]) by using Theorem 3 and Theorem 5.

Corollary 5. Let $G \in \mathscr{B}_n$ with $n \ge 4$. Then

$$H(G) \ge \frac{2}{n+2} + \frac{4}{n+1} + \frac{2(n-4)}{n} + \frac{4}{5}$$

with equality if and only if $G \cong B_{n,n-1,3}$.

Proof. Let M be a maximum matching in G, then $2 \le |M| = m \le \lfloor \frac{n}{2} \rfloor$ (since $n \ge 4$). If m = 2, then the result follows immediately from Theorem 3. If m = 3, then by Theorem 5, we have

$$H(G) \ge \frac{2 \cdot (3+1)}{n-3+4} + \frac{2(n-2 \cdot 3+1)}{n-3+3} + \frac{2 \cdot (3-3)}{3} + 1$$
$$= \frac{8}{n+1} + \frac{2(n-5)}{n} + 1$$

with equality if and only if $G \cong B_{n,3}$. Note that in this case $n \ge 6$. Since

$$H(B_{n,3}) - H(B_{n,n-1,3}) = \left(\frac{8}{n+1} + \frac{2(n-5)}{n} + 1\right) - \left(\frac{2}{n+2} + \frac{4}{n+1} + \frac{2(n-4)}{n} + \frac{4}{5}\right)$$
$$= \left(\frac{4}{n+1} - \frac{2}{n+2} - \frac{2}{n}\right) + \frac{1}{5} = \frac{-4}{n(n+1)(n+2)} + \frac{1}{5}$$
$$\ge \frac{-4}{6 \cdot (6+1) \cdot (6+2)} + \frac{1}{5} = \frac{79}{420} > 0,$$

we know that the assertion of the corollary holds.

So we may assume that $m \ge 4$. If $G \cong B_8$, then $H(G) = \frac{447}{140} > \frac{22}{9} = H(B_{8,7,3})$, we see that Corollary 5 holds. Now suppose that $G \not\cong B_8$. Then by Theorem 5 and Lemma 3, we see that $H(G) \ge H(B_{n,m}) > H(B_{n,m-1}) > \cdots > H(B_{n,3}) > H(B_{n,n-1,3})$. This finishes the proof of the corollary.

REFERENCES

- A. Chang and F. Tian, "On the spectral radius of unicyclic graphs with perfect matching," *Linear Algebra Appl.*, vol. 370, pp. 237–250, 2003.
- [2] H. Deng, S. Balachandran, S. K. Ayyaswamy, and V. B. Venkatakrishnan, "On the harmonic index and the chromatic number of a graph," *Discrete Appl. Math.*, vol. 161, no. 16-17, pp. 2740–2744, 2013.
- [3] H. Deng, S. Balachandran, S. K. Ayyaswamy, and V. B. Venkatakrishnan, "On harmonic indices of trees, unicyclic graphs and bicyclic graphs," *Ars Combin.*, in press.
- [4] Z. Du and B. Zhou, "On sum-connectivity index of bicyclic graphs," Bull. Malays. Math. Sci. Soc., vol. 35, no. 1, pp. 101–117, 2012.
- [5] Z. Du, B. Zhou, and N. Trinajstić, "Minimum sum-connectivity indices of trees and unicyclic graphs of a given matching number," J. Math. Chem., vol. 47, no. 2, pp. 842–855, 2010.
- [6] S. Fajtlowicz, "On conjectures of Graffiti-II," Congr. Numer., vol. 60, pp. 187–197, 1987.
- [7] O. Favaron, M. Mahéo, and J. F. Saclé, "Some eigenvalue properties in graphs (conjectures of Graffiti-II)," *Discrete Math.*, vol. 111, no. 1-3, pp. 197–220, 1993.
- [8] B. Furtula, I. Gutman, and M. Dehmer, "On structure-sensitivity of degree-based topological indices," *Appl. Math. Comput.*, vol. 219, no. 17, pp. 8973–8978, 2013.
- [9] I. Gutman and B. Furtula, *Recent Results in the Theory of Randić Index*. Kragujevac: University of Kragujevac, 2008.
- [10] I. Gutman, B. Furtula, and C. Elphick, "Three new/old vertex-degree-based topological indices," MATCH Commun. Math. Comput. Chem., vol. 72, no. 3, pp. 617–632, 2014.
- [11] I. Gutman and J. Tošović, "Testing the quality of molecular structure descriptors. Vertex-degreebased topological indices," J. Serb. Chem. Soc., vol. 78, no. 6, pp. 805–810, 2013.
- [12] A. Ilić, "Note on the harmonic index of a graph," preprint.
- [13] J. Li and B. Zhou, "On the modified Randić index of trees, unicyclic graphs and bicyclic graphs," *Miskolc Math. Notes*, vol. 13, no. 2, pp. 415–427, 2012.
- [14] X. Li and I. Gutman, Mathematical Aspects of Randić-Type Molecular Structure Descriptors. Kragujevac: University of Kragujevac, 2006.
- [15] X. Li and Y. Shi, "A survey on the Randić index," MATCH Commun. Math. Comput. Chem., vol. 59, no. 1, pp. 127–156, 2008.

THE HARMONIC INDEX

- [16] H. Liu, X. Pan, and J. Xu, "On the Randić index of unicyclic conjugated molecules," J. Math. Chem., vol. 40, no. 2, pp. 135–143, 2006.
- [17] J. Liu, "On harmonic index and diameter of graphs," J. Appl. Math. Phys., vol. 1, no. 3, pp. 5–6, 2013.
- [18] J. Liu, "On the harmonic index of triangle-free graphs," *Appl. Math.*, vol. 4, no. 8, pp. 1204–1206, 2013.
- [19] J. Rada and R. Cruz, "Vertex-degree-based topological indices over graphs," MATCH Commun. Math. Comput. Chem., vol. 72, no. 3, pp. 603–616, 2014.
- [20] M. Randić, "On characterization of molecular branching," J. Am. Chem. Soc., vol. 97, no. 23, pp. 6609–6615, 1975.
- [21] I. Tomescu and M. K. Jamil, "Maximum general sum-connectivity index for trees with given independence number," *MATCH Commun. Math. Comput. Chem.*, vol. 72, no. 3, pp. 715–722, 2014.
- [22] I. Tomescu and S. Kanwal, "Ordering trees having small general sum-connectivity index," MATCH Commun. Math. Comput. Chem., vol. 69, no. 3, pp. 535–548, 2013.
- [23] R. Wu, Z. Tang, and H. Deng, "A lower bound for the harmonic index of a graph with minimum degree at least two," *Filomat*, vol. 27, no. 1, pp. 51–55, 2013.
- [24] R. Wu, Z. Tang, and H. Deng, "On the harmonic index and the girth of a graph," *Utilitas Math.*, vol. 91, pp. 65–69, 2013.
- [25] X. Xu, "Relationships between harmonic index and other topological indices," Appl. Math. Sci., vol. 6, no. 41, pp. 2013–2018, 2012.
- [26] L. Yang and H. Hua, "The harmonic index of general graphs, nanocones and triangular benzenoid graphs," *Optoelectron. Adv. Mater. - Rapid Commun.*, vol. 6, no. 5-6, pp. 660–663, 2012.
- [27] A. Yu and F. Tian, "On the spectral radius of unicyclic graphs," MATCH Commun. Math. Comput. Chem., vol. 51, no. 1, pp. 97–109, 2004.
- [28] L. Zhong, "The harmonic index for graphs," Appl. Math. Lett., vol. 25, no. 3, pp. 561–566, 2012.
- [29] L. Zhong, "The harmonic index on unicyclic graphs," Ars Combin., vol. 104, pp. 261–269, 2012.
- [30] L. Zhong and K. Xu, "The harmonic index for bicyclic graphs," Utilitas Math., vol. 90, pp. 23–32, 2013.
- [31] L. Zhong and K. Xu, "Inequalities between vertex-degree-based topological indices," MATCH Commun. Math. Comput. Chem., vol. 71, no. 3, pp. 627–642, 2014.
- [32] B. Zhou and N. Trinajstić, "On general sum-connectivity index," J. Math. Chem., vol. 47, no. 1, pp. 210–218, 2010.
- [33] Y. Zhu, G. Liu, and J. Wang, "On the Randić index of bicyclic conjugated molecules," in *Recent Results in the Theory of Randić Index*, I. Gutman and B. Furtula, Eds. Kragujevac: University of Kragujeva, 2008, pp. 133–144.

Author's address

Lingping Zhong

Nanjing University of Aeronautics and Astronautics, Department of Mathematics, Nanjing 210016, P. R. China

E-mail address: zhong@nuaa.edu.cn