Miskolc Mathematical Notes HU e-ISSN 1787-2413
Vol. 6 (2005), No 2, pp. 173-183 DOI: 10.18514/MMN.2005.97

On the directional derivative and directional
continuity of set valued maps

Erdal Ekici



Miskolc Mathematical Notes HU ISSN 1787-2413
4 Vol. 6 (2005), No. 2, pp. 173-183 electronic version

o

ON THE DIRECTIONAL DERIVATIVE AND DIRECTIONAL
CONTINUITY OF SET VALUED MAPS

ERDAL EKICI
[Received: June 16, 2004]

AsstrAcT. In this study, the directional lower and upper derivative sets of the set
valued map the values of which have piecewise smooth boundary are investigated
and obtained. Moreover, the connection between the directional continuity and the
directional derivative sets of set-valued maps is investigated.
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1. INTRODUCTION

The concepts of the directional lower and upper derivative sets of set valued maps
and continuity of set-valued maps are studied in many papers (see, e. ¢., [2,3,5-7,9,
12-21)).

The concepts of the directional lower and upper derivative sets of the set valued
maps are based on the concepts of the lower and upper Bouligand cones [5, 6]. In this
paper, when the value of set-valued map has a piecewise smooth boundary, the direc-
tional lower and upper derivative sets are investigated. Furthermore, the connection
between the directional continuity and the directional derivative sets of the set-valued
maps is investigated.

In what follows, cl R™) (resp., compR™)) denotes the set of all nonempty closed
(resp., compact) subsetsRi".

Leta(-) : R" — R™ be a set valued map and bef € R". It is said thata(') is
upper semi-continuous & if for all open neighbourhoods(a(xg)) of the seta(xp),
there exists a neighbourhodi{xg) of Xg such that(x) c N(a(xg)) for all x € N(xg).

It is said thata(-) is lower semi-continuous a4 if for all yg € a(xp) and for all
open neighbourhoods(yo) of yo, there exists a neighbourhobdlfxy) of xg such that
a(x) N N(yo) # @ for all x € N(xo) [3,18].

It is well-known that a set-valued magf-) : R" — comp R™) is upper semi-
continuous atxg if and only if for all ¢ > 0, there exists a(e, xg) > 0 such that
X — Xoll < 6(&, X0) = a(x) € a(Xg) + £B, whereB = {y € R™: ||y|| < 1}.
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Furthermorea(-) : R" — comp R™) is lower semi-continuous ag if and only
if for all £ > 0, there exists &(e, Xg) > 0 such that|x — xg|| < (g, Xg) = a(xg) C
a(x) + eB, whereB = {y € R™: |ly|| < 1} [1,4].

It is said that the set-valued map) : R" — R™Mis locally bounded axy € R" if
a() is bounded in a neighbourhood xf.

2. DIRECTIONAL DERIVATIVE SETS OF SET-VALUED MAPS

Leta(-) : R" — cl(R™) be an upper semi-continuous set-valued map. Let us
consider the following sets. Fox,@y) € R" x R™ and vectorf € R", we set

Da(x,y) | (f) = {d e R™: Iign irg)f %dist(y +6d,a(x + 6f)) = O},
—+
Da(x,y) | (f) = {v e R™: 6Iim0% dist(y + 6d, a(x + 6f)) = O}.
—+

Here forx € R", D c R", dist(x, D) = infgep |IX — d|. Da(x, y) | (f) (D*a(x, y) | (f))
is called the upper (lower) derivative set of the set valued a@pat (X, y) in the
directionf.

Note that the directional upper (lower) derivative set of the set-valuedatipp
is closed and there is a connection between the upper (lower) derivative set of a set-
valued map and the upper (lower) contingent cone which is used to investigate several
problems in nonsmooth analysis (see, €e. g., [3,8, 15]).

It is obvious thaD*a(x, y) | (f) c Da(x,y) | (f).

A =grapha(-) = {(X,y) e R"x R™: y € a(x)}

denotes the graph of the set-valued naé{). Sincea(:) is upper semicontinuous,
grapha(’) is a closed set. It is possible to show tB&t(x, y) | (f) = D*a(x,y) | (f) =
2 if (x,y) ¢ grapha(-), Da(x,y) | (f) = D'a(x,y) | (f) = R™if (x, y) € int(grapha(-))
where int (grapla(-)) denotes the interior of gragi-).

Suppose that the set-valued n&j is given as

a(x) = {y € R™: c(x,y) > 0} (2.1)

wherec(-,-) : R" x R™ — R s a continuous function oiR" x R™ and locally
Lipschitz onR™. The lower and upper derivative of:, ) at the point &, y) in the

direction (f, d) is denoted b {;(cf(f,?) and";(cf(ﬁg), respectively, and defined by

97 ¢(X, y)
a(f, d)

5+C(X, _I/) . -1
= limsup[c(X+ of,y +6d) — c(X, y)| o,
a(t.d) 5—>+op[ ( y +0d) — (X, y)]

= liminf [c(x+ 61,y + 6d) - c(x. 1) st
—+
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respectively. If
(X, y)
J(f,d)
exists and is finite, thee(-, -) is called diterentiable at the poink(y) in the direction
(f,d) and %‘E(f’fg’)) denotes the derivative af-,-) at the point K, ») in the direction
f,d).
( V\?e introduce the sets

= lims_40 [c(X + 6F, y + 6d) — (X, y)] 672

d"c(X, y)
a(f, d)
" c(X, y)

|
deR™: ) }
}

H-(%y) | (f)={deR™: 0

Vv

b

v
o

\Y
o

)
H.(% ) | (f)
)

{d e R™: I clx.y)

E (o) | (f s

’

_ m.a_C(X,y)
E*(x,y)|(f)_{de]R D o}.

Proposition 1. Let the set-valued mag(-) be in the form(2.1). Then for all
(X,y) e JAand f € R",

clH (% y) | (f) c Da(x,y) | (f) € H.(x.y) | (),
clE;(x.y) | (f) c D'a(x,y) | (f) € E(X,») | (),
wheredA denotes the boudary éfandcl A denotes the closure &

Proposition 2. Let (x,y) € A, c(-,-) be djferentiable at(x, y) and —‘kg;’w £ 0.
Then it is possible to show that

Da(x,y) | (f) = D'a(x,y) | (f)
_fgerm: (90X ¢\, (96 G\ ol
ox Oy
where the symbadil, -) denotes the inner product.

v

Remarkl. Now suppose that the set-valued nafp) : R" — cl (R™) is given by
the relation
a(x) = fy € R™: maxci(x.y) = 0} (22)
le
wherel is a finite set and;(., -) is a continuous dierentiable function for all € 1.
Then (see [10, 11P(X, y) = maX Ci(X, y) is a directional derivable function and
ac(%, y) aci(x, y) aci(x. y)
= f
a(f.d) iehoon < ax 1\

B

where
L(Xy)={i.€l:c(Xy) = rpe?x Gi(% y)}.
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In that case, it follows herefrom that
E (xy) 1 (f) =H (X% y) | (f)

= {d e R™: max
el (xy)

aGi(%, y) aci(X, y)
(e 1)+ (75l o}
E.(xy) | (f) = Hu(x.y) | (f)

= {d e R™: max [<6ci(x, y), f> + <aci(x’y),d>} > O}.
i€l (xy) OX Ay

Theorem 1. Let the set-valued mag(:) : R" — cl (R™) be of form(2.2), (x,y) €
0A, f e R"andH; (x,y) | (f) # @. Then

Da(x,y) | (f) = Da(x. y) | (f) = H.(x.y) [ ().

Proor. It is obtained by using the preceding propositions and the remark. o

Remark2. The above theorem is not true whElg (%, y) | (f) = @ for (X, y) € A
and forf € R".

Examplel. Let us take the set-valued map) : [0,1] — cl(R?), x — a(X) =
{yr.y2) € R? : —y2 — y3 > 0}. We know thata(x) = {(0,0)} for all x € [0, 1]
andb(-,-,-) 1 [0,1] X R? - R, (X, y1.y2) — b(X, y1.y2) = y2 + y3 is a diferentiable
function. Then we obtainl.(x,0,0) | (1) = R? H;(x,0,0) | (1) = @ andDa(x, 0, 0) |
(1) = {(0, 0)} for (x,0,0) € JA.

3. DIRECTIONAL CONTINUITY OF SET-VALUED MAPS

Theorem 2. Leta(-) : R" — comp R™) be a set valued map. Hrapha() is
closed anda(') is locally bounded aky € R", thena() is upper semi continuous at
Xo [4,18]

Theorem 3. Leta(:) : R" — R™ be a set valued map and Igg € R". a() be
lower semi continuous ab if and only if for all {x,};”; wherex, — Xp asn — oo
and for all yo € a(Xo), there exists dyn},; such thaty, € a(x,) andyn — yo as
n— oo [3].

Definition 1. Letxg € R", f ¢ R"and leta(’) : R" — comp (R™) be a set-valued
map. If

Jim a(xo +67) = a(x),
-0+
then it is said tha#() is continuous akg in the directionf. If

5“—(& a(x+6f) =a(x

for all x e R", then it is said thaa(-) is continuous ofR" in the directionf.
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Proposition 3. Let xp € R", f € R" and leta(:) : R" — comp R™) be a set-
valued map. The set valued m@g) : R — comp R™), § — ¢(6) = a(Xg + 6f), is
continuous on the right at = 0 if and only ifa(-) is continuous akg in the direction
f.

Proposition 4. Letxy € R", f € R"anda(:) : R" - comp R™) be a set-valued
map. If the set valued magg-) is upper continuous (resp., lower continuousXgt
then the set-valued mag-) : R - comp R™),

0+ @(6) =a(xg+6f1),

is upper continuous (resp., lower continuousyat 0.
Hence, if the set-valued mag{-) is continuous atxy, then the set-valued map
¢(-) : R - compR™), 6 — ¢(6) = a(xg + &), is continuous aé = 0.

Proor. Let f € R" and leta(-) be continuous aty. We will show that there exists
ad(e) > 0 such that

6l <6(e) = onl(p(6),¢(0)) = on(alxo + 6f),a(x0)) < &

for all ¢ > 0, whereoy denotes Hausdfirdistance. Then the set-valued mgp will
be continuous ai = 0.

Let e > 0. Since the set-valued maf) is continuous akg, then there exists a
61 > 0 such that

X=Xl <61 = on(a(x),ax)) < e (3.1)
Puts, = &1)|f|"*. Then for alls € (6., 4.),
o
lIXo +6f = xoll = [o] Il < IIfII-ﬁ = 01.
It follows that from (3.1), for alb € (6., 46.),
on(@(xo +¢f),a(x)) <e.
Hence, we obtain that the set-valued ngdy) is continuous aé = 0. O

Theorem 4. Let xp € R" and leta(-) : R" — comp R™) be a set-valued map.
If the set-valued map(-) is continuous atxg, thena(-) is continuous atxp in the
direction f for any f € R".

Proor. Since the set-valued mayg-) is continuous akg, then the set valued map
¢(+) is continuous ab = 0 from Proposition 4. From Proposition 3, the set-valued
mapa(-) is continuous axg in the directionf for any f € R". O

Remark3. The converse of the above theorem is not true. The following example
will show this.
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Example2. Let f(-,-) : R x R — R be the function defined by

xy/(x*3 +y®) forx#0,y#0,

X, f(x y) =
(*y) = T(xy) {0 forx=0,y=0.

We will show thatf (-, -) is continuous at (M) in the direction {1, f2) wheref; # 0
or fo # 0, butf(-,-) is not continuous at (@).
Let (X0, yo) = (0,0). Let (f1, f2) € R x R such thatf; # 0 or f, # 0. Then

f((%0, yo) + 0(f1, f2)) = f(Xo + 01,0 + 6f2)
= f(5f,6f0)
= §2f1f2/ (63113 + 6°£9)
= 6234, £/ (1% + 6% £5)
and hence, a& — +0,
52131, f
£+ 54510

Therefore,f(-, ) is continuous at (M) in the direction {1, f2).

Take {(Xn, yn)), = ((6n, 61/ 2))2,, wheres, — 0 asn — co. Then fn,yn) —
(0,0). Since

a3 1
S8 4 52 1+5ﬁ/3

f(Xn, yn) =

and(l + 6ﬁ/3) — 1 asn — oo, then it follows that

lim f(xy)# f(0,0
s Mo0) (% y) # £(0,0).

Hence,f(-,-) is not continuous at (@).

Theorem 5. If the set-valued map(-) : R" — compR™) is continuous aky =
(x5, %2, ..., x0) in all directions f € R", then the set-valued map

i+1

X - a0, %, XK XD
is continuous akj).

Proor. Let f; = (0,0,...,0,1,0,...,0) andf, = (0,0,...,0,-1,0,...,0) where
1 and-1 are thath components. Since the set-valued mépis continuous akg in
all directionsf € R", we see that

6Iirg a(xp + 6 f1) = a(Xp),
-0+
lim a(xg + 6 f2) = a(Xop).
6—0+
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Then we obtain

Jlim aAXg, X5, - XL+ 6, x5 L XD) = alxo), (32)
lim a(xg, %2, .. x5 =6, x5 L XB) = a(x). (3.3)

It follows from (3.2) and (33) that
iimoa(xé, X3 XX+ AL XS L) = a(xo).

This imples that the set-valued m&p— a(x3, x2,..., x5, x, X523, ..., X0 is contin-
uous at). o

Theorem 6. Letxp € R", f € R" and leta(:) : R" — comp R™) be a set-valued
map. Suppose that the sgiaph, a(-) = {(X,y) € D xR™ : y € a(x)} is compact
for any compact seb c R". If D'a(Xo, yo) | (f) # @ for all yp € a(xXp), then the
set-valued map(-) is continuous akg in the directionf.

Proor. First, we will show that the set-valued mag) is upper semi continuous
atXp in the directionf.

Since the seB(Xo, 1) = {x € R" : [[X — Xo|| < 1} is compact, it follows that the set
graphg, 1) a-) is compact. Then, we obtain that the set-valued a{gp B(xo, 1) —
comp (R™) is locally bounded axo and its graph is closed. From Theorem 2, the set-
valued mapa(-) : B(xg,1) — comp R™) is upper semi-continuous a. Hence,
a(-) is upper semi-continuous & in the directionf and then the set valued map
6 — a(Xg + of) is upper semi-continuous on the rightsat 0.

Now we will show that the set-valued map— a(xg + §f) is lower semi-continu-
ous on the right ai = 0, i. e., we will show that for ally € a(xo) and for all{ok},”
wheredy — +0 ask — oo, there existgy € a(Xp + ok f) such thatyy — yp ask - .

Takeyo € a(Xp). From the hypothesis of the theoreBr,a(xo, yo) | (f) # @. Take
d. € D*a(Xo, yo) | (f). From the definition oD*a(xo, yo) | (), there exists @, > 0
such that for alb € [0, 6.],

y(8) = yo + 6d, + 55(0) € a(Xp + 6f)

wheres(6) — 0 asé — +0. For any sequendgx},”, wheresx — +0 ask — oo,
there exists & € N such thavy € [0, §.] for all k > kg. Then for allk > ko,

yk = y(0x)
= yo + okd. + 6kS(6k) € a(xg + ok f).

Hence, we obtain thajy € a(xg + 6xf) andyx — yo ask — o and hence the
set-valued map — a(xg + 6f) is lower semi-continuous on the rightat 0.
Consequently, we obtain that the set-valued mép : R — compR™), 6
¢(6) = a(Xp + 6f), is upper and lower semi-continuous on the right at0 and then
itis continuous on the right. Therefor&;) is continuous akg in the directionf. O
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Corollary 1. Let[a,b] c R, Xp € (a,b) and leta(-) : [a,b] —» comp R™) be
a set-valued map and lgirapha(-) be a compact set. B*a(xg,y) | (1) # @ and
D*a(Xo,y) | (-1) # @ for all y € a(xg), thena(:) is continuous akg.

Proor. SinceD™a(xp, y) | (1) # @ for all y € a(Xp), by Theorem 6,

lim a(xgp + 8) = a(Xg) (3.4)
6—0+

and sinceD*a(Xo, y) | (—1) # @ for all y € a(Xp), from Theorem 6,
lim a(xo — 6) = a(Xo). (35)
6—0+

Then from (34) and (35),
lim a(xo +6) = a(xo).

Hence (') is continuous axg. O

Remark4. The following example shows that Theorem 6 and Corollary 1 are not
true when the conditio®a(x,y) | (f) # @ is replaced by the conditioBa(x, y) |
(f) # 2.

Example3. Let us set, fox € [-1, 1],

sy -fL L et
. ,1].
One can show that the set-valued mag> a(x) is not continuous atg = 0 in the
directionf = 1. However,
(—o0,0] fory =1,
Da(0,y) | (1) = { (=00, +00) fory e (-1,1),
[0, +0) fory = -1,
(o0, 0] fory =1,
Da(0,y) | (-1) = { (-0, +c0) fory e (-1,1),
[0, +o0) fory =-1,

and then for ally € [-1, 1] = a(0), Da(0, y) | (1) # @, Da(0,y) | (-1) # @. On the
other hand,

[(-0,0] fory=1,
D'a(0,y) | (1) = { (=00, +0) fory € (-1, 1),
[0, +o0) fory =-1,
andD"a(0,y) | (1) = o forally € [-1,1].
We obtain the following corollary from Theorem 6 and Theorem 5.
Let f* = (0,0,...,0,1,0,...,0) andf~ = (0,0,...,0,-1,0,...,0) wherei =
1,2,...,nand 1 and-1 areith coordinates of the vectofs” and f,~, respectively.
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Corollary 2. Leta(-) : R" - compR™) be a set valued map. Suppose that
Xo € R" and the set
graphy a(-) = {(x.y) e DxR™: y € a(x)}

is compact for any compact sbt c R". If D*a(xo,y) | (f*) # @ and Da(xo, y) |
(f7) # @ for all yo € a(xp) and for alli = 1,2,...,n, then the set-valued map
X — a(x) is continuous according to all coordinates.

Remarks. We will show that the converse of Theorem 6 is not true in general.
Exampled. Take the set-valued magg-) : [-1, 1] - compR),
x—a(X)={yeR: Yx<y<2.

One can show thai(-) is continuous axy = 0 and thera(:) is continuous axg = 0
in any directionf.
We know that (Q0) € grapha(-) and

Da(0,0) | (1) = {v € R : 36k > 0 such thaty, — 0+ ask — oo,
Ay € a(6k) > |(|im Yk/ok = U}.

Take a sequenciyk},, such thatyx € a(0k) andok — O+ ask — oo. Since
yk € a(6k), we havey, > Vo, and then

3
. . Vo .
lim 2 > fim XX = jim
k— o0 (Sk Kk— o0 6k k— o0 362

ThenDa(0,0) | (1) = @ and sinceD*a(0, 0) | (1) c Da(0,0) | (1), then it follows that
Da(0,0)| (1) = @.
Remark6. The hyphothesis of the above theorem does not imply the continuity of

a(’).
Examplées. Let us put, for all €, y) € R x R,

1 ify=x3 x>0,
f(X,y) = .
(*4) {0 in the other cases

and take the set-valued map,-) : R x R — comp R), (X, y) — a(x,y) = {f(X,y)}.
One can show that the functidt-, -) is not continuous at (@).
We have
0f(0,0) im f(of1,6f2) — £(0,0)
a(fl, f2) 50+ 0 a
wherefy # 0 or f, # 0. Then we get

0

af(0,0)

Da(0,0,0) | (f1, f2) = {m

}:{O};&@.
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4. CONCLUSION

The concepts of directional lower and upper sets of set-valued maps and continu-
ity of the set-valued maps are basic concepts in set-valued analysis. In this study,
the directional lower and upper derivative sets of the set valued map the values of
which have piecewise smooth boundary are suggested and investigated. Moreover,
the connection between the directional continuity and the directional derivative sets
of set-valued maps is investigated.
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