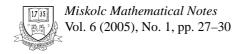


HU e-ISSN 1787-2413 DOI: 10.18514/MMN.2005.96

Sectionally residuated lattices

I. Chajda



SECTIONALLY RESIDUATED LATTICES

I. CHAJDA

[Received: June 15, 2004]

ABSTRACT. The concept of residuum is relativized in the so-called sections of a given lattice. It is shown that such a concept still has a majority of good properties of residuum. The results correspond to previous ones involved in sectionally pseudocomplemented lattices.

Mathematics Subject Classification: 06D15

Keywords: Residuated lattice, sectionally pseudocomplemented lattice, sectional adjointness property

Residuated lattices were introduced by Ward and Dilworth [6] and studied by several authors. Two monographs contain a compendium on residuated lattices. They are that by Blyth and Janowitz [2] (where it is renamed as a residuated Abelian semigroup with a unit) and the book by R. Bělohlávek [1].

In this short note we will compare a certain modification of a residuated lattice with already introduced concepts (see [3,4]).

At first, we recall the basic concept:

By a residual lattice is meant an algebra $\mathcal{L} = (L; \vee, \wedge, \otimes, \rightarrow, 0, 1)$ such that

- (i) $(L; \vee, \wedge, 0, 1)$ is a bounded lattice,
- (ii) $(L; \otimes, 1)$ is a commutative monoid,
- (iii) it satisfies the so-called *adjointness property*: $x \otimes z \leq y$ if and only if $z \leq x \rightarrow y$.

Let us note (see, e. g., [1]) that $x \to y$ is the greatest element of the set $\{z; x \otimes z \le y\}$. Moreover, if we consider $x \otimes y = x \wedge y$, then $x \to y$ is the relative pseudo-complement of x with respect to y, i. e., for $\otimes = \wedge$ residuated lattices are just relatively pseudo-complemented lattices.

It is well known that every relatively pseudo-complemented lattice is distributive. An extension of relative pseudo-complementation for the non-distributive case was already involved in [3,4]:

Definition 1. A lattice $\mathcal{L} = (L; \vee, \wedge, 1)$ with the greatest element 1 is *sectionally pseudo-complemented* if each interval [y, 1] is a pseudo-complemented lattice.

Supported by the Czech Government Council through Grant No. J14/98 : 153100011.

28 I. CHAJDA

From now on, denote by $x \circ y$ the pseudo-complement of $x \vee y$ in the interval [y, 1]. Naturally, $x \vee y \in [y, 1]$ thus $\mathcal{L} = (L; \vee, \wedge, 1)$ is sectionally pseudo-complemented if and only if " \circ " is an (everywhere defined) operation on L. The identities characterizing sectionally pseudo-complemented lattices are presented in [3], i. e., the class of these lattices is a variety in the signature $\{\vee, \wedge, \circ, 1\}$. We are going to apply a similar approach for the adjointness property:

Definition 2. An algebra $\mathcal{L} = (L; \vee, \wedge, \otimes, \rightarrow, 1)$ is called a *sectionally residuated lattice* if

- (i) $(L; \vee, \wedge, 1)$ is a lattice with the greatest element 1;
- (ii) $(L; \otimes, 1)$ is a commutative monoid;
- (iii) it satisfies the *sectional adjointness property*: $(x \lor y) \otimes z = y$ if and only if $y \le z \le x \to y$.

Example 1. Consider the lattice N_5 on Figure 1. Then it is not relatively pseudocomplemented since N_5 is not distributive. e. g. a relative pseudo-complement of c with respect to a does not exist. Thus, considering $\otimes = \wedge$, N_5 is not a residual lattice. On the contrary, for $\otimes = \wedge$ it is a sectionally residuated lattice where the operation \rightarrow

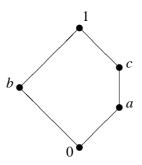


Figure 1

is determined by the table given below. The reader can verify the sectional adjointness property.

\rightarrow	0	а	c	b	1
0	1	1	1	1	1
a	b	1	1	b	1
c	b	a	1	b	1
b	c	a	c	1	1
1	0	a	c	b	1

The following result follows directly by Definition 2:

Lemma 1. Let $\mathcal{L} = (L; \vee, \wedge, \otimes, \rightarrow, 1)$ be a sectionally residuated lattice. Then $x \to y$ is the greatest element of the set $\{z; (x \vee y) \otimes z = y\}$.

This immediately yields the following facts:

$$(x \lor y) \otimes (x \to y) = y,\tag{1}$$

$$(x \lor y) \otimes y = y, \tag{2}$$

$$y \le x \to y. \tag{3}$$

Lemma 2. Let $\mathcal{L} = (L; \vee, \wedge, \otimes, \rightarrow, 1)$ be a sectionally residuated lattice. Then $x \leq y$ if and only if $x \rightarrow y = 1$.

PROOF. Suppose $x \le y$. Then $x \lor y = y$ and, by Lemma 1, $x \to y$ is the greatest element of the set $\{z; y \otimes z = y\}$. By Definition 2, $y \otimes 1 = 1$ thus $x \to y = 1$. Conversely, suppose $x \to y = 1$. Then, by (1), we have $y = (x \lor y) \otimes (x \to y) = (x \lor y) \otimes 1 = x \lor y$ whence $x \le y$.

Lemma 3. In a sectionally residuated lattice, the following identities are satisfied: $x \to x = 1, x \to 1 = 1, 0 \to x = 1,$ and $1 \to x = x.$

PROOF. The first three identities follow directly by Lemma 2. Further, by Lemma 1, $1 \to x$ is the greatest element of the set $\{z; 1 \otimes z = x\} = \{x\}$ thus $1 \to x = x$.

Lemma 4. In a sectionally residuated lattice, $a \otimes b = a$ if and only if $a \leq b$.

PROOF. Putting x = y = a and z = b in the sectional adjointness property, the assumption $a \otimes b = a$ yields $(a \vee a) \otimes b = a$ iff $a \leq b \leq a \rightarrow a = 1$ thus $a \leq b$. Conversely, $a \leq b$ implies by Lemma 3 $a \leq b \leq 1 = a \rightarrow a$ and, by sectional adjointness, $a \otimes b = (a \vee a) \otimes b = a$.

Applying Lemma 2 and Lemma 4, we get

Corollary 1. *In a sectionally residuated lattice,*

- (a) $x \otimes y = x$ if and only if $x \to y = 1$;
- (b) $x \otimes x = x$.

Lemma 5. In a sectionally residuated lattice, $x \land y \le x \otimes y$.

PROOF. By (3) we have $x \land y \le x \to (x \land y)$. Applying sectional adjointness, we infer $x \otimes (x \land y) = (x \lor (x \land y)) \otimes (x \land y) = x \land y$ and, analogously, $y \otimes (x \land y) = x \land y$. Hence, by Corollary 1 (b),

$$x\otimes y\otimes (x\wedge y)=x\otimes (x\wedge y)\otimes y\otimes (x\wedge y)=(x\wedge y)\otimes (x\wedge y)=x\wedge y$$
 and, by Lemma 4, $x\wedge y\leq x\otimes y$. $\ \Box$

Theorem 1. Let $\mathcal{L} = (L; \vee, \wedge, \otimes, \rightarrow, 1)$ be a sectionally residuated lattice. Then $\otimes = \wedge$ and $\rightarrow = \circ$, i. e., it is a sectionally pseudo-complemented lattice.

30 I. CHAJDA

PROOF. Replacing y by $x \wedge y$ in the sectional adjointness property, we obtain

$$x \otimes z = x \wedge y$$
 iff $x \wedge y \leq z \leq x \rightarrow (x \wedge y)$.

However, $x \to (x \land y)$ is the greatest element of the set $\{t; (x \lor (x \land y)) \otimes t = x \land y\} = \{t; x \otimes t = x \land y\}$. By Lemma 5, $x \land t \le x \otimes t = x \land y$, thus the greatest t of this property satisfies $t \ge y$.

Thus $y \le x \to (x \land y)$, i. e.,

$$x \land y \le y \le x \rightarrow (x \land y)$$

and, by the sectional adjointness,

$$x \otimes y = (x \wedge (x \vee y)) \otimes y = x \wedge y.$$

Hence, $x \to y$ is the pseudocomplement of $x \lor y$ in the interval [y, 1], i. e., $x \to y = x \circ y$.

Recall that a lattice $\mathcal{L} = (L; \vee, \wedge)$ is \wedge -semidistributive if $a \wedge b_1 = a \wedge b_2$ implies $a \wedge b_1 = a \wedge (b_1 \vee b_2)$.

Corollary 2. An algebraic lattice \mathcal{L} is sectionally residuated if and only if \mathcal{L} is \land -semidistributive.

PROOF. By Proposition 2.4 from [5], an algebraic lattice \mathcal{L} is \land -semidistributive if and only if \mathcal{L} is sectionally pseudocomplemented. Hence, if \mathcal{L} is sectionally residuated and algebraic, then, by this and Theorem 1, \mathcal{L} is \land -semidistributive. Conversely, if \mathcal{L} is algebraic and \land -semidistributive, then \mathcal{L} is sectionally pseudocomplemented and hence sectionally residuated for $\otimes = \land$ and $\rightarrow = \circ$.

REFERENCES

- [1] BĚLOHLÁVEK, R.: *Fuzzy Relational Systems*, Kluwer Academic/Plenum Publ., New York, Boston, Dordrecht, London, Moscow, 2002.
- [2] BLYTH, T. S. AND JANOWITZ, M. F.: Residuation Theory, Pergamon Press, Oxford, 1972.
- [3] Chajda, I.: An extension of relative pseudo-complementation to non-distributive lattices, Acta Sci. Math (Szeged), **69** (2003), 491–496.
- [4] Chajda, I. and Halaš, R.: Sectionally pseudo-complemented lattices and semilattices, Advances in Algebra, Springer Verlag, 2003, 282–290.
- [5] Chajda, I. and Radeleczki, S.: On varieties defined by pseudo-complemented nondistributive lattices, Publ. Math. (Debrecen), **63** (2003), 737–750.
- [6] WARD, M. AND DILWORTH, R. P.: Residuated lattices, Trans. Amer. Math. Soc., 45 (1939), 335–354.

Author's Address

I. Chajda:

PALACKÝ UNIVERSITY OF OLOMOUC, DEPARTMENT OF ALGEBRA AND GEOMETRY, TOMKOVA 40, 779 00 OLOMOUC, CZECH REPUBLIC

E-mail address: chajda@inf.upol.cz