

Miskolc Mathematical Notes Vol. 14 (2013), No 2, pp. 705-711 HU e-ISSN 1787-2413 DOI: 10.18514/MMN.2013.933

Higher order connections on Lie groupoid: application to materials

Petr Vašík

HIGHER ORDER CONNECTIONS ON LIE GROUPOID: APPLICATION TO MATERIALS

PETR VAŠÍK

Abstract. We present a possibility of material representation by a higher order connection on a Lie groupoid instead of a representation by principal connections on a principal bundle. We also prove some interesting properties of higher order connections on a Lie groupoid induced by principal connections with respect to the material setting.

2000 Mathematics Subject Classification: 58A20,53C05 Keywords: Lie groupoid, higher order connection

1. INTRODUCTION

We present a method of deciding whether the constitutional equations of certain material are equivalent. We deal with a material whose representation is given by different isomorphic principal bundles with conjugate structure groups and by means of a Lie groupoid associated to these settings we compare the connections induced by constitutive equations on these principal bundles. We use the notion of semiholonomity of a higher order connection on a Lie groupoid, which was studied in [5]. We also compare the results with those obtained in [3] for connections on general bundles.

2. LIE GROUPOIDS

We start with a definition of a general groupoid, see [2].

Definition 1. A groupoid is defined as a pair (Φ, B) of a total set Φ and a base set *B* endowed with two submersions

$$\alpha: \Phi \to B \text{ and } \beta: \Phi \to B$$

called the source and target maps, respectively, and a binary operation defined for those ordered pairs $(y, z) \in \Phi \times \Phi$ such that $\alpha(z) = \beta(y)$. This operation must satisfy the following properties:

(1) Associativity:

$$(xy)z = x(yz),$$

whenever the products are defined;

© 2013 Miskolc University Press

PETR VAŠÍK

- (2) Existence of identities: for each $b \in B$ there exists an element $id_b \in \Phi$, called the identity at *b*, such that $zid_b = z$ whenever $\alpha(z) = b$, and $id_b z = z$ whenever $\beta(z) = b$;
- (3) Existence of inverse: for each $z \in \Phi$ there exists a (unique) inverse z^{-1} such that

$$zz^{-1} = \mathrm{id}_{\beta(z)}$$
 and $z^{-1}z = \mathrm{id}_{\alpha(z)}$.

Definition 2. A groupoid (Φ, B) is said to be transitive if for each pair of points $a, b \in B$ there exists at least one element $z \in \Phi$ such that

$$\alpha(z) = a$$
 and $\beta(z) = b$.

Definition 3. A groupoid (Φ, B) is a Lie groupoid if the total set Φ and the base set *B* are differentiable manifolds, the projections α, β are smooth and so are the operations of composition and of inverse.

Remark 1. Note that any transitive Lie groupoid induces naturally a set of isomorphic principal bundles with mutually conjugate structure groups, more precisely for every Lie groupoid Φ and every $x \in B$

$$\Phi_x := \{\theta \in \Phi | \alpha(\theta) = x\}$$

is a principal bundle, whose structure group G_x is the isotropy group of Φ over x. On the other hand, any principal bundle $\pi : P \to B$ with structure group G induces a Lie groupoid $PP^{-1} := (P \times P)/G$, where the equivalence class is given by $pq^{-1} := (p,q) \sim (pg,qg)$ for $p,g \in P$ and $g \in G$, see e.g. [2,4] for further details. Let us just note that the projections in this case are then defined by

$$\alpha(pq^{-1}) = \pi(p)$$
 and $\beta(pq^{-1}) = \pi(q)$.

3. CONNECTIONS ON LIE GROUPOIDS

First, following the paper [5], let us identify the jet prolongation $J^r(B \times \Phi)$ of a fibered manifold $B \times \Phi \to B$ with the set $J^r(B, \Phi)$ of r-jets of mappings $B \to \Phi$. On the nonholonomic jet prolongation $\tilde{J}^r(B \times \Phi)$ for integers $r \ge q \ge 0$ we denote by π_q^r the target surjection $\pi_q^r : \tilde{J}^r(B, \Phi) \to \tilde{J}^q(B, \Phi)$ with π_r^r being the identity on $\tilde{J}^r(B, \Phi)$. Together with π_q^r we have also the surjections $J^k \pi_{q-k}^{r-k} : \tilde{J}^r(B, \Phi) \to \tilde{J}^q(B, \Phi)$. Then the following holds, [5].

Lemma 1. The element $X \in \tilde{J}^r(B, \Phi)$ is semiholonomic if and only if

$$(J^k \pi_{q-k}^{r-k})(X) = \pi_q^r(X) \text{ for any integers } 1 \le k \le q \le r.$$
(1)

The space of semiholonomic *r*-jets will be denoted by $\tilde{J}^r(B, \Phi)$.

The notion of a higher order connection on a Lie groupoid was established by C. Ehresmann in [1]. Let $\sim: B \to \Phi$ denote an inclusion of the manifold units into the groupoid and let us consider the projections π_k^r as above. We use the notation of [5].

706

Definition 4. A nonholonomic, semiholonomic or holonomic connection of order $r \ge 1$ on Φ is a smooth map

$$\Gamma: B \to \tilde{J}^r(B, \Phi), \ B \to \bar{J}^r(B, \Phi) \text{ or } B \to J^r(B, \Phi),$$

respectively, satisfying

$$\pi_0^r \Gamma = \sim, \ (j^r \alpha) \Gamma(x) = j_x^r(u \to u), \ (j^r \beta) \Gamma(x) = j_x^r(u \to x)$$

for all $u, x \in B$.

Remark 2. According to [6], let us consider the set

$$\widetilde{Q}^{r}(\Phi) = \{ X \in \widetilde{J}^{r}(B, \Phi) | \pi_{0}^{r} X = \sim (x), (j^{r} \alpha) X = j_{x}^{r}(u \to u), (j^{r} \beta) X = j_{x}^{r}(u \to x), (\alpha(X) = x) \},$$

where α is the source map. Then $\alpha : \tilde{Q}^r(\Phi) \to B$ is a fibered manifold and the *r*th order connections are the sections $B \to \tilde{Q}^r(\Phi)$.

It is well known that for r = 1 this corresponds to the standard notion of a connection on any of the principal bundles determined by Φ . Recall that in the language of jet prolongations, a principal connection on a principal bundle is defined as follows. Let us consider a principal bundle (P, p, B, G), where $p : P \to B$ is a fibered manifold, G is a Lie group and by r we denote the principal right action $r : P \times G \to P$ and write $r^g = r(-,g) : P \to P$ for $g \in G$. We also denote by r the canonical right action $r : J^1P \times G \to J^1P$ given by $r^g(j_x^1s) = j_x^1(r^g \circ s)$ for all $g \in G$ and $j_x^1s \in J^1P$. A principal connection Γ on a principal fiber bundle P with a principal action r is an r-equivariant section $\Gamma : P \to J^1P$ of the first jet prolongation $J^1P \to P$.

The above definition together with the constructions mentioned in Remark 1 proves the following claim.

Proposition 1. A principal connection on a principal bundle $P \rightarrow B$ induces naturally a first order connection on the Lie groupoid PP^{-1} and any first order connection on a Lie groupoid Φ induces a principal connection on the principal bundle Φ_x for any $x \in B$.

The following concept of a construction of higher order connection can be found in [5]. Let now $\xi = \xi^{(1)} : x \to j_x^1 \xi_x$ be a first order connection on Φ and define for each integer $r \ge 1$ the map

$$\xi^{(r)}: B \to \widetilde{J}^r(B, \Phi), \ x \to j_x^1(u \to j_u^{r-1}[\xi_x(u)]).$$

Then for any *r* th order connection Γ and first order connection ξ on Φ the map

$$\Gamma * \xi : B \to \widetilde{J}^{r+1}(B, \Phi), \ x \to j_x^1 \Gamma \cdot \xi^{(r+1)}(x)$$

is well defined connection on Φ of order r + 1. Note that $\Gamma' = \Gamma * \pi_1^r \Gamma$ is called the prolongation of Γ . Furthermore, given r first order connections $\xi_1, \xi_2, \ldots, \xi_r$ on Φ ,

we can define recurrently the *r*th order connection on Φ as a composition $\xi_1 * \cdots * \xi_r$. On the other hand, given an *r*th order connection Γ on Φ , we can define *r* first order connections

$$\xi_s = \xi_s(\Gamma) : B \to J^1(B, \Phi) : x \to (j_1 \pi_0^{(s-1)}) \pi_s^r \Gamma(x)$$

for s = 1, ..., r.

Using this notation, let us mention the classification property of higher order connections on a Lie groupoid Φ , [5].

Theorem 1. If Γ is a semiholonomic connection on Φ , then all $\xi_s(\Gamma)$ are equal, i.e $\Gamma = \xi * \cdots * \xi$. Moreover, a connection $\xi * \cdots * \xi$ is holonomic if and only if ξ is curvature free.

To recall some further properties of higher order connections on a Lie groupoid Φ we have to mention the following notions, [5]. Let us denote by $G = G(\Phi)$ the isotropy group bundle and by $L = L(\Phi)$ the isotropy Lie algebra bundle attached to Φ , i. e.

$$G_x = \{\theta \in \Phi | \alpha(\theta) = \beta(\theta) = x\}$$
 and $L_x = T_{\tilde{x}}(G_x)$.

where $\tilde{x} \in \Phi$ is an image of $x \in B$ under the inclusion \sim . Then the following holds, [5].

Theorem 2. Every second order connection Γ on Φ is uniquely determined by two first order connections $\xi_1(\Gamma)$, $\xi_2(\Gamma)$ and a linear map

$$A(\Gamma):TB\otimes TB\to L(\Phi).$$

Now if Γ and $\overline{\Gamma}$ are two *r* th order connections on Φ , we can consider the composition $\overline{\Gamma} \cdot \Gamma^{-1} : x \to \overline{\Gamma}(x) \cdot \Gamma^{-1}(x)$. To generalize the linear map $A(\Gamma)$ from the previous theorem we put

$$4(\Gamma) = \Gamma \cdot [\xi_1(\Gamma) * \cdots * \xi_r(\Gamma)]^{-1}.$$

Then the following holds, [5].

Theorem 3. Let Γ be an *r*th order connection on Φ . Then Γ is uniquely determined by $\xi_1(\Gamma), \ldots, \xi_r(\Gamma)$ and $A(\Gamma)$. Moreover, Γ is semiholonomic if and only if all $\xi_s(\Gamma)$ are equal, and $A(\Gamma)$ is semiholonomic.

Finally, let us recall that two r th order connections Γ , $\overline{\Gamma}$ on Φ are said to be equivalent in the q-th order $(1 \le q < r)$ if

$$\pi_q^{r,C} \Gamma = \pi_q^{r,C} \bar{\Gamma}$$

for all decreasing sequences $C = \{r \ge c_1 > \cdots > c_{r-q} \ge 1\}$, where

$$\pi_a^{r,c_i} \Gamma = (j^{c_i} \pi_{a-c_i}^{r-c_i}) \Gamma.$$

Especially they are equivalent in the (r-1)-st order if $\overline{\Gamma} \cdot \Gamma^{-1}$ is a section in

$$L(\Phi) \otimes (\overset{r}{\otimes} T^*B).$$

708

4. APPLICATIONS TO MATERIALS

In material sciences, the basic setting is often given in the form of a principal bundle, for the case of so called Cosserat media see [2], endowed with a principal connection obtained from a constitutive equation. Let us consider the following case.

Proposition 2. Let a material admit different settings in the form of r mutually isomorphic principal bundles (P_i, B, G_i) with the same base manifold B and with conjugate structure groups G_i . Let each of the settings be endowed with a material connection Γ_i . The set of settings $\{(P_i, B, G_i), \Gamma_i, i = 1, ..., r\}$ is equivalent to a setting given by a Lie groupoid $\Phi = P_k P_k^{-1}$ for some $k \in \{1, ..., r\}$ and an rth order connection Γ on Φ . Moreover, if Γ is semiholonomic, then the connections Γ_i are generated by equivalent constitutive equations.

Proof. According to Remark 1, each principal bundle (P_i, B, G_i) induces Lie groupoid $P_i P_i^{-1}$. Obviously, as the principal bundles are isomorphic with conjugate structure groups, Lie groupoids $P_i P_i^{-1}$ and $P_j P_j^{-1}$ are isomorphic for any $i, j \in \{1, \ldots, r\}$. Furthermore, each of the connections Γ_i corresponds to a connection on the Lie groupoid $P_i P_i^{-1}$ and thus, up to a Lie groupoid isomorphism, they correspond to r first order connection Γ_i on a Lie groupoid $P_k P_k^{-1}$ for certain $k \in \{1, \ldots, r\}$. Then

$$\Gamma = \Gamma_1 * \cdots * \Gamma_r.$$

According to Theorem 1, if Γ is semiholonomic, then all generating connections Γ_i are equal and thus they were generated by equivalent constitutive equations.

Let us consider the case when the connection Γ is not semiholonomic, i.e. the generating connections are not all equal. Then we can consider r! connections of order r obtained from r first order connections by changing the order in the expression $\Gamma_1 * \cdots * \Gamma_r$. Let us denote such connections by $\overline{\Gamma}^i, i \in I = \{1, \ldots, r!\}$. Then the following holds.

Proposition 3. If $\overline{\Gamma}^i$ and $\overline{\Gamma}^j$ are equivalent in (r-1)-st order for some couple $(i, j) \in I \times I, i \neq j$, then there exist at least 2 couples of equal generating connections, *i. e.* there are 2 couples of equivalent corresponding constitutive equations.

Proof. If $\overline{\Gamma}^i$ and $\overline{\Gamma}^j$ are equivalent in (r-1)-st order, then

$$(j^{k}\pi_{r-k-1}^{r-k})\bar{\Gamma}^{i} = (j^{k}\pi_{r-k-1}^{r-k})\bar{\Gamma}^{j}$$

for $k = 0, 1, \ldots, r - 1$. Particularly,

$$\pi_{r-1}^r \overline{\Gamma}^i = \pi_{r-1}^r \overline{\Gamma}^j,$$

i.e. for the first order generating connections it holds that $\Gamma_l^i = \Gamma_l^j$ for $l = 1, \ldots, r-1$ and $\Gamma_r^i \neq \Gamma_r^j$. But this means from the construction of $\overline{\Gamma}^i$ and $\overline{\Gamma}^j$

PETR VAŠÍK

that there exist connections Γ_m^i , Γ_n^j different from Γ_r^i , Γ_r^j such that the relations

$$\Gamma_r^i = \Gamma_m^i$$
 and $\Gamma_r^j = \Gamma_n^i$

hold.

By analogous yet more combinatoric considerations we obtain

Proposition 4. If k connections $\overline{\Gamma}^{i_1}, \ldots, \overline{\Gamma}^{i_k}$, $\{i_1, \ldots, i_k\} \subset I$, are equivalent in (r-1)th order, then there exist at least k couples of equal generating connections, *i.e.* there are k couples of equivalent corresponding constitutive equations.

Let us denote by $\langle \Gamma_1 * \cdots * \Gamma_k \rangle$ the set of all permutations of k first order connections $\Gamma_1, \ldots, \Gamma_k$. Then by excluding one of the equal connections and by iterating the process described in Proposition 4 we obtain the following assertion, which reduces the number of material connections to just those corresponding to non-equivalent constitutive equations.

Corollary 1. Let us suppose that there is no pair of connections equivalent in $(l_m - 1)$ -st order among the connections $\langle \Gamma_{l_1} * \cdots * \Gamma_{l_m} \rangle$, $l_1 < l_2 < \cdots < l_m$, $l_i \in \{1, \ldots, r\}$, $i = 1, \ldots, m$, m < r, respectively, and for any $n = m + 1, \ldots, r$ there exists a pair of connections equivalent in (n - 1)th order. Then the appropriate material representation is given by a Lie groupoid and a nonholonomic connection of order l_m .

Finally, we show an analogue and a generalization of a result proved in [3]. Indeed, in [3] we handled second order connections on fibered manifolds, while Theorem 3 gives us the possibility to prove similar result for *r*th order connections on a Lie groupoid Φ . Note that for r > 2 there is no similar identification of connections on fibered manifolds. First, one can define the relation on the space of *r*th order nonholonomic connections on Φ , for our purpose we identify such space with (r + 1)-tuples $(\Gamma_1, \ldots, \Gamma_r, A(\Gamma))$ as in Theorem 3. We say that the elements $(\Gamma_1, \ldots, \Gamma_r, A(\Gamma)), (\bar{\Gamma}_1, \ldots, \bar{\Gamma}_r, A(\bar{\Gamma}))$ are equivalent if and only if $\Gamma_1 = \bar{\Gamma}_1, \ldots, \Gamma_r = \bar{\Gamma}_r$. It is easy to see that this is an equivalence relation and we denote by $[\theta] = [(\Gamma_1, \ldots, \Gamma_r, A(\Gamma))]$ a class of this equivalence. Finally the class $[\theta]$ consists of semiholonomic connections if and only if $\Gamma_1 = \cdots = \Gamma_r$ for any $(\Gamma_1, \ldots, \Gamma_r, A(\Gamma)) \in [\theta]$. Furthermore, $A(\Gamma)$ is semiholonomic.

Proposition 5. Let Φ be a Lie groupoid and $[\theta]$ a class of rth order connections. Then the constitutive equations on a principal bundle Φ_x corresponding to first order connections $\Gamma_1, \ldots, \Gamma_r$ on Φ are in the same projective class if and only if $[\theta]$ is semiholonomic.

Proof. If the element $[(\Gamma_1, ..., \Gamma_r, A(\Gamma))]$ belongs to $[\theta]$, then from Theorem 3 the semiholonomity is equivalent to the property $\Gamma_1 = \cdots = \Gamma_r$. In particular, r constitutive equations determine r projectively equivalent connections of the first order.

710

ACKNOWLEDGEMENT

The author was supported by the Grant no. FSI-S-11-3.

REFERENCES

- C. Ehresmann, "Sur les connexions d'ordre supérieur," Atti del V Congr. dell'Unione Mat. Ital., pp. 1–3, 1956, Pavia-Torino.
- [2] M. Epstein and M. Elzanowski, *Material Inhomogeneities and their Evolution: A Geometric Approach, Interaction of Mechanics and Mathematics.* Springer, 2007.
- [3] J. Hrdina and P. Vašík, "Semiholonomic second order connections associated to material bodies," *Journal of Applied Mathematics*, vol. 2013, 2013.
- [4] I. Kolář, P. W. Michor, and J. Slovák, *Natural Operations in Differential Geometry*. Springer-Verlag, 1993.
- [5] G. Virsik, "On the holonomity of higher order connections," *Cahiers Topol. Géom. Diff.*, vol. 12, pp. 197–212, 1971.
- [6] G. Virsik, "Total connections in Lie groupoid," Arch. Math., vol. 31, pp. 183–200, 1995.

Author's address

Petr Vašík

Brno University of Technology, Faculty of Mechanical Engineering, Institute of Mathematics, Technická 2, 616 69 Brno, Czech Republic

E-mail address: vasik@fme.vutbr.cz