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Abstract. In mechanical engineering and robotics, the main problem is usually to solve the equa-
tions of motion of a given rigid mechanism. The rigid mechanisms are sometimes restricted or
controlled to move along a constrained path. In engineering sciences, the most common con-
straints are called ideal joint constraints. The ideal joint constraints are generally holonomic
constraints involving only the coordinates and orientation of a mechanism with respect to a fixed
coordinate frame. An important aspect is that ideal joint constraints can be formulated as a set
of polynomial equations. This means that the configuration spaces of typical rigid mechanisms
can be treated as algebraic varieties and the components of a constraint function as generators
of a polynomial ideal. This geometry algebra equivalence and the advances of computational
commutative algebra and algebraic geometry gives us means to actually compute the properties
of configuration spaces.
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1. INTRODUCTION

The equations of motion arising from Lagrangian mechanics for multibody sys-
tems are typically differential algebraic equations (DAE) where algebraic equations
in our case determine the holonomic constraints. The equations of motion in Lag-
rangian mechanics in the holonomic case are generally of the form

f .t; u; Pu; Ru; �/ D 0;

g.u/ D 0;
(1.1)

where u W I 7! g�1.0/ � Rk is the trajectory of the system, � denotes the Lag-
rangian multipliers defining the holonomic constraint forces and g�1.0/ is usually the
analytic or algebraic variety defining the configuration space. In this paper we will
introduce modern methods of computational algebraic geometry to study the con-
figuration space as an algebraic variety. We will present relevant theorems and give
three easy examples of planar mechanisms and their configuration space analysis. In
computations, we have used the well established computer program SINGULAR [9].
In most of the computations the key is to compute the Gröbner bases of a given ideal
in a particular monomial ordering.
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2. PRELIMINARY DEFINITIONS

LetA D K�x1; : : : ; xk� be the ring of polynomials with coefficient fieldK. We will
always assume that K is algebraically closed. We can look at the vector components
of the constraint map g W Rk 7! Rn as functions or as generators of an ideal I D
hg1; : : : ; gni � A. For standard facts about the ideal theory we refer to [3, 4, 8, 10].
Since the polynomial rings that we consider are Noetherian, we know that every ideal
in A is finitely generated. The geometric object corresponding to an ideal I � A is
its variety V.I/ � Kk which is the vanishing set of all polynomials in I � A. We
will also frequently use the fact that any radical ideal can be written uniquely as a
finite intersection of prime ideals. This prime decomposition implies directly the
decomposition of the corresponding variety into its irreducible parts which is called
the irreducible decomposition of a variety.

Let us then present the tools which allow us to do local analysis on varieties and
distinguish between different types of singularities.

Definition 1. (Local ring) A local ring R is a ring which has exactly one maximal
ideal.

Remark 1. In this paper we look at localizations of polynomial rings with respect
to a point/maximal ideal. We consider equivalence classes of polynomials giving
always the same value when evaluated at V.I/. The equivalence classes are given by

�f � D fg 2 A j f � g 2 I.V.I//g; (2.1)

where I.V.I// denotes the ideal of a variety V.I/. As usual, the coordinate ring
K.V.I// is

K.V.I// D f�f � j f 2 Ag: (2.2)

Definition 2. (Localization of V.I/ at a point) Let mp be the maximal ideal mp D
hx1 � p1; : : : ; xn � pki � A where p D .p1; : : : ; pn/ 2 V.I/ � Kn. Then we can
write the localization of A at p as

Op Dff=g j f 2 A; g � mpg (2.3)

The unique maximal ideal in this case is

mp Dff=g j f 2 mp; g � mpg (2.4)

The localization of V.I/ at p is the ideal

OV;p D ff=g j f 2 K.V.I//; g � mpg � Op; (2.5)

Notice that I � mp and OV;p is a local ring which is a subring of a Op with maximal
ideal mpOV;p DMp.
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3. SINGULARITIES AND DIMENSION

In this section we will briefly present the relevant definitions and theorems in order
to compute our examples. Remember that the embedding dimension edim.OV;p/ D
dimK.Mp=M

2
P / of an algebraic variety is the minimal number of generators of Mp.

Particulary important is that the Krull dimension of an ideal can be easily computed
if the elements of the Gröbner basis of an ideal is known.

Definition 3 (Singular and regular points of a variety). Suppose that I is a radical
ideal. The local ring OV;p is a regular local ring if

dimK.OV;p/ D edim.OV;p/ D dim.TpV.I//;

where TpV.I/ denotes the tangent space of V.I/ at p. If the point p is not regular, it
is singular.

The last equation in Definition 3 gives us the actual means to compute the singular
points [5, 7, 8, 11].

Theorem 1 (Jacobian criterion). Let I D hg1; : : : gni � A be a radical ideal and
suppose that V.I/ � Kk is equidimensional� and dim.V.I// D k � `. Then the
singular variety of V.I/ is

S.V.I// D V
�
I C Il.dg/

� D V
�
I
� \ V

�
Il.dg/

� � Kk :
Here Il.dg/ denotes the l th Fitting ideal of the Jacobian of the constraint map g

generated by l � l minors of dg. From this, it follows that, if p 2 S.V.I//, then
OV;p is not a regular local ring. Moreover, if 1 2 I C Il.dg/, then the variety V.I/

is naturally smooth since V.1/ D ¿.
Let us then introduce another important object in our analysis - the tangent cone[3,

4]. We can rearrange any polynomial f 2 A by total degree d as a linear combination
f D fp;0 C fp;1 C : : :C fp;d ; where

fp;k D
X
j�jDk

c�.x � p/�:

Here, � is a multi index. Let us denote by fp;min the nonzero homogeneous compon-
ent of smallest degree.

Definition 4 (tangent cone). Suppose that V.I/ � Kk is an affine variety and let
p 2 V.I/. Let Ip;min be the ideal generated by the minimal parts of polynomials in
I. The tangent cone of V.I/ at p, denoted by Cp.V.I//, is

Cp.V.I// D V.Ip;min/; (3.1)

The following theorem allows us also to distinguish between singular and regular
points [3, 4].

�A variety is called equidimensional if all of its irreducible components have the same dimension.
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Theorem 2. The following conditions are equivalent:

(1) p 2 V is a regular point of V;
(2) dim.Cp.V// D dim.TpV/;
(3) Cp.V/ D TpV.

Finally, let us present a theorem to distinguish certain types of singularities [12].

Theorem 3. Suppose that I � K�x1; : : : ; xk� is a ideal where K is algebraically
closed. Let p 2 V.I/ be a singular point of V.I/ and Op be the local ring at p. If
the prime decomposition of the radical of OV;p in the local ring is

q
OV;p D I1 \ : : : \ Ir � Op;

then the corresponding irreducible varieties V.Ii / of prime ideals Ii represent vari-
eties passing through the singular point p and the varieties intersect at this point.
However, if the prime decomposition of OV;p is

p
OV;p D I, then I is an integral

domain and the point p is a singularity of an irreducible variety V.I/.

4. EXAMPLES

Here we apply the previous theorems to three easy examples.

4.1. Simple slider-crank mechanisms

Let us consider a mechanism constructed from two and three bars attached to each
other with a revolute joint and suppose that the last bar is constrained to move on
x-axis.

FIGURE 1. On the left the 2-bar slider-crank mechanism. On the
right the 3-bar slider crank mechanism.
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4.1.1. 2-bar slider-crank mechanism

The constraint mapping g W R2 7! R for the 2-bar slider-crank mechanism is then

g.�1; �2/ D l1 sin.�1/C l sin.�2/:

The configuration space is then the analytic variety g�1.0/. With substitutions ci D
cos.�i / and si D sin.�i /; the constraint equations take the form

p1 D l1s1 C l2s2 D 0; p2 D c21 C s21 � 1 D 0; p3 D c22 C s22 � 1 D 0:

The configuration space is then V.hp1; p2; p3i/ D V.I/. Now it is easy to check that
I is a radical ideal and, moreover, dim.V.I// D 1. Let us then deduce the necessary
condition for singularities from Theorem 1 in .l1; l2/-space. Since dim.V.I// D 1;

the singular variety of V.I/ is

S.V.I// D V
�
I C I3.dp/

�

Decomposing the Fitting ideal I3.dp/ gives
p

I3.dp/ D I1 \ : : : \ I6;
Only the ideal I5 D hc1; c2i corresponds to a physically feasible solution so we only
need to look at the intersection of V.I5/ and V.I/. To find the necessary condition,
we compute the Gröbner basis of S D I C I5 in the ring Q�.c1; s1; c2; s2/; .l1; l2/�

with the above elimination ordering. The computation shows

E D S \Q�l1; l2� D h.l1 C l2/.l1 � l2/i;
Hence l1 D l2 is a necessary condition for singularities in .l1; l2/-space. Next we
choose for example l1 D l2 D 1 and compute the actual singular points. This gives

p
S D hs2 C 1; c2; s1 C s2; c1i \ hs2 � 1; c2; s1 C s2; c1i:

Thus the singular points are

V.S/ D V.
p
S/ D f.0; 1; 0;�1/; .0;�1; 0; 1/g D q1 [ q2:

Let us then carry out a local analysis for variety V.I/ at the singular point q2 D
.c1; s1; c2; s2/ D .0;�1; 0; 1/. Now we can compute the the tangent cone and get

Cq2.V.I// D V.hc1; c2; .s1 � 1/2 � .s2 C 1/2i/:
Near q2; the variety V.I/ looks like two lines s1 � 1 D �.s2 C 1/ intersecting in
the plane c1 D c2 D 0. Next, we consider I D hp1; p2; p3i in the local ring Oq2

using local ordering and compute the prime decomposition of OV;q2 . As expected,
we have

OV;q2 D H1 \H2:



690 SAMULI PIIPPONEN AND JUKKA TUOMELA

By theorem 3, at least two irreducible varieties/motion modes pass through q2. In
fact, when we compute in global ordering after substitution l1 D l2 D 1; we simply
have

I D I1 \ I2 D hc22 C s22 � 1; c1 � c2; s1 C s2i \ hc22 C s22 � 1; c1 C c2; s1 C s2i;
V.I/ D V.I1/ [ V.I2/ and S.V.I// D V.I1/ \ V.I2/.

4.1.2. 3-bar slider-crank mechanism

Let us then do similar analysis for 3-bar slider crank mechanism. With substi-
tutions ci D cos.�i / and si D sin.�i /; as before, the constraint equations take the
form

p1 D l1s1 C l2s2 C l3s3 D 0; piC1 D c2i C s2i � 1 D 0; 1 � i � 3:

Again, we check that I is radical and compute dim.V.I// D 2. The singular variety
is then

S.V.I// D V.I C I4.dp/
�
:

Again, we first analyze the Fitting ideal I4.dp/ and find
p

I4.dp/ D I1 \ : : : \ I11:
Only one of the prime components I9 D hc1; c2; c3i is physically relevant so we
compute the Gröbner basis of S D I C I9 in the ring

Q�.c1; s1; c2; s2; c3; s3/; .l1; l2; l3/�

with the above elimination ordering. Now we find

E D S \Q�l1; l2; l3� D h.l1 C l2 C l3/.l1 � l2 � l3/.l1 C l2 � l3/.l1 � l2 C l3/i
D hh1h2h3h4i

The necessary conditions for singularities are thus h2 D 0, h3 D 0 or h4 D 0. Let us
choose l1 D 2 and l2 D l3 D 1 so that h2 D 0 is fulfilled. This gives
p
S D hc1; s1 � 1; c2; s2 C 1; c3; s3 C 1i \ hc1; s1 � 1; c2; s2 C 1; c3; s3 C 1i:

The singular points are thus

V.S/ D V.
p
S/ D f.0; 1; 0;�1; 0;�1/; .0;�1; 0; 1; 0; 1/g D q1 [ q2:

Let us then investigate locally the variety at point q2. Computing the tangent cone
gives

Cq2.V.I// D V.hc1; c2; c3; 2.s1 C 1/2 � .s2 � 1/2 � .s3 � 1/2i/:
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Note that 2.s1C1/2�.s2�1/2�.s3�1/2 D 0 actually gives a cone in the .s1; s2; s3/
space. Moreover, when we compute the prime decomposition of the radical of local-
ization OV;q2 of V.I/ at Oq2 , we find that

q
OV;q2 D OV;q2

Thus the singularity is not an intersection of different motion modes/irreducible vari-
eties. It is still possible to visualize the configuration spaces of 2-bar and 3-bar slider
crank mechanisms. In the first case, the configuration space ”breaks” naturally to two
irreducible varieties. In the 3-bar case, such separation does not exist.

FIGURE 2. On the left, the configuration space of 2-bar slider-crank
mechanism in the .�1; �2/-space. On the right, the configuration
space of 3-bar slider crank mechanism in the .�1; �2; �3/-space.

Remark 2. The plots agree with our computational results. Also, in the 2-bar slider
crank case, there are no regular solutions c W I 7! g�1.0/ for equations of motion
.1:1/ through the singular point q2 D c.t0/ from one motion mode to another since,
for such solutions, automatically, c0.t0/ D .0; 0/. However, in the case of the 3-bar
slider crank, such a problem does not exist.

4.2. Closed four bar mechanism

Let us finally consider the closed four bar mechanism. To simplify the analysis,
we assume that one bar with a length of unity is fixed on the x-axis.
In this case, the constraint equations are given by

p1 D l1c1 C l2c2 C l3c3 � 1 D 0;

p2 D l1s1 C l2s2 C l3s3 D 0;

p2Ci D c2i C s2i � 1 D 0; 1 � i � 3:
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FIGURE 3. Simple closed four bar mechanism.

Setting I D hp1; : : : ; p5i, we compute dim.V.I// D 1. The singular variety is
thus

S.V.I// D V.I C I5.dp/
�
:

The prime decomposition of
p

I5.dp/ yields

p
I5.dp/ D I1 \ : : : \ I10:

The only physically relevant component is given by

I8 D h�s2c3 C c2s3;�s1c3 C c1s3;�s1c2 C c1s2i

Computing the Gröbner basis of S D I C I8 in the ring

Q�.c1; s1; c2; s2; c3; s3/; .l1; l2; l3/�

we find

E D S \Q�l1; l2; l3� D hk1 � : : : � k9i:

The necessary condition for V.S/ ¤ ¿ in .l1; l2; l3/-space is ki D 0, where the nine
polynomials ki are of the form

ki D l1 � l2 � l3 � 1:
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Let us choose l1 D l2 D l3 D 1 so that k4 D l1� l2C l3�1 D 0. After substitutions
we compute p

S D J1 \ J2 \ J3
J1 D hc1 C 1; s1; c2 � 1; s2; c3 � 1; s3i
J2 D hc1 C 1; s1; c2 � 1; s2; c3 C 1; s3i
J3 D hc1 C 1; s1; c2 C 1; s2; c3 � 1; s3i:

Also, after substitutions, the constraint ideal decomposes as
p
I D I D I1\I2\I3

and easy computation shows that the singularities qi are the intersections

q1 D V.J1/ D V.I1/ \ V.I3/ D .�1; 0; 1; 0; 1; 0/
q2 D V.J2/ D V.I2/ \ V.I3/ D .1; 0; 1; 0;�1; 0/
q3 D V.J3/ D V.I1/ \ V.I2/ D .1; 0;�1; 0; 1; 0/:

Let us still do the local analysis for V.I/ for example at q1. The tangent cone
Cq1.V.I// is

Cq1.V.I// D V.hs1; s2; s3; c1 C c2 C c3 � 1; .c2 � 1/.c3 � 1/i/
The singularity looks now again like the intersection of two lines in the hyper plane
s1 D s2 D s3 D 0. Then, the computation in the local ring shows that

OV;q1 D H1 \H2

This confirms that the two irreducible varieties V.I1/ and V.I2/ intersect at point q1
as Theorem 3 suggests.

FIGURE 4. On the left the degenerate motion mode V.I1/. In the
middle the degenerate motion mode V.I2/. On the right the ”actual”
four bar motion mode V.I3/. In both degenerate motion modes,
two bars are fixed on the horizontal axis and two bars rotate freely
together. In the ”actual” motion mode, the mechanism rotates as one
parallellogram.

.
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Remark 3. Notice again that there are no regular solutions c W I 7! g�1.0/ for
.1:1/ which would take the the mechanism through q1 from V.I3/ to V.I1/ and again
through q2 from V.I3/ to V.I1/. At singular points c.ti / D qi ; 1 � i � 3, automat-
ically, c0.ti / D .0; 0; 0/ since the one dimensional varieties intersect transversally.

5. CONCLUSIONS

In this paper, we successfully analyzed configuration spaces of three simple mech-
anisms with computational algebraic geometry. The methods can be applied to more
complicated mechanisms as well [1,2,15]. When we are able to represent the config-
uration space as an algebraic variety, we can use the tools of computational algebraic
geometry to make both global and local statements about the configuration space.
The local analysis for analytic varieties has been previously investigated in [13, 14]
and the Gröbner bases methods in [6]. The dimension or mobility in particular mo-
tion mode V.I/ can be regarded as the Krull dimension of the corresponding ideal I.
The Jacobian criterion together with elimination theory provides us with the means
to determine whether and under which conditions, configuration space singularities
exist. The tangent cone and the localization of motion mode V.I/ at a singular point
gives us the means to investigate the nature of the singularity.
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