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Abstract. In [17], we proved a theorem which shows how to find, under particular assumptions
that guarantee metrizability (among others, recurrency of the curvature is necessary), all (at least
local) pseudo-Riemannian metrics compatible with a given torsion-free linear connection without
flat points in a domain of two-dimensional manifold. The result has the form of an implication
only. In general, if there are flat points, or if curvature is not recurrent, we cannot give any good
answer as it can also be demonstrated by examples. Note that in higher dimension, the problem
of metrizability is not easy to solve, [6, 7]. Here, we try to apply this apparatus to the class of
(torsion-free, locally homogeneous) connections with constant Christoffels in open domains of
2-manifolds (called connections of Type A in [1, 8]).
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1. INTRODUCTION

In [17], we developed a simple method which helps to decide whether a given
linear connection on a 2-dimensional manifold arises as a Riemannian connection of
some pseudo-Riemannian metric. Note that in an arbitrary dimension, the problem
is difficult to solve. In the real analytic Riemannian case, probably the most effect-
ive method was offered by O. Kowalski in [6, 7], see also [14–16]. In the simplest
case, for nowhere flat two-manifolds, we formulated the necessary and sufficient
conditions for local metrizability in [17], and in favourable case, we described all
compatible metrics in terms of the Ricci tensor. The purpose of the paper is to show
a particular application, related to the class of locally homogeneous connections in
2-manifolds, [1, 8, 11]. First, recall some notation. Let .Mn;r/ be a manifold with a
linear connection and let R denote the corresponding curvature tensor, R.X; Y /Z D

�rX ;rY �Z � r�X;Y �Z D rX .rYZ/ � rY .rXZ/ � r�X;Y �Z for X; Y;Z from
X.M/. The induced map Z 7! R.X; Y /Z, R.X; Y /WTxM ! TxM for X; Y;Z
from TxM is linear and skew-symmetric. The Ricci tensor Ric in type .0; 2/ is a
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trace of the endomorphism: Ric.Y;Z/ D TrfX 7! R.X; Y /Zg, X; Y;Z 2 X.M/,
hence it carries less information than R in general. The formula

Ric.Z; Y / � Ric.Y;Z/ D TrR.Y;Z/

holds [10, p. 14].

1.1. The Ricci tensor of a pseudo-Riemannian manifold

On a pseudo-Riemannian manifold .Mn; g/ with the metric tensor g, besides the
curvature R in type .1; 3/, we consider the type .0; 4/ tensor introduced, up to a sign,
as zR.X; Y;Z;W / D g.R.X; Y /Z;W /, usually also called the curvature tensor; the
relations

zR.X; Y;Z;W / D zR.Z;W;X; Y / D � zR.Y;X;Z;W / D � zR.X; Y;W;Z/

hold. In a coordinate system .U; .xi // based at a point x 2M , components Rhijk of
zR and R`

ijk
of R satisfy Rhijk D Rjkhi D �Rihjk D �Rhikj , Rhijk D ghsR

s
ijk

,

and g`hRhijk D R`
ijk

. On .Mn; g/, the Ricci tensor of type .1; 1/ has components
Ri
j D gisRsj , and the scalar curvature % is its trace,

% D Tr Ric D Rs
s D gijRij :

Recall that a Riemannian manifold .Mn; g/ is an Einstein space if there is a real
constant � such that Ric.X; Y / D �g.X; Y /. .Mn; g/ is isotropic in a point x 2

M if the curvature is the same constant, K.x/, on every (two-plane) section, and
isotropic if it is isotropic in every point, [3]. If x is an isotropic point of .Mn; g/,
then the following formula holds in x in any local coordinates around x: Rhijk D

K.ghjgik � ghigjk/.
From now on, suppose n D 2. Let .x1; x2/ denote local coordinates in a co-

ordinate neighborhood U of a manifold .M2; g/. In dimension two, the non-zero
components of zR are equal R1212 up to a sign, and the sectional curvature

K.x/ D
R1212

g11g22 � g12g21

is sometimes called the Gaussian curvature ([12, p. 62,], [4, p. 137]). Any two-
dimensional manifold is isotropic and the formula Rhijk D K.ghjgik � ghigjk/

holds [4, p. 137]. Components of the Riemann curvature R of type .1; 3/ are related
to the Ricci tensor by Ri

hjk
D �ijRkh � �i

k
Rjh, [9, 12]. We easily check by direct

evaluation (cf. [12, 17]):

Lemma 1. The curvature tensor of a pseudo-Riemannian two-manifold .M2; g/

satisfies

Ri
hjk D K.x/.�ikghj � �ijghk/
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where K.x/ is the Gaussian curvature and the Ricci tensor is a multiple of the metric
tensor:

Ric D Kg D
1

2
% g; g D

2

%
Ric

where %.x/ is the scalar curvature.

Consequently, the Ricci tensor of the Levi–Civita connection of a 2-dimensional
pseudo-Riemannian manifold .M2; g/ is always symmetric and is proportional to the
metric tensor. As a corollary, the Ricci tensor is non-degenerate for a nowhere flat
.M2; g/.

Obviously, .M2; g/ is an Einstein space if and only if it has constant (scalar or
sectional) curvature (cf. [2, p. 44]). If this is the case, then (due to rg D 0) the Ricci
tensor is covariantly constant, r Ric D 0, and vice versa.

Lemma 2. ([17]) The Ricci tensor of a nowhere flat 2-dimensional pseudo-Rieman-
nian manifold .M2; g/ with non-zero sectional curvature is recurrent, i. e.

r Ric D ! 
 Ric; (1.1)

and the corresponding (non-zero) 1-form is exact, ! D df for some function f .

Cf. [5, I, p. 280].

1.2. Two-manifolds with a linear connection

Let us now pay attention to a torsion-free linear connectionr on a 2-manifold M2.
As is well known, in this case, the curvature tensor R of type .1; 3/ can be completly
recovered from the Ricci tensor,

R.X; Y /Z D Ric.Y;Z/X � Ric.X;Z/Y

for X; Y;Z 2 X.M/: In components Ri
hjk

D @ijRhk � @i
k
Rjh; Ri

hij
D Rjh for

j ¤ i and Ri
hjj

D 0. We get immediately

Lemma 3. In .M2;r/, R D 0 if and only if Ric D 0.

Lemma 4. For .M2;r/, the Ricci tensor Ric is recurrent if and only if R is recur-
rent.

Proof. If Ric is recurrent, then there is a one-form ! D !jdx
j such that in local

coordinates,

r`R
i
hjk D �ijr`Rkh � �ikr`Rjh D �ij!`Rkh � �ik!`Rjh D !`R

i
hjk

and, hence, rR D ! 
 R. The converse is similar: if R is recurrent, then r`Rjk D

!`R
i
kij

D !`Rjk , and r Ric D ! 
 Ric. �

Since, in the case R D 0, the tensor Ric is in fact also recurrent (! D 0), recur-
rency is a necessary condition for metrizability of two-manifolds.
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2. METRIZABILITY OF 2-MANIFOLDS WITH LINEAR CONNECTION

As far as Ri
hjj

D 0 and Ri
hij

D Rjh hold for j ¤ i , the curvature tensor of a
linear connection r on M2 is completely determined by its Ricci tensor; explicitly,

R11 D �R2
112 D R2

121;

R21 D �R1
121 D R1

112;

R12 D �R2
212 D R2

221;

R22 D �R1
221 D R1

212:

It is now clear that there are two necessary conditions for local metrizability of a
symmetric connection on a pseudo-Riemannian 2-manifold: the Ricci tensor must be
symmetric and must also be recurrent for some closed 1-form (Lemma 2). Moreover,
Ric may be degenerate only if R D 0 holds, and if this is the case, then Ric D 0. For
the sake of global metrizability, the corresponding 1-form must also be exact. As is
well known, a flat connection is always globally metrizable; we can even prescribe
the signature.

When the Ricci tensor (or equivalently, the curvature) is non-zero in one fixed
point x0 2 M , then due to continuity, it is non-zero in some neighborhood of x0.
Note that the subset of non-flat points is open. The following can be proved:

Theorem 1. Let .M2;r/ be a 2-manifold with a torsion-free linear connection
such that the Ricci tensor is symmetric, Rij D Rj i , recurrent, i. e. (1.1) holds for
some 1-form !, and the regularity condition jRij j ¤ 0 is satisfied. Then, at least
locally, there is a metric compatible with the connection.

Theorem 2. Let .M2;r/ be a two-dimensional manifold with a complete torsion-
free linear connection and with the curvature R non-zero everywhere. If the Ricci
tensor of r is regular, symmetric, and (1.1) holds were the 1-form is gradient, i. e.,
! D df for some function f , then g D e�f � Ric is a global metric tensor such that
rg D 0.

Hence, a now-where flat complete torsion-free linear connection on M2 is met-
rizable if and only if its Ricci tensor is symmetric, regular and recurrent with the
corresponding 1-form being exact. If this is the case and r Ric D df 
 Ric holds
for some smooth function f , then there is a family of (mutually homothetic) global
metrics corresponding to r, gt D exp.�f C t / � Ric, t 2 R.

The cases

(i) Ric D 0 identically

and

(ii) Ric is symmetric, recurrent and non-degenerate
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are always favourable for local metrizability of a 2-manifold. Isolated flat points do
not matter. But, as examples show, the Ricci tensor might vanish in some “greater”
subset and then we can hardly give any reasonable prediction.

3. TORSION-FREE CONNECTIONS WITH CONSTANT CHRISTOFFELS IN
DIMENSION 2

Consider n D 2. Let us apply the above methods, cf. [17], in the case of torsion-
free connections with constant Christoffels on 2-manifolds (motivation for examining
this class comes from classification of locally homogeneous linear connections, [1,
8, 11]). A torsion-free connection r in a domain U � M2 is given uniquely by a
family of functions (components) A.u; v/; : : : ; F .u; v/ in u; v:

r@u@u D A@uC B@v; r@u@v D C@uCD@v; r@v@v D E@uC F@v;

where @u D @
@u

, similarly for v, and .u; v/ are local coordinates in U (i. e. � 1
11 D A,

� 2
11 D B etc.). In the case of constant Christoffels, the curvature and the Ricci tensor

are constant,
R11 D B.F � C/CD.A �D/;

R12 D R21 D CD � BE;

R22 D E.A �D/C C.F � C/;

(3.1)

and constant components of the covariant derivative r Ric are

�R11I1 D 2.AR11 C BR12/;

�R11I2 D 2.CR11 CDR12/;

�R12I1 D CR11 C .ACD/R12 C BR22;

�R12I2 D ER11 C .C C F /R12 CDR22;

�R22I1 D 2.CR12 CDR22/;

�R22I2 D 2.ER12 C FR22/:

Lemma 5. A torsion-free linear connection on M2 D R
2�u; v� with constant

Christoffels is locally flat in the following cases:
(a) B D D D 0, A;C;E; F 2 R are related by AE � C 2 C CF D 0;
(b) D ¤ 0, C D BE=D, A;B;E; F 2 R are related by D2A�EB2CDBF �

D3 D 0.

Proof. Suppose Ric D 0 holds. From technical reasons, let us distinguish the cases
D D 0, D ¤ 0 in our considerations (although D is not a preferable coefficient, we
can start with something else, e.g. with C ; the main purpose is only to prepare the
situation for application of Maple).

Let D D 0. Then, the condition R12 D 0 implies BE D 0. If E D 0 as well, then
we get B.F �C/ D 0 D C.F �C/ from (3.1) and further either B D C D 0 holds,
we get the subcase



626 ALENA VANŽUROVÁ

(a1) B D C D D D E D 0, A;F 2 R,
or F D C , we obtain the subcase

(a2) D D E D 0, F D C , A;B;C 2 R;
the condition from (a) obviously holds. If D D B D 0, then the equation C.F �

C/C AE D 0 must hold, case (a).
Now let D ¤ 0. We get C D BE=D from R12 D 0. The other two components

of the Ricci tensor vanish if and only if the following holds:

B.F � BE=D/CD.A �D/ D 0;

.BE=D/.F � BE=D/CE.A �D/ D 0:

This system is equivalent to the unique third-order algebraic equation D2A �

EB2 CDBF �D3 D 0, hence (b) is checked. �

Note that if we choose D ¤ 0 and either A;B;E or B;E; F , we calculate the
remaining coefficients uniquely. It means:

Corollary 1. The class of torsion-free linear connections with constant Christof-
fels contains a three-parameter family of metrizable locally flat connections.

Step by step, the following can be proved, [13].

Lemma 6. If the Ricci tensor of a torsion-free linear connection is recurrent on
M2 D R

2�u; v�, has constant Christoffels and satisfies R12 D 0 then either Ric
vanishes or is degenerate.

Lemma 7. If the Ricci tensor a torsion-free linear connection with constant Chris-
toffels on M2 D R

2�u; v� is symmetric, recurrent, non-vanishing and non-degenerate
then the components must satisfy R11 �R22 ¤ 0.

Hence, if a torsion-free connection with constant Christoffels on M2 and non-
vanishing Ricci tensor should be symmetric and recurrent, then it satisfies necessarily
R11 �R12 �R22 ¤ 0.

Lemma 8. If .M2;r/ is a 2-manifold with a torsion-free linear connection which
has constant Christoffels, the corresponding Ricci tensor is recurrent and all its com-
ponents are non-vanishing on M2, then Ric is degenerate.

Corollary 2. In the above notation, exactly the following choices of constants give
rise to a metrizable connection r on M2:

(1) B D C D D D E D 0, A;F 2 R;
(2) D D E D 0, F D C , A;B;C 2 R;
(3) B D D D 0, A;C;E; F 2 R satisfying the equality AE � C 2 C CF D 0;
(4) D ¤ 0, C D BE=D, A;B;E; F 2 R satisfying the equality D2A�EB2C

DBF �D3 D 0.
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Theorem 3. The only (locally) metrizable connections in the class of torsion-
free linear connections with constant Christoffels defined on 2-manifolds are exactly
locally flat connections.

Note that Theorem 3 follows also from the results published in [1].
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