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Abstract. Space-like surfaces with special second fundamental forms have been an important
tool in the study of pseudo-Riemannian manifolds. This paper focuses on adapting some the-
orems of Riemannian geometry in the large to the study of geometry of space-like surfaces of
pseudo-Riemannian manifolds, specifically, various comparison theorems that use sectional and
Ricci curvatures. The purpose of this paper is to establish a global geometry of complete space-
like totally umbilical and maximal surfaces in pseudo-Riemannian manifolds.
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1. DEFINITIONS AND NOTATIONS

First, we set up our terminology and notations (see [2, 4]). Let .M; g/ be an n-
dimensional connected pseudo-Riemannian manifold (also called a semi-Riemannian
manifold) of class C1 whose metric g has the signature .p; q/ for p C q D n and
M 0 an n0-dimensional differentiable manifold of class C1 imbedded in .M; g/ with
an imbedding map f WM 0 ! M . We call the image f .M 0/ a surface (also called a
submanifold) in .M; g/ and identify it with the manifold M 0.

The differential df of the imbedding map f WM 0 !M will denote by f�, so that
a vector field X 0 in TM 0 corresponds to a vector field f�X 0 in TM .

We denote by g0 D g.f�; f�/ the metric tensor g0 D f �g induced in M 0 from
g by f , where f � is the mapping conjugate of f�. Then, the surface M 0 is called
space-like if the metric tensor g0 is positive definite and hence n0 � q. In this case,
.M 0; g0/ is a Riemannian manifold and for each of its points x, there exists a normal
subspace of a tangent space TxM such that the following orthogonal decomposition
TxM

0 D .TxM
0/? � TxM

0 is true.
We denote by r 0 the covariant differential operator corresponding to the Rieman-

nian metric g0. Then, the second fundamental form Q of the surface .M 0; g0/ is
defined by the formula

Q.X 0; Y 0/ WD.r 0X 0f�/Y 0 D r
f�X

0f�Y
0 � f�.r 0X 0Y 0/
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for any X 0,Y 0 2 C1TM 0. The Gauss curvature equation for .M 0; g0/ has the form

R0.X 0; Y 0; V 0; W 0/ D R.f�X
0; f�Y

0; f�V
0; f�W

0/

C g.Q.X 0; W 0/;Q.Y 0; V 0// � g.Q.Y 0; W 0/;Q.X 0; V 0// (1.1)

for all X 0; Y 0; V 0; W 0 2 C1TM 0, where R0 is the curvature tensor of .M 0; g0/. In
particular, if .M; g/ is a pseudo-Riemannian manifold of constant curvature C , then
(1.1) can be rewritten in the form

R0.X 0; Y 0; V 0; W 0/ D C � .g0.X 0; W 0/ g0.Y 0; V 0/ � g0.Y 0; W 0/ g0.X 0; V 0//C
g.Q.X 0; W 0/;Q.Y 0; V 0// � g.Q.Y 0; W 0/;Q.X 0; V 0//: (1.2)

A surface .M 0; g0/ is said to be totally umbilical in .M; g/ if its second funda-
mental form satisfies Q D g0 �H where H is the mean curvature vector defined by
the formula n �H D traceg0Q. In this case, (1.1) can be rewritten as the following
equations

R0.X 0; Y 0; V 0; W 0/ D R.f�X
0; f�Y

0; f�V
0; f�W

0/

C g.H;H/ � .g0.X 0; W 0/g0.Y 0; V 0/ � g0.Y 0; W 0/g0.X 0; V 0// (1.3)

for all X 0; Y 0; V 0; W 0 2 C1TM 0. In addition, if .M; g/ is a manifold of constant
curvature C , then from (1.2) and (1.3), we obtain

R0.X 0; Y 0; V 0; W 0/ D .C C g.H;H// � .g0.X 0; W 0/g0.Y 0; V 0/

� g0.Y 0; W 0/g0.X 0; V 0// (1.4)

and hence, .M 0; g0/ is a manifold of constant curvature C 0 D C C g.H;H/.
On the other hand, from (1.3), we obtain

sec0.x; �/ D sec.x; �/C g.Hx;Hx/ (1.5)

where

sec0.x; �/ D sec0.X 0x ^ Y 0x/

WD � R0.X 0x; Y
0
x; X

0
x; Y

0
x/

g0.X 0x; X
0
x/g

0.Y 0x; Y
0
x/ � g0.X 0x; Y

0
x/

2

and

sec.x; �/ D sec.X 0x ^ Y 0x/

WD � R.f�X
0
x; f�Y

0
x; f�X

0
x; f�Y

0
x/

g.f�X 0x; f�X
0
x/g.f�Y

0
x; f�Y

0
x/ � g.f�X 0x; f�Y

0
x/

2

are space-like sectional curvatures of .M 0; g0/ and .M; g/ at x 2 M 0 with respect to
the space-like nondegenerated plane � D spanfX 0x; Y 0xg � TxM

0.
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In particular, let .M 0; g0/ be an n-dimensional space-like totally umbilical hyper-
surface (also called a hypersubmanifold) in a Lorentzian manifold .M; g/. It means
that .M; g/ is a .nC 1/-dimensional pseudo-Riemannian manifold .M; g/ with met-
ric g of Lorentzian signature .�;C; : : : ;C/. In this case, we can rewrite the equality
(1.5) in the following form

sec0.x; �/ D sec.x; �/ � jH 2j (1.6)

where jH 2j D jg.H;H/j is a mean curvature of .M 0; g0/.
Next, a surface .M 0; g0/ is said to be maximal (in contrast to the Riemannian

case where it is called the minimal surface) if its mean curvature vector H D 0.
In particular, if .M 0; g0/ is an n-dimensional space-like maximal hypersurface in a
Lorentzian manifold .M; g/, the following equation can be obtained from (1.1)

Ric0.Y 0; V 0/ D Ric.f�Y 0; f�V 0/CR.N ; f�Y
0; f�V

0;N /C g0.AY 0;AV 0/ (1.7)

where Ric0 and Ric are Ricci tensors of .M 0; g0/ and .M; g/, respectively. Moreover,
N is the (globally defined) unitary time-like normal vector field on M 0 and A is
the shape operator of .M 0; g0/ in .M; g/ with respect to N such that Q.Y 0; V 0/ D
�g0.AY 0; V 0/N . In particular, from (1.7), we obtain

Ric0.V 0x/ D Ric.f�V 0x/ � sec.x; �/C kAV 0k2 � kV 0xk�2 (1.8)

where Ric0.V 0x/ D Ric0.V 0x; V
0
x/ � kVxk�2 and Ric.f�V 0x/ D Ric0.f�V 0x; f�V

0
x/ �

kVxk�2 are Ricci curvatures at x 2 M 0 with respect to the nonzero vector V 0x 2
TxM

0,

kAV 0k2 D g0.AV 0x;AV
0
x/

and

kVxk2 D g0.V 0x; V
0
x/ D g.f�V

0
x; f�V

0
x/:

Moreover, here, sec.x; �/ WD sec.N x ^ f�V
0
x/ is a time-like sectional curvature of

the time-like plane � D spanfN x; f�V
0
xg and V 0x 2 TxM

0 is a nonzero vector. Next,
along with (1.8) from (1.7), we obtain the equation

s D s0 C 2Ric.N ;N /C trace.A2/ (1.9)

where s0 and s are scalar curvatures of .M 0; g0/ and .M; g/, respectively.
Finally, .M 0; g0/ is said to be totally geodesic if its second fundamental form Q

vanishes identically. Obviously, such a surface is totally umbilical and maximal at
the same time. In this paper, we exclude such surfaces from consideration.

2. TOTALLY UMBILICAL SURFACES IN PSEUDO-RIEMANNIAN MANIFOLDS

Let .M 0; g0/ be a n-dimensional complete space-like totally umbilical surface in a
pseudo-Riemannian manifold .M; g/. In this case, we have
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Theorem 2.1. Let .M 0; g0/ be a complete space-like totally umbilical surface in a
pseudo-Riemannian manifold .M; g/.

(1) If the mean curvature vector H of .M 0; g0/ and the sectional curvature sec of
.M; g/ satisfy the inequality

sec.�/ � �g.H;H/

for all plane sections � of TM 0, then .M 0; g0/ is diffeomorphic to Rn.
(2) If there exists a constant � > 0 such that the mean curvature vector H of

.M 0; g0/ and the sectional curvature sec of .M; g/ satisfy the inequality

sec.�/ � �g.H;H/C �

for all plane sections � of TM 0, then .M 0; g0/ is compact, its diameter sat-
isfies the inequality diamM 0 � �=

p
� and the first fundamental group is

finite.

Proof. Firstly, we recall that Mayer’s theorem states (see [5, pp. 212–213]) that a
complete Riemannian manifold .M 0; g0/ is compact if there exists a positive constant
� such that sec0.x; �/ � � > 0 for an arbitrary plane � D spanfX 0x; Y 0xg at each point
x 2 M 0. Moreover, its diameter satisfies the inequality diamM 0 � �=

p
� and the

first fundamental group is finite.
Secondly, by (1.3), the inequality sec0.x; �/ � � > 0 can be rewritten in the form

sec.x; �/ � �g.Hx;Hx/C �:

Thirdly, if a complete Riemannian manifold .M 0; g0/ has nonpositive sectional cur-
vature at all plane sections, then .M 0; g0/ is diffeomorphic to Rn (see [5, p. 201]).
After these remarks, the theorem statements become obvious. �

Next, from Theorem 2.1 and (1.4), we conclude that if .M; g/ is a manifold of
constant curvature C such that C C g.H;H/ > 0, then its complete space-like
totally umbilical surface .M 0; g0/ is compact. In addition, we recall that any compact,
simply-connected Riemannian manifold .M 0; g0/ with constant sectional curvature
C 0 > 0 is necessarily isometric to a Euclidian sphere Sn of radius .C 0/�1=2, equipped
with its standard metric (see [5, p. 217–218]). Thus, using Theorem 2.1 and the result
above, we can formulate the following corollary.

Corollary 2.1. Let .M 0; g0/ be a complete space-like totally umbilical surface in a
pseudo-Riemannian manifold .M; g/ of constant curvature C. If the mean curvature
vector H of .M 0; g0/ satisfies the inequality

g.H;H/C C > 0;

then .M 0; g0/ is compact and its first fundamental group is finite. Further, suppose
that .M 0; g0/ is simply-connected, then .M 0; g0/ is isometric to a Euclidian sphere
S
n of radius .g.H;H/C C/�1=2.
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Now, we suppose that .M 0; g0/ is an n-dimensional space-like totally umbilical
hypersurface in a Lorentzian manifold .M; g/. In this case, from the inequality
sec.x; �/ � jHx

2j, we obtain sec0.x; �/ � 0 for an arbitrary plane � � TxM
0 at

each point x 2M 0. It follows that .M 0; g0/ is diffeomorphic to Rn (see [5, p. 201]).
On the other hand, if the inequality sec.x; �/ > jHx

2jC � holds for some positive
constant �, then from (1.5), we obtain sec0.x; �/ � � > 0. Therefore, as a con-
sequence of Mayer’s theorem (see [5, pp. 212–213]), we have the following result.

Corollary 2.2. Let .M 0; g0/ be a complete space-like totally umbilical hypersur-
face in a Lorentzian manifold .M; g/.

(1) If the mean curvature jH 2j of .M 0; g0/ and the sectional curvature sec of
.M; g/ satisfy the inequality

sec.�/ � jH 2j
for all plane sections � of TM 0, then .M 0; g0/ is diffeomorphic to Rn.

(2) If there exists a positive constant � such that the mean curvature jH 2j of
.M 0; g0/ and the sectional curvature sec of .M; g/ satisfy the inequality

sec.�/ � jH 2j C �

for all plane sections � of TM 0, then .M 0; g0/ is compact, its diameter sat-
isfies the inequality

diamM 0 � �p
�

and the first fundamental group is finite.

We define a de Sitter space SnC1
1 .C / as a Lorentzian manifold .M; g/with positive

constant sectional curvature C and recall that any space-like compact hypersurface
.M 0; g0/ is a de Sitter space SnC1

1 .C / diffeomorphic to a Euclidian sphere Sn. In
particular, compact totally umbilical space-like hypersurfaces in SnC1

1 .C / are round
n-spheres (see [1, 8]). Now, we can formulate the following corollary.

Corollary 2.3. Let .M 0; g0/ be a complete space-like totally umbilical hypersur-
face in SnC1

1 .C /. If the mean curvature jH 2j of .M 0; g0/ satisfies the inequality

jH 2j < C;

then .M 0; g0/ is a round n-sphere. Furthermore, if .M 0; g0/ is simply-connected, then
.M 0; g0/ is isometric to a Euclidian sphere Snof radius .C � jH 2j/�1=2.

Montiel (see [8]) proved that every compact space-like surface in S
nC1
1 .C / of

constant mean curvature is totally umbilical. Based on these results and Corollary
2.4, we can formulate the following obvious corollary.
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Corollary 2.4. Let .M 0; g0/ be a compact simply-connected space-like hypersur-
face in a de Sitter space SnC1

1 .C /. If the mean curvature jH 2j of .M 0; g0/ is constant
and

jH 2j < C;

then .M 0; g0/ is isometric to a Euclidian sphere Sn of radius .C � jH 2j/�1=2.

3. MAXIMAL SPACE-LIKE HYPERSURFACES IN LORENTZIAN MANIFOLDS

Let .M 0; g0/ be an n-dimensional complete space-like maximal hypersurface in a
Lorentzian manifold .M; g/.

Theorem 3.1. Let .M 0; g0/ be a space-like complete non-totally geodesic, max-
imal hypersurface in a Lorentzian manifold .M; g/. If there exists a positive constant
� such that the space-like Ricci curvature and time-like sectional curvature of .M; g/

satisfy the inequality

Ric.f�V 0x/ � sec.N x ^ f�V
0
x/C �

for any vector Vx 2 TxM
0 at each point x 2 M 0, then .M 0; g0/ is compact, its

diameter satisfies the inequality

diamM 0 � �p
�

and its first fundamental group is finite.

Proof. Firstly, from (1.8), we obtain

Ric0.V 0x/ D Ric.f�V 0x/ � sec.N x ^ f�V
0
x/C kAV 0k2 � kV 0xk�2

� Ric.V 0x/ � sec.N x ^ f�V
0
x/

for the nonzero vector Vx 2 TxM
0. Secondly, if we suppose that

Ric.f�V 0x/ � sec.N x ^ f�V
0
x/ � � > 0

for some positive constant � and an arbitrary nonzero vector Vx 2 TxM
0 at each point

x 2 M 0, then Ric0.V 0x/ � � > 0. This means that .M 0; g0/ is compact, its diameter
satisfies the inequality

diamM 0 � �p
�

and the first fundamental group is finite (see [5, p. 216]). In particular, if we suppose
for .M; g/ that its all time-like sectional curvatures sec.x; �/ � �� < 0 and space-
like Ricci curvatures Ric.V / � 0 for all space-like nonzero vectors V , then (1.8)
implies that

Ric0.V 0x/ D Ric.f�V 0x/ � sec.N x ^ f�V
0
x/C kAV 0k2 � kV 0xk�2 � � > 0

and hence, .M 0; g0/ is compact. This completes the proof. �
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Next, from (1.9), we obtain

s0 D s C 2Ric.N ;N /C
X

iD1;:::;n

.�i /
2;

where �1; : : : ; �n are eigenvalues of A which are called the principal curvatures
of .M 0; g0/. In addition, we recall that .M; g/ is said to satisfy the strong energy
condition or the time-like convergence condition (see [6, p. 95]) if Ric.Vx; Vx/ � 0

for every time-like vector Vx 2 TxM at each point x 2 M . Then, the following
corollary holds.

Corollary 3.1. Let .M 0; g0/ be a space-like and maximal hypersurface Lorentzian
manifold .M; g/ which satisfies the strong energy condition, then s0 � s for the
scalar curvatures s0 and s of .M 0; g0/ and .M; g/, respectively. The equality holds
on a totally geodesic hypersurface.

Cheng and Yau [3] and T. Ishihara [7] proved that a complete maximal space-like
submanifold .M 0; g0/ of SnC1

1 .C / is totally geodesic. Then, the Ricci curvature Ric0

of a space-like hypersurface .M 0; g0/ in SnC1
1 .C / has the form

Ric0.X 0/ D .n � 1/C > 0

for any nonzero X 0 2 TM 0. This inequality is a necessary condition for a complete
Riemannian manifold .M 0; g0/ to be compact (see [5, p. 216]). Thus, using this
fact and Mayer’s theorem (see [5, pp. 212–213]), we can formulate the following
corollary.

Corollary 3.2. If .M 0; g0/ is a space-like complete maximal hypersurface in a
de Sitter space-time SnC1

1 .C /, then .M 0; g0/ is compact, totally geodesic and its first
fundamental group is finite. Further suppose that .M 0; g0/ is simply-connected then
.M 0; g0/ is isometric to a Euclidian sphere Sn of radius C�1=2.
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