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Abstract. The projective group effectively acting in the multi-measured projective space is rep-
resented by the principal bundle of the centroprojective frames, in which a symmetrical centro-
projective connection is defined. A surface is considered in the projective space. The principal
bundle above the surface with the typical fiber — a subgroup of the stationarity for the centered
tangent plane to the surface in a fixed point is considered. Fundamental-group connection is
given in this fibering. It consists of tangent affine and centroprojective, normal linear and affine-
group connections. It is shown that the centroprojective connection in the projective group is
reduced to the fundamental-group connection in the principal bundle associated with the surface
in the projective space.
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1. CENTROPROJECTIVE CONNECTION IN THE PROJECTIVE GROUP

In n-dimensional projective space Pn, let us consider the moving frame fA;AI g

.I; � � � D 1; n/ with the derivation formulas

dA D #AC �IAI ; dAI D #AI C �JI AJ C �IA; (1.1)

where the form # plays the role of a proportionality factor and the structure forms
�I ; �IJ ; �I of the projective group GP.n/, which acts effectively in the space Pn,
satisfy the Cartan equations (see, e. g., [3])

D�I D �J ^ �IJ ; (1.21)

D�IJ D �KJ ^ �IK C �K ^ �IJK ; (1.22)

D�I D �JI ^ �J I (1.23)

�IJK D ��IJ �K � �IK�J : (1.3)
The equations (1.2) are the structure equations of the principal fiber bundle of the
centroprojective frames Cn.nC1/.Pn/, whose base is the projective space Pn (a re-
gion circumscribed by a point A). The centroprojective (coaffine) group Cn.nC1/ D
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GA�.n/ � GP.n/ is the typical fiber. This group acts in any centroprojective space
P 0
n that is the space Pn with the fixed point A.

Proposition 1. The fibering Cn.nC1/.Pn/ of the centroprojective frames has the
principal quotient bundle Ln2.Pn/ with the structure equations (1.21), (1.22) the
same base Pn, and typical fiber Ln2 D GL.n/, where GL.n/ is the linear quotient
group acting [2] ineffectively in the pencil of lines passing through the point A of the
projective space Pn (this group acts in the projective quotient space Pn�1 D Pn=A

(see, e. g., [1])).

We give a centroprojective connection on the principal fiber bundle Cn.nC1/.Pn/

using Laptev–Lumiste method [4, 6, 8] by the forms

O�IJ D �IJ ��I
JK�

K ; O�I D �I ��IJ �
J ; (1.4)

where the components of the centroprojective connection object � D f�I
JK ; �IJ g

satisfy the differential equations

��I
JK C �IJK D �I

JKL�
L; (1.51)

��IJ C�K
IJ �K D �IJK�

K : (1.52)

The tensor operator � acts by

��I
JK D d�I

JK C�L
JK�

I
L ��I

LK�
L
J ��I

JL�
L
K :

Proposition 2. The centroprojective connection object � is a quasitensor con-
taining the quasitensor �I

JK which determines an affine (special linear) connection
on the fibering Ln2.Pn/ of linear frames.

The forms of centroprojective connection (1.4) satisfy the structure equations

D O�IJ D O�KJ ^ O�IK CKI
JKL�

K ^ �L; (1.61)

D O�I D O�JI ^ O�J CKIJK�
J ^ �K : (1.62)

The components of the centroprojective curvature object K D fKI
JKL; KIJKg are

defined by

KI
JKL D �I

J �KL� ��M
J�K�

I
ML�; KIJK D �I �JK� ��L

I�J�LK�:

The square brackets are alternation in the extreme indices in these brackets. These
components satisfy the differential comparisons modulo basis forms �I of the space
Pn:

�KI
JKL � 0; �KIJK CKL

IJK�L � 0:

Proposition 3. The centroprojective curvature object K is a tensor containing the
subtensor of the affine curvature KI

JKL.
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We put the affine connection forms (1.41) into the structure equations (1.21) of the
base Pn

D�I D �J ^ O�IJ C SI
JK�

J ^ �K ; (1.7)

where SI
JK D �I

�JK�
are the components of the affine torsion object of the centropro-

jective connection. The differential equations (1.51) with the symmetry of the forms
�IJK (1.3) in the lower indices imply the comparisons �SI

JK � 0.

Proposition 4. The bundle Cn.nC1/.Pn/ of centroprojective frames with given
centroprojective connection is the space Cn.nC1/;n of the centroprojective connec-
tion with closed structure equations (1.6), (1.7) which contain the affine torsion
tensor SI

JK and the centroprojective curvature object K. The space Cn.nC1/;n has
the quotient space of an affine connection Ln2;n (1.7), (1.61) with the torsion SI

JK

and curvature KI
JKL tensors.

According to [5], we can introduce the torsion object (centroprojective torsion
object) of the centroprojective connection S D fSI

JK ; SIJ g, where SIJ D ��IJ �.
The differential equations (1.52) imply

�SIJ C SK
IJ �K � 0:

Proposition 5. The centroprojective torsion object S is a tensor containing the
affine torsion subtensor SI

JK .

Definition. The centroprojective connection is an affine symmetric connection
(an affine torsion-free connection) if SI

JK D 0. The centroprojective connection is a
symmetric connection (a centroprojective torsion-free connection) if S D 0.

Conclusion 1. The forms �IJK (1.3) in the differential equations (1.51) for the
components of the affine subconnection object �I

JK are symmetric forms. There-
fore, the affine connection have to be symmetric connection (�I

�JK�
D 0). There

are the symmetric components �I
JK in the differential equations (1.52) for the com-

ponents �IJ of the object � hence �IJ are symmetric components (��IJ � D 0.)
Therefore, we can put only symmetric centroprojective connection into the projective
group GP.n/ D Cn.nC1/.Pn/.

2. FUNDAMENTAL-GROUP CONNECTION ASSOCIATED WITH A SURFACE

In the projective space Pn we shall consider m-dimensional surface Sm (1 � m <

n) as the family of the centered tangent planes Tm. Let us partition the indices set as:

I D .i; a/I i; � � � D 1;mI a; � � � D mC 1; n:

Let us put the tops A;Ai of the moving frame fA;AI g on the tangent plane Tm so
that the top A coincides with the tangent point. According to (1.1), let us write the
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equations of the surface Sm in the form

�a D 0; (2.11)

�ai D �a
ij �

j : (2.12)

Closing the equations (2.11) we obtain �a
�ij �

D 0. Prolonging (2.12) we have

��a
ij Ñ 0; (2.21)

��a
ij D @�a

ij C�b
ij!

a
b ��a

kj!
k
i ��a

ik!
k
j ; (2.22)

where @ D d jSm ; ! D � jSm , the symbol � is the comparison modulo basis forms
� i of the surface Sm.

Eliminating the principal forms � i ; �a; �ai of the equations (2.1) for the surface
Sm from the structure forms �I ; �IJ ; �I of the projective group GP.n/ we keep the
secondary forms. They are called the fibre forms on the surface Sm. The basis forms
� i and fiber forms !i

j ; !i ; !
a
b
; !i

a; !a satisfy the structure equations [1, 9]

D� i D �j ^ !i
j I (2.3)

D!i
j D !k

j ^ !i
k C �k ^ !i

jk; (2.41)

!i
jk D �a

jk!
i
a � �ij!k � �ik!j I (2.42)

D!i D !
j
i ^ !j C � i ^ !ij ; (2.51)

!ij D �a
ij!aI (2.52)

D!a
b D !c

b ^ !a
c C � i ^ !a

bi ; !a
bi D ��a

ij!
j

b
� �ab!i I (2.6)

D!i
a D !j

a ^ !i
j C !b

a ^ !i
b C �j ^ !i

aj ; (2.71)

!i
aj D ��ij!aI (2.72)

D!a D !i
a ^ !i C !b

a ^ !b: (2.8)

We obtain the structure equations (2.3)–(2.8) of the principal bundle Gr.Sm/ asso-
ciated with Sm. The surface Sm is a base of the principal bundle Gr.Sm/. The
subgroup of stationarity Gr � GP.n/ of the centered tangent plane Tm is a typical
fiber. We have

r D dimGr D n.nC 1/ �m.n �m/:

Associated fibering Gr.Sm/ has 4 simple quotient principal bundles [10] over the
base Sm with the structure equations:

(1) (2.3), (2.4) — the tangent linear frame fibering Lm2.Sm/ with the typical
fiber Lm2 D GL.m/, where GL.m/ is linear quotient group acting inef-
fectively on the bunch of tangent lines passing through the center A (on the
quotient space Tm�1 D Tm=A);
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(2) (2.3)–(2.5) — the tangent centroprojective frame fiberingCm.mC1/.Sm/with
the typical fiber Cm.mC1/ D GA�.m/, where GA�.m/ is centroprojective
(coaffine) quotient group acting effectively on the centered tangent plane Tm;

(3) (2.3), (2.6) — the normal linear frame fibering L.n�m/2.Sm/ with the typical
fiberL.n�m/2 D GL.n�m/, where GL.n�m/ is linear quotient group acting
ineffectively in the .n � m � 1/-dimensional projective space Pn�m�1 D

Pn=Tm (see, e. g., [1]);
(4) (2.3), (2.4), (2.6), (2.7) — the fibering Hm2�mnCn2.Sm/ with the typical

fiber Hm2�mnCn2 . This fiber is:
(a) stationarity subgroup for the centered tangent plane to m-dimensional

surface of n-dimensional affine space An,
(b) stationarity subgroup for the tangent straight lines subbunch on the straight

line bunch of the space Pn with the center A,
(c) stationarity subgroup for the quotient plane Tm�1 D Tm=A in Pn=A,
(d) an affine quotient group [11] of the projective subgroup Gr .

According to the Laptev–Lumiste method, a connection in the principal bundle
Gr.Sm/ is defined by the forms

Q!i
j D !i

j � � i
jk�

k; Q!i D !i � �ij �
j ;

Q!a
b D !a

b � � a
bi�

i ; Q!i
a D !i

a � � i
aj �

j ; Q!a D !a � �ai�
i ; (2.9)

and the components of the fundamental-group connection object

� D f� i
jk; �ij ; �

a
bi ; �

i
aj ; �aig

satisfy the differential equations [9]

�� i
jk C !i

jk D � i
jkl�

l ; (2.101)

��ij C � k
ij!k C !ij D �ijk�

k; (2.102)

�� a
bi C !a

bi D � a
bij �

j ; (2.103)

�� i
aj C � b

aj!
i
b � � i

kj!
k
a C !i

aj D � i
ajk�

k; (2.104)

��ai C �
j
ai!j C � b

ai!b � �j i!
j
a D �aij �

j : (2.105)

The connection object � has 4 simple subobjects [10]: � i
jk

— the tangent affine
connection object, f� i

jk
; �ij g — the tangent centroprojective connection object, � a

bi

— the normal linear connection object, f� i
jk
; � a

bi
; � i

aj g — affine-group connection
object. These subobjects give the fundamental-group connections in the correspond-
ing quotient fiberings of the associated fibering Gr.Sm/.

Conclusion 2. The forms !i
jk

(2.42), !ij (2.52) from the differential equations
(2.101) and (2.102) for the components of the centroprojective connection object
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f� i
jk
; �ij g are symmetric forms. Therefore, on the surface Sm we can consider only

connection centroprojective torsion-free: � i
�jk�

D 0, ��ij � D 0.

The fundamental-group connection forms (2.9) satisfy the structure equations

D Q!i
j D Q!k

j ^ Q!i
k CRi

jkl�
k ^ � l ; D Q!i D Q!

j
i ^ Q!j CRijk�

j ^ �k;

D Q!a
b D Q!c

b ^ Q!a
c CRa

bij �
i ^ �j ; D Q!i

a D Q!j
a ^ Q!i

j C Q!b
a ^ Q!i

b CRi
ajk�

j ^ �k;

D Q!a D Q!i
a ^ Q!i C Q!b

a ^ Q!b CRaij �
i ^ �j ;

where the components of curvature object

R D fRi
jkl ; Rijk; R

a
bij ; R

i
ajk; Raij g

of the fundamental-group connections � are expressed by the formulas

Ri
jkl D � i

j �kl���
m
j�k�

i
ml�; Rijk D �i�jk���

l
i�j�lk�; Ra

bij D � a
b�ij ���

c
b�i�

a
cj �;

Ri
ajk D � i

a�jk� � � l
a�j�

i
lk� � � b

a�j�
i
bk�; Raij D �a�ij � � � k

a�i�kj � � � b
a�i�bj �:

These components satisfy the differential comparisons [10]

�Ri
jkl Ñ 0; �Rijk CRl

ijk!l Ñ 0; �Ra
bij Ñ 0;

�Ri
ajk �Ri

ljk!
l
a CRb

ajk!
i
b Ñ 0; �Raij CRk

aij!k CRb
aij!b �Rkij!

k
a Ñ 0:

Theorem 1. The curvature object R of the fundamental-group connection � is a
tensor containing:

(1) the curvature tensor Ri
jkl

of the tangent affine connection � i
jk

,
(2) the curvature tensor fRi

jkl
; Rijkg of the tangent centroprojective connection

f� i
jk
; �ij g,

(3) the curvature tensor Ra
bij

of the normal linear connection � a
bi

,
(4) the curvature tensor fRi

jkl
; Ra

bij
; Ri

ajk
g of the affine-group connection f� i

jk
;

� a
bi
; � i

aj g.

3. REDUCTION OF THE CENTROPROJECTIVE CONNECTION

We define a symmetric centroprojective connection object � D f�I
JK ; �IJ g.

By the partition of each index into two indices the object � will consist from the
following essential components

� D f� i
jk; �

a
ij ; �

i
aj ; �

a
bi ; �

i
ab; �

a
bc ; �ij ; �ai ; �abg:

In the differential equations (1.5) for the components of the object � we expand
the action of the operator � and partition the indices. We take the equations (2.1) of
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the surface Sm, apply the operator � to the subobjects and write result in the com-
parisons form for the components analogical to the components of the fundamental
object �a

ij and connection object � :

� N�a
ij Ñ 0; (3.11)

� N� i
jk C

N�a
jk!

i
a � �ij!k � �ik!j Ñ 0; (3.12)

� N�a
bi �

N�a
ji!

j

b
� �ab!i Ñ 0; (3.13)

� N� i
aj C

N�b
aj!

i
b �

N� i
kj!

k
a � �ij!a Ñ 0; (3.14)

� N�ij C N�k
ij!k C

N�a
ij!a Ñ 0; (3.15)

� N�ai � N�j i!
j
a C N�

j
ai!j C

N�b
ai!b Ñ 0: (3.16)

In (3.1) N� D � jSm . From the coincidence of the differential comparisons (2.21)
and (3.11) we have

Lemma 1. The subobject�a
ij (of the centroprojective connection object� without

the torsion) restricted to the surface Sm is identified with the fundamental object�a
ij :

N�a
ij D �a

ij : (3.2)

Comparing the differential equations (2.10) with the forms (2.42)–(2.72) and the
comparisons (3.12)–(3.16) by means of Lemma 1 we obtain the equalities

� i
jk D N� i

jk; �ij D N�ij ; � a
bi D

N�a
bi ; � i

aj D N� i
aj ; �ai D N�ai :

Theorem 2. The symmetric centroprojective connection on the projective group
GP.n/ effectively acting in projective space Pn is reduced to the fundamental-group
connection on the surface Sm of the space Pn.

Remark 1. The components � i
ab
; �a

bc
; �ab of the connection object � are not

used (compare [7, 12]) for the reduction of the object � to the object � .
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