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Asstract. Conditions skicient for the unique solvability of the linear equation
u=AUu—-Au+z

for arbitrary z are established, whey : X — X, i = 1,2, are compact linear
operators preserving a wedge in the Banach spadée conditions obtained have
the form of one-sided order relations satisfied by the values @indA; at certain
“strongly positive,” in a sense, elements of the space.
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1. INTRODUCTION

T WILL NOT BE AN EXAGGERATION t0 say that the majority of linear equations arising in
applications can be formulated as an abstract equation

u=Au+z (1.2)

whereA : X — X is a bounded linear operator in a suitably chosen Banach sface
Such an equation can often be represented in the form

u=Au-Au+z (1.2)

whereA; and A, are monotone in some or another sense. A natural definition of
monotonicity is based upon the notion of a wedge (or, alternatively, a linear semi-
group) in a Banach space, which dates back to the works of M. Krein [5]; this ap-
proach will be used below. Thus, we consider here equation (1.2) on the assumption
that the operatord; andA, preserve a certain wedge in the given spddeee Sec-
tion 2 for the basic definitions).

The standard condition

r(Ar—Ax)) <1 (1.3)
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for the spectral radius(A; — Ay) of the operato”; — Ay, as is well-known, guaran-
tees the existence and boundedness of the inverse operator

(Ix— AL+ A) T X > X (1.4)

and, hence, the existence of a unique solution of equation (1.2) for an arzitrany
X and its continuous dependencediThis proposition is, in a sense, unimprovable,
but has the disadvantage that the fulfilment of inequality (1.3) can be verified directly
only in exceptional cases. It is, therefore, desirable to have some statements guaran-
teeing estimate (1.3) on the base of information which can be comparatively easily
extracted from the definition of the operators considered. For positive, in a sense,
linear operatord\ : X — X, namely, for those preserving a suitable con&jthere
is a series of &icient theorems (see, e. g., [8, 4, 3]) allowing one to derive bounds for
the spectral radius ok from relations involving the values & at a single non-zero
element ofX (such an element, of course, should be suitably chosen, in accordance
with the conditions assumed). This group of theorems is sometimes referred to as
Krein’s method of test elements

The theorems mentioned above, however, have a certain limitation which restricts
the field of their applicability. Namely, it is assumed that the operator under consider-
ation preserves a cone satisfying some additional conditions (in particular, possessing
the property of normality). Such conditions, despite their considerable generality, are
however not satisfied in many important cases where the “positivity” is lacking. To
overcome this dficulty, an approach éferent from those used in the works cited was
suggested in [7, 6]. Some of the results obtained therein are used in the present note
(see Section 2.3).

Here, we are interested in conditiongfatient for the unique solvability of equa-
tion (1.2) withA; andA; preserving a wedgP in the space; i. e., such that

A1(P)UA(P) C P (1.5)
The diference between the approach of [6] and that of the present note is that here
conditions are imposed separately on the “positive” and “negative” parts of the equa-
tion, for which purpose a certain decomposition trick is applied (Section 3). The
proofs of the results of Section 4 use the “positive” version of Theorem 4.1 from [6].

2. PRELIMINARIES

Let X be a Banach space over the fi®#@dand P be a wedge irX. Recall that a
closed seP c X is called avedg€[3] (or alinear semigrougs]) if

aP+aoPcP
for all {a1, a2} C (0, +0), where, by definition,
a1Q + @29 = {a1u + asu | {ug, U} C Q}. (2.1)

for an arbitrary se© c X and all reaky; andas.
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The linear manifold
bIP:=Pn(-P) (2.2)
is referred to as thblade[3] of the wedgeP. A wedge having the trivial blade is
called acone[5].

2.1. Preorderings. Every wedgeP allows one to introduce a natural preordering
“2p" in the spaceX by putting

u; 2p U if, and only ifu; — up € P.

We shall also writel; <p uy if, and only ifu, >p u;. Note that the relations; >p u,
andu; 2p u; satisfied simultaneously, generally speaking, do not imply the equality
U1 = Uy, unless bP = {0}.

A wedgeP is said to besolid [5] if its interior is non-empty. In this case, following
[5], we define the relation®p" by setting

U >p Uy if, and only if u; — Uy is an interior element d®.

An elementu from X is said to bef-measurablg2, 3] with respect tdP if there
exists a constargt € [0, +o0) such that

—Bf <p u <p Bf.
Here,f is a certain fixed non-zero element frofn
Proposition 2.1. The set
Xp(f) ;= {ue X | uis f-measurable with respect #®} (2.3)

is non-empty if, and only if >p 0. Furthermore, for an arbitrary elemeritfrom P,
the setXp(f) is a linear manifold inX.

This statement is readily obtained directly from the definitions formulated above.

2.2. Strict inequalities. Let H be a certain linear manifold iX (not necessarily a
closed one).

Definition 2.2 ([6]). For{fy, f2} ¢ X, we write f; <p.4 f2 if, and only if the inclusion
Xp (fz — fl) OH
is true.

Similarly, we write f; >p.y f2 if, and only if f, <p.y f1. Note that, by virtue of
Proposition 2.1Xp (f) is a linear manifold for alff from P.

Definition 2.3 ([6]). For{fy, fo} c X, we write f; <p f, if, and only if the equality
Xp(fo—f) =X
is true.

Analogously, we writef; >p f, if, and only if f, <p f1.
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Example2.4. If, for instance,X = C([a b], R),” the wedgeP is defined by the for-
mula
P = {ue C([a b],R) | u(t) > O for all t from [a, b]},
andf is the superlinear function given by the equality
f)=1t—7, te[a b,

with somer € [a,b] anda € [1, +0), then, as is easy to see, the corresponding set
(2.3) is described by the formula

Xp(f) = {u € C([a b, R) | SURgap|(t - 1) u(t)] < +oo} .
This set, clearly, forms a proper linear submanifoldCifia, b], R). Every function
belonging to the set mentioned, in particular, vanishes at the point

The relations %p.4” and “<p” provide us a kind of “strict inequalities” whose
properties resemble, to some extent, those of the componentwise>gign R",
n € IN. For example, it is not dicult to verify that

f >p O implies thatf 2p O
and
f2pg and g >p Oimply f >p 0.
An efficient condition sfficient for the relation
f>p0 (2.4)
to be fulfilled is provided by the following lemma.

Lemma 2.5. If Pis a solid wedge irX and an element is such thatf >p 0, thenf
satisfies relatior{2.4).

Proof. A statement equivalent to the equalXy (f) = X for f lying in the interior
of P is well-known, e. g., from [5]. O

2.3. Spectrum of monotone decomposable operatoréet us first introduce the
following standard

Definition 2.6. An operatorA : X — X is said topreservehe wedgeP if A(P) c P.
The following statement has recently been obtained in [6].

Theorem 2.7([6]). Let P be a wedge inX andA; : X —» X, A, : X —» X be
completely continuous linear operators preservifigatisfying the condition

blPc ker(Al - Az) s (2.5)
and, moreover, such that
im (Al - Az) c H,

“The symbolIC([a, b], R) here stands for the Banach space of all continuous functiorfa, b] —
R equipped with the usual norfi| := MaXeay [u(t).
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whereH is a certain given linear manifold frorX. If, in addition, the inequality

af 2p Arf + Axf (2.6)
holds with some constaate [0, +o0) and element € P\ {0} satisfying the condition
f>pn O, (2.7)
then the spectral radius(A; — Ay) of the operatorA; — A, admits the estimate
r(Ar— A <a. (2.8)

Theorem 2.7 implies, in particular, the following corollaries.

Corollary 2.8. Let P be a solid wedge ilX andA; : X —» X, Ay : X —» X be
completely continuous linear operators preservifigatisfying conditior{2.5), and
such that inequalityf2.6) is true with some constamt € [0, +c0) and element e
P\ {0} possessing the property

f>p0. (2.9)

Then the spectral radius(A; — Ay) of the operatoA; — A, admits estimat€2.8).
Proof. In view of Lemma 2.5, it sfiices to apply Theorem 2.7 with = X. O

Corollary 2.9. Let P be a wedge irK andA : X — X be a completely continuous
linear operator preserving® and satisfying the conditions

bl P c kerA (2.10)

and

imAcH, (2.11)
whereH is a certain linear manifold irX. If, moreover, there exists ane [0, +oo)
and a certain element satisfying conditior{2.7) and the relation

af 2p Af, (2.12)
then the spectral radius(A) of the operatorA admits the estimate

r(A) <a. (2.13)
Proof. Application of Theorem 2.7 wit; = AandA; = 0. O

Corollary 2.10 ([7]). Assume thaP is a solid wedge inK andA : X - Xis a
completely continuous linear operator preservingsatisfying conditiorf2.10)and,
moreover, such that relatio(®2.12)is true with certaina € [0, +0) and anf € P
possessing proper{2.9). Then the spectral radius & admits estimat¢2.13)

Proof. It is suficient to apply Corollary 2.8 witlh\; = AandA; = 0. O

3. A DECOMPOSITION TECHNIQUE

Let X be a Banach spac®, be a wedge irX, andA;, A2 : X — X be bounded
linear operators such that inclusion (1.5) is true.
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3.1. The decomposition lemma.The following simple lemma allows one to rewrite
equation (1.2) in a diierent form which may sometimes prove more convenient due
to the presence of assumption (1.5).

Lemma 3.1. If a pair (u1, up) ¢ X x X is a solution of the system
Up = Atup + Aslp + 74, (3.1)
Uy = A2U1 + A1U2 + 2> (32)
with somgz;, ) c X x X, then the element
U=u;—U (3.3)
is a solution of equatiofl.2) with z := z — z,. Conversely, ilu € X is a solution
of equation(1.2) with a certainz € X, then there exist pair§u, u;) € X? and
(z1,22) € X? such that equalitie3.3), (3.1), and(3.2) are satisfied.
Proof. If (uz, up) satisfies (3.1), (3.2), then, obviously,
U-t=A-A)u+(A-A)h+z-2
and, therefore, equality (1.2) is satisfied with= u; — u, andz := z; — 2.
Conversely, assume thatis a solution of equation (1.2). Let andu, be some

elements ofX such that equality (3.3) is true. Then (3.1) and (3.2) are satisfied with
Z1:=Z+ Uy — Ao — Aou; andz := Us — Ajl — AUs. ]

Despite its extreme simplicity, Lemma 3.1 nevertheless allows one to obtain mean-
ingful results on the unique solvability of equation (1.2).

3.2. Unique solvability of system (3.1), (3.2)The following propositions provide
conditions stficient for the unique solvability of system (3.1), (3.2) with arbitrary
values ofz; andz.

Proposition 3.2. LetA; andA; be bounded linear operators satisfying the conditions
r(A;) <1 (3.4)
and
r(AL+ Ax(lx — A)) 1A < 1. (3.5)

Then systen(3.1), (3.2) is uniquely solvable for arbitraryz;, z} c X, and its
solution(u, U2) can be represented by the formula

Uy = Alzl + AlAz(lx - Al - AzAlAz)_l[Zz + AzAlzl], (36)
Up = (1)( - A - AzAlAz)_l[Zz + A2A121], (37)

where A
A= (Ix - A)7L. (3.8)

If, moreoverA; and A, preserve the weddge, then the solution of systef8.1), (3.2)
satisfies the conditiofuy, u) € P? wheneve(z, 2,) € P2.
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Proof. It follows from (3.4) that operator (3.8) is well-defined and, hence, (3.1) is
equivalent to the equation
u=A; [21 + A2U2] . (3.9)
Substituting (3.9) into (3.2), we obtain
Up = AzAl [Zl + A2U2] + A1U2 + 2>

or, which is the same,

U = [Al + AzAlAz] U + 2p + A2A121. (3.10)
Condition (3.5) guarantees the existence of the inverse operator
(Ix — AL — AdA A ™ (3:11)

and, therefore, equation (3.10) has a unique solujogiven by formula (3.7). In-
serting (3.7) into (3.1) and taking (3.9) into account, we arrive at (3.6).
By virtue of (3.4) and (3.5), the bounded linear operators (3.8) and (3.11) are
representable by the corresponding Neumann series
Ap=1x+ AL+ AT+ ... (3.12)
and
(1)( - Al - AzAlAz)_l = lx + Al + A2A1A2 + (Al + AzAlAz)z +...,

whence it follows that operators (3.8) and (3.11) preserve the wiegigevided that

A; and A; do so. This fact, in view of representation (3.6), (3.7) for the unique
solution {1, up) of system (3.1), (3.2), implies that, under assumption (1.5), the so-
lution mentioned satisfies the relatioms2p 0 andu, >2p 0 whenever; =p 0 and

2 2p 0. m]

Proposition 3.3. LetA; : X —» X andA; : X —» X be bounded linear operators such
that inequality(3.4)is true and, moreover,

r((x - A)'Ay) < L (3.13)

Then systent8.1), (3.2)is uniquely solvable for arbitraryz;, z,) € X?, and its solu-
tion (u1, Up) admits representation in the form

~ ~ Aon—=1 A~ ~
up = Agzy + Mg (1x - ABAS) T Aufze + AcAuz), (3.14)
Ay—1 A~ ~
Up = (1x - AZAZ) " Ag[z, + Aohqzy]. (3.15)

If, moreover,A; and A; satisfy condition(1.5), thenu; 2p 0 anduy 2p 0 whenever
z1 2p 0andz 2p 0.

Proof. By virtue of (3.4), operator (3.8) is well-defined and, hence (3.2) can be
rewritten as

Up = A [z + Aguy] (3.16)
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whereas equation (3.1) can be brought to form (3.9). Substituting (3.9) into (3.16),
we get

Up = Al[Zz + A2A121 + A2A1A2U2]
= (AcPo)’up + Ag(2zo + AoAgzy)
= A%A%Uz + Al(Zz + A2A121). (3.17)

For any bounded linear operatBr: X — X, the inequalityr (B%) < 1 holds if,
and only ifr (B) < 1. Therefore, in view of (3.8), assumption (3.13) guarantees the
existence of a bounded inverse operator

(1x - AR, (3.18)

whence it follows that the unique elemamt satisfying relation (3.17) is given by
equality (3.15). Substituting (3.15) into (3.9), we obtain (3.14).

Finally, by virtue of (3.4) and (3.13), it follows from formulae (3.14) and (3.15)
that, under condition (1.5), the inclusion (z) € P? implies the propertyug, uy) €
P2 for the unique solutionuy, up) of system (3.1), (3.2). ]

Propositions 3.2 and 3.3 lead one to the following statement.

Proposition 3.4. LetA; : X - XandA; : X — X be bounded linear operators
satisfying condition(3.4) and one of relation$3.5) and (3.13) Thenl is a regular
value for the operatoA; — A;.

Proof. According to Propositions 3.2 and 3.3, each of the pairs of conditions (3.4),
(3.5) and (3.4), (3.13) guarantees the unique solvability of system (3.1), (3.2) for all
(z1,2) € X?. Formulae (3.6), (3.7) and (3.14), (3.15), which represent the unique
solution of this system in the respective cases, imply, in particular, that the solution
mentioned depends continuously @, ). Therefore, in view of Lemma 3.1, the
conditions indicated guarantee that equation (1.2) has a unique solution for an arbi-
traryz € X, and the dependence of this solutionzia continuous. Thus, there exists

a bounded inverse operator (1.4), i. e., 1 is a regular valuafer A,. O

4. UNIQUE SOLVABILITY OF EQUATION (1.2)

Proposition 4.1. Let P be a wedge in the spacé and A; and A, be completely
continuous linear operators iX preservingP, satisfying the condition

bl P c kerA; nkerA,, 4.1)

and such thdt
imA; c Hy, (4.2)
imA; +imA C Ho, (4.3)

'Recall that we use notation (2.1). Inclusion (4.3) thus meansfhat+ A,u, € H, for arbitrary
u; andu, from X.
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whereH; andH; are certain linear manifolds irX. Assume also that the relations

Acfisparfy (4.4)
and
Acfo+ Ap (Ix — A)) H Ao <p o (4.5)
are true with soméay, a»} c [0, 1) and{fy, fo} c P such that
f1>p, O (4.6)
and
fo >p.p, O. 4.7)

Then inequality(1.3)is true.
Remark4.2 As follows from the proof below, the existence of the inverse operator
(Ix-A)t: X > X (4.8)

involved in inequality (4.5) is guaranteed by the rest of the conditions assumed and,
thus, relation (4.5) makes sense.

Proof of Proposition 4.1 By virtue of Corollary 2.9, assumptions (4.1), (4.2), (4.4),
and (4.6) guarantee that operator (4.8) is well-defined.
It is obvious that the inclusion

im[AL+ Az (Ix — A) L Ao cim Ag +im Ay
is true and, hence, in view of (4.3), the operator
A=A+ A (Ax - A) A (4.9)

satisfies the condition iA ¢ H,. Since conditions (4.1), (4.5), and (4.7) are assumed

to be satisfied, we see that Corollary 2.9 can be applied iith f2, a := a2, andA

given by formula (4.9). Application of Corollary 2.9 implies inequality (3.5) for the
spectral radius of operator (4.9), whence, by Proposition 3.2, it follows that system
(3.1), (3.2) is uniquely solvable for arbitrary andz.. Formulae (3.6) and (3.7)
representing the unique solution of system (3.1), (3.2) show that its dependence on
(z1, 20) is continuous and, hence, taking Lemma 2.5 into account, we conclude that
the spectral radius of the operathr — A, satisfies the required inequality (1.3)0

To obtain more constructive conditionsficient for the unique solvability of
equation (1.2), namely, Theorems 4.4 and 4.6 below, we need the following simple
supplement to Corollary 2.9.

Lemma 4.3. Let P be wedge iX andA : X — X be a completely continuous linear
operator preservingP, satisfying conditiong2.10)and (2.11)with a certain linear
manifoldH c X and, moreover, such that there exists an elenfeat P for which
relations(2.7)and(2.12)are true with a certain constant, 0 < a < 1.
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Then the inverse operator
Ax-A1: X> X (4.10)
exists, is bounded, preserves the weBgend, furthermore, the relation

(- AL <p 11

f (4.12)
is true.

Proof. Corollary 2.9 guarantees that operator (4.10) is well-defined and bounded. By
assumptionA preserve$ and, hence, inequality (2.12) implies thtf <p o' f for

alli =0,1,2,.... Using now the Neumann series representation of operator (4.10),
we arrive at the relation

+00 +00
(Ix-Af=) Af<p > af,
i=0 i=0

which, clearly, yields (4.11). O

Theorem 4.4. LetA; : X — X, Ay : X — X be completely continuous linear
operators preserving a wedde in X and satisfying conditiorf4.1). Assume the
existence of an elemehte P satisfying conditior{2.4), possessing the property
A A <p AA T foralli=0,12,..., (4.12)
and such that the relations
A f <p af, (4.13)
Af<py(l-a)f (4.14)

are true with certain constants € [0, 1) andy € [0,1 - «).
Thenlis a regular value of the operatdk; — A;.

Proof. Let us show that the assumptions of Proposition 4.1 are satisfiedwathf,
fo="Ff, a1 =a,a2=v+a, Hy =X, andH, = X.
Indeed, (4.13) is nothing but (4.4) witky replaced bye. Condition (4.5) with
fo = f has the form
At + A (Ix — A1) L Axf <p anf. (4.15)
Considering the Neumann series (3.12) for operator (3.8), we get

+00
(Ix — A)) L Af = Z A AT,
i=0
whence, by taking assumptions (4.12), (4.13), and (1.5) into account and applying
Lemma 4.3 withH = X andA = A;, we obtain

Ao f.

+00
_ ; _ 1
(Ix — A)) P Aot <p AzZA'lf =A(Ix-A) T f <p 1
i—0 -«
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Therefore, for relation (4.15) to be true, it wouldisce that
1

1-«a

In view of (4.13), relation (4.16) is satisfied whenever

Aif + A <p axf. (4.16)

1
af + - A3t <p axf,

i. e, if
Asf <p (1-a)(az—a)f. (4.17)

Condition (4.17) coincides with (4.14) if we pat := v + a. Note that this value of
a2 is such that < @, < 1 because, by assumptiong0y < 1 - «. Finally, according
to Definition 2.3, condition (2.4) is a particular case of (4.6) with= f andH; = X,
and it remains to refer to Proposition 4.1 to obtain the conclusion desired. O

Remark4.5. Condition (4.12) is satisfied for evefy>p 0 if A; andA, are such that
A1Aou <p AoAu forallue P. (4.18)

Another kind of conditions ensuring the unique solvability of equation (1.2) can
be obtained by using Proposition 3.3.

Theorem 4.6.Let A; : X — X, Ay : X — X be completely continuous linear
operators preserving a weddec X and satisfying conditiofd.1) and the relation

imA; c H (4.19)

with a certain linear manifoldH c X. Let, moreover, the relations

A1Azg <p aPyg, (4.20)
Ay <pB(l-a)g (4.21)
hold, wherele, 8} c [0, 1) andg € P is an element having the following properties:
g>p0 (4.22)
and
Azg >p:x 0. (4.23)

Thenlis aregular value of the operatak; — A;.

fCondition (4.18) implies, in particular, that the operata,[A] = AiA; — AA; preserves the
blade bIP of the wedgeP. In the case wherB is a cone (i. e., if bP = {0}), a pair of operatorsi, Ay)
satisfying (4.18) is sometimes referred tosasnicommutingl].
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Proof. Conditions (4.19), (4.20), and (4.23) guarantee that the inverse operator (4.8)

is well-defined and bounded (it Sices to apply Corollary 2.9 with = A; and

f ;= Ayxg). Let us show that the rest of assumptions ensure that relation (3.13) holds.
Indeed, according to Corollary 2.9, it will fice to show that the relation

(Ix = A) H Axf <p yf (4.24)

is true with somey € [0, 1) andf satisfying (2.4). However, by virtue of Lemma 4.3
applied withf = Ayg, we have

_ 1
(Ix — A1) ApPog <p - aAzg
and, hence, (4.24) will be satisfied for= Ayg provided that
1
TP <p YPog. (4.25)
Note now that (4.21) is nothing but (4.25) wijhi= . ]

Remark4.7. To every statement appearing in Sections 3.2 and 4, a dual one corre-
sponds, with the@les of A; andA; interchanged.
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