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A. Conditions sufficient for the unique solvability of the linear equation

u = A1u− A2u + z

for arbitraryz are established, whereAi : X → X, i = 1, 2, are compact linear
operators preserving a wedge in the Banach spaceX. The conditions obtained have
the form of one-sided order relations satisfied by the values ofA1 andA2 at certain
“strongly positive,” in a sense, elements of the space.
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1. I

I       to say that the majority of linear equations arising in
applications can be formulated as an abstract equation

u = Au+ z, (1.1)

whereA : X→ X is a bounded linear operator in a suitably chosen Banach spaceX.
Such an equation can often be represented in the form

u = A1u− A2u + z, (1.2)

whereA1 and A2 are monotone in some or another sense. A natural definition of
monotonicity is based upon the notion of a wedge (or, alternatively, a linear semi-
group) in a Banach space, which dates back to the works of M. Krein [5]; this ap-
proach will be used below. Thus, we consider here equation (1.2) on the assumption
that the operatorsA1 andA2 preserve a certain wedge in the given spaceX (see Sec-
tion 2 for the basic definitions).

The standard condition
r (A1 − A2) < 1 (1.3)
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72 ANDREI RONTÓ

for the spectral radiusr (A1 − A2) of the operatorA1 − A2, as is well-known, guaran-
tees the existence and boundedness of the inverse operator

(
1X − A1 + A2

)−1 : X→ X (1.4)

and, hence, the existence of a unique solution of equation (1.2) for an arbitraryz from
X and its continuous dependence onz. This proposition is, in a sense, unimprovable,
but has the disadvantage that the fulfilment of inequality (1.3) can be verified directly
only in exceptional cases. It is, therefore, desirable to have some statements guaran-
teeing estimate (1.3) on the base of information which can be comparatively easily
extracted from the definition of the operators considered. For positive, in a sense,
linear operatorsA : X → X, namely, for those preserving a suitable cone inX, there
is a series of efficient theorems (see, e. g., [8, 4, 3]) allowing one to derive bounds for
the spectral radius ofA from relations involving the values ofA at a single non-zero
element ofX (such an element, of course, should be suitably chosen, in accordance
with the conditions assumed). This group of theorems is sometimes referred to as
Krein’s method of test elements.

The theorems mentioned above, however, have a certain limitation which restricts
the field of their applicability. Namely, it is assumed that the operator under consider-
ation preserves a cone satisfying some additional conditions (in particular, possessing
the property of normality). Such conditions, despite their considerable generality, are
however not satisfied in many important cases where the “positivity” is lacking. To
overcome this difficulty, an approach different from those used in the works cited was
suggested in [7, 6]. Some of the results obtained therein are used in the present note
(see Section 2.3).

Here, we are interested in conditions sufficient for the unique solvability of equa-
tion (1.2) withA1 andA2 preserving a wedgeP in the spaceX, i. e., such that

A1(P) ∪ A2(P) ⊂ P. (1.5)

The difference between the approach of [6] and that of the present note is that here
conditions are imposed separately on the “positive” and “negative” parts of the equa-
tion, for which purpose a certain decomposition trick is applied (Section 3). The
proofs of the results of Section 4 use the “positive” version of Theorem 4.1 from [6].

2. P

Let X be a Banach space over the field� andP be a wedge inX. Recall that a
closed setP ⊂ X is called awedge[3] (or a linear semigroup[5]) if

α1P + α2P ⊂ P

for all {α1, α2} ⊂ (0,+∞), where, by definition,

α1Ω + α2Ω := {α1u1 + α2u2 | {u1,u2} ⊂ Ω} . (2.1)

for an arbitrary setΩ ⊂ X and all realα1 andα2.
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The linear manifold
bl P := P∩ (−P) (2.2)

is referred to as theblade [3] of the wedgeP. A wedge having the trivial blade is
called acone[5].

2.1. Preorderings. Every wedgeP allows one to introduce a natural preordering
“=P” in the spaceX by putting

u1 =P u2 if, and only if u1 − u2 ∈ P.

We shall also writeu1 5P u2 if, and only if u2 =P u1. Note that the relationsu1 =P u2

andu2 =P u1 satisfied simultaneously, generally speaking, do not imply the equality
u1 = u2, unless blP = {0}.

A wedgeP is said to besolid [5] if its interior is non-empty. In this case, following
[5], we define the relation “�P” by setting

u1 �P u2 if, and only if u1 − u2 is an interior element ofP.

An elementu from X is said to bef -measurable[2, 3] with respect toP if there
exists a constantβ ∈ [0,+∞) such that

−β f 5P u 5P β f .

Here, f is a certain fixed non-zero element fromX.

Proposition 2.1. The set

XP( f ) := {u ∈ X | u is f -measurable with respect toP} (2.3)

is non-empty if, and only iff =P 0. Furthermore, for an arbitrary elementf from P,
the setXP( f ) is a linear manifold inX.

This statement is readily obtained directly from the definitions formulated above.

2.2. Strict inequalities. Let H be a certain linear manifold inX (not necessarily a
closed one).

Definition 2.2 ([6]). For { f1, f2} ⊂ X, we write f1 ≺P;H f2 if, and only if the inclusion

XP ( f2 − f1) ⊃ H

is true.

Similarly, we write f1 �P;H f2 if, and only if f2 ≺P;H f1. Note that, by virtue of
Proposition 2.1,XP ( f ) is a linear manifold for allf from P.

Definition 2.3 ([6]). For { f1, f2} ⊂ X, we write f1 ≺P f2 if, and only if the equality

XP ( f2 − f1) = X

is true.

Analogously, we writef1 �P f2 if, and only if f2 ≺P f1.
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Example2.4. If, for instance,X = C([a, b],�),∗ the wedgeP is defined by the for-
mula

P = {u ∈ C([a, b],�) | u(t) ≥ 0 for all t from [a,b]} ,
and f is the superlinear function given by the equality

f (t) = |t − τ|α , t ∈ [a,b],

with someτ ∈ [a,b] andα ∈ [1,+∞), then, as is easy to see, the corresponding set
(2.3) is described by the formula

XP( f ) =

{
u ∈ C([a, b],�)

∣∣∣∣ supt∈[a,b]

∣∣∣(t − τ)−α u(t)
∣∣∣ < +∞

}
.

This set, clearly, forms a proper linear submanifold inC([a,b],�). Every function
belonging to the set mentioned, in particular, vanishes at the pointτ.

The relations “≺P;H” and “≺P” provide us a kind of “strict inequalities” whose
properties resemble, to some extent, those of the componentwise sign “>” in �n,
n ∈ �. For example, it is not difficult to verify that

f �P 0 implies thatf =P 0

and
f =P g and g �P 0 imply f �P 0.

An efficient condition sufficient for the relation

f �P 0 (2.4)

to be fulfilled is provided by the following lemma.

Lemma 2.5. If P is a solid wedge inX and an elementf is such thatf �P 0, then f
satisfies relation(2.4).

Proof. A statement equivalent to the equalityXP ( f ) = X for f lying in the interior
of P is well-known, e. g., from [5]. �

2.3. Spectrum of monotone decomposable operators.Let us first introduce the
following standard

Definition 2.6. An operatorA : X→ X is said topreservethe wedgeP if A(P) ⊂ P.

The following statement has recently been obtained in [6].

Theorem 2.7 ([6]). Let P be a wedge inX and A1 : X → X, A2 : X → X be
completely continuous linear operators preservingP, satisfying the condition

bl P ⊂ ker(A1 − A2) , (2.5)

and, moreover, such that
im (A1 − A2) ⊂ H,

∗The symbolC([a,b],�) here stands for the Banach space of all continuous functionsu : [a,b] →
� equipped with the usual norm‖u‖ := maxt∈[a,b] |u(t)|.
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whereH is a certain given linear manifold fromX. If, in addition, the inequality

α f =P A1 f + A2 f (2.6)

holds with some constantα ∈ [0,+∞) and elementf ∈ P\{0} satisfying the condition

f �P;H 0, (2.7)

then the spectral radiusr (A1 − A2) of the operatorA1 − A2 admits the estimate

r (A1 − A2) ≤ α. (2.8)

Theorem 2.7 implies, in particular, the following corollaries.

Corollary 2.8. Let P be a solid wedge inX and A1 : X → X, A2 : X → X be
completely continuous linear operators preservingP, satisfying condition(2.5), and
such that inequality(2.6) is true with some constantα ∈ [0,+∞) and elementf ∈
P \ {0} possessing the property

f �P 0. (2.9)

Then the spectral radiusr (A1 − A2) of the operatorA1−A2 admits estimate(2.8).

Proof. In view of Lemma 2.5, it suffices to apply Theorem 2.7 withH = X. �

Corollary 2.9. Let P be a wedge inX and A : X → X be a completely continuous
linear operator preservingP and satisfying the conditions

bl P ⊂ kerA (2.10)

and
im A ⊂ H, (2.11)

whereH is a certain linear manifold inX. If, moreover, there exists anα ∈ [0,+∞)
and a certain elementf satisfying condition(2.7)and the relation

α f =P A f, (2.12)

then the spectral radiusr (A) of the operatorA admits the estimate

r (A) ≤ α. (2.13)

Proof. Application of Theorem 2.7 withA1 = A andA2 = 0. �

Corollary 2.10 ([7]). Assume thatP is a solid wedge inX and A : X → X is a
completely continuous linear operator preservingP, satisfying condition(2.10)and,
moreover, such that relation(2.12) is true with certainα ∈ [0,+∞) and an f ∈ P
possessing property(2.9). Then the spectral radius ofA admits estimate(2.13).

Proof. It is sufficient to apply Corollary 2.8 withA1 = A andA2 = 0. �

3. A  

Let X be a Banach space,P be a wedge inX, andA1,A2 : X → X be bounded
linear operators such that inclusion (1.5) is true.
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3.1. The decomposition lemma.The following simple lemma allows one to rewrite
equation (1.2) in a different form which may sometimes prove more convenient due
to the presence of assumption (1.5).

Lemma 3.1. If a pair (u1, u2) ⊂ X × X is a solution of the system

u1 = A1u1 + A2u2 + z1, (3.1)

u2 = A2u1 + A1u2 + z2 (3.2)

with some(z1, z2) ⊂ X × X, then the element

u = u1 − u2 (3.3)

is a solution of equation(1.2) with z := z1 − z2. Conversely, ifu ∈ X is a solution
of equation(1.2) with a certainz ∈ X, then there exist pairs(u1, u2) ∈ X2 and
(z1, z2) ∈ X2 such that equalities(3.3), (3.1), and(3.2)are satisfied.

Proof. If (u1,u2) satisfies (3.1), (3.2), then, obviously,

u1 − u2 = (A1 − A2) u1 + (A2 − A1) u2 + z1 − z2

and, therefore, equality (1.2) is satisfied withu := u1 − u2 andz := z1 − z2.
Conversely, assume thatu is a solution of equation (1.2). Letu1 andu2 be some

elements ofX such that equality (3.3) is true. Then (3.1) and (3.2) are satisfied with
z1 := z+ u2 − A1u2 − A2u1 andz2 := u2 − A1u2 − A2u1. �

Despite its extreme simplicity, Lemma 3.1 nevertheless allows one to obtain mean-
ingful results on the unique solvability of equation (1.2).

3.2. Unique solvability of system (3.1), (3.2).The following propositions provide
conditions sufficient for the unique solvability of system (3.1), (3.2) with arbitrary
values ofz1 andz2.

Proposition 3.2. LetA1 andA2 be bounded linear operators satisfying the conditions

r (A1) < 1 (3.4)

and
r (A1 + A2(1X − A1)−1A2) < 1. (3.5)

Then system(3.1), (3.2) is uniquely solvable for arbitrary{z1, z2} ⊂ X, and its
solution(u1,u2) can be represented by the formula

u1 = Â1z1 + Â1A2
(
1X − A1 − A2Â1A2

)−1[z2 + A2Â1z1
]
, (3.6)

u2 =
(
1X − A1 − A2Â1A2

)−1[z2 + A2Â1z1
]
, (3.7)

where
Â1 := (1X − A1)−1 . (3.8)

If, moreover,A1 andA2 preserve the wedgeP, then the solution of system(3.1), (3.2)
satisfies the condition(u1, u2) ∈ P2 whenever(z1, z2) ∈ P2.
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Proof. It follows from (3.4) that operator (3.8) is well-defined and, hence, (3.1) is
equivalent to the equation

u1 = Â1 [z1 + A2u2] . (3.9)

Substituting (3.9) into (3.2), we obtain

u2 = A2Â1 [z1 + A2u2] + A1u2 + z2

or, which is the same,

u2 =
[
A1 + A2Â1A2

]
u2 + z2 + A2Â1z1. (3.10)

Condition (3.5) guarantees the existence of the inverse operator
(
1X − A1 − A2Â1A2

)−1 (3.11)

and, therefore, equation (3.10) has a unique solutionu2 given by formula (3.7). In-
serting (3.7) into (3.1) and taking (3.9) into account, we arrive at (3.6).

By virtue of (3.4) and (3.5), the bounded linear operators (3.8) and (3.11) are
representable by the corresponding Neumann series

Â1 = 1X + A1 + A2
1 + . . . (3.12)

and
(
1X − A1 − A2Â1A2

)−1
= 1X + A1 + A2Â1A2 +

(
A1 + A2Â1A2

)2
+ . . . ,

whence it follows that operators (3.8) and (3.11) preserve the wedgeP provided that
A1 and A1 do so. This fact, in view of representation (3.6), (3.7) for the unique
solution (u1,u2) of system (3.1), (3.2), implies that, under assumption (1.5), the so-
lution mentioned satisfies the relationsu1 =P 0 andu2 =P 0 wheneverz1 =P 0 and
z2 =P 0. �

Proposition 3.3. Let A1 : X→ X andA2 : X→ X be bounded linear operators such
that inequality(3.4) is true and, moreover,

r ((1X − A1)−1A2) < 1. (3.13)

Then system(3.1), (3.2) is uniquely solvable for arbitrary(z1, z2) ∈ X2, and its solu-
tion (u1,u2) admits representation in the form

u1 = Â1z1 + Â1A2

(
1X − A2

2Â2
1

)−1
Â1

[
z2 + A2Â1z1

]
, (3.14)

u2 =
(
1X − A2

2Â2
1

)−1
Â1

[
z2 + A2Â1z1

]
. (3.15)

If, moreover,A1 andA2 satisfy condition(1.5), thenu1 =P 0 andu2 =P 0 whenever
z1 =P 0 andz2 =P 0.

Proof. By virtue of (3.4), operator (3.8) is well-defined and, hence (3.2) can be
rewritten as

u2 = Â1 [z2 + A2u1] , (3.16)
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whereas equation (3.1) can be brought to form (3.9). Substituting (3.9) into (3.16),
we get

u2 = Â1
[
z2 + A2Â1z1 + A2Â1A2u2

]

=
(
Â1A2

)2u2 + Â1
(
z2 + A2Â1z1

)

= A2
2Â2

1u2 + Â1
(
z2 + A2Â1z1

)
. (3.17)

For any bounded linear operatorB : X → X, the inequalityr (B2) < 1 holds if,
and only if r (B) < 1. Therefore, in view of (3.8), assumption (3.13) guarantees the
existence of a bounded inverse operator

(
1X − A2

2Â2
1
)−1, (3.18)

whence it follows that the unique elementu2 satisfying relation (3.17) is given by
equality (3.15). Substituting (3.15) into (3.9), we obtain (3.14).

Finally, by virtue of (3.4) and (3.13), it follows from formulae (3.14) and (3.15)
that, under condition (1.5), the inclusion (z1, z2) ∈ P2 implies the property (u1, u2) ∈
P2 for the unique solution (u1, u2) of system (3.1), (3.2). �

Propositions 3.2 and 3.3 lead one to the following statement.

Proposition 3.4. Let A1 : X → X and A2 : X → X be bounded linear operators
satisfying condition(3.4) and one of relations(3.5) and (3.13). Then1 is a regular
value for the operatorA1 − A2.

Proof. According to Propositions 3.2 and 3.3, each of the pairs of conditions (3.4),
(3.5) and (3.4), (3.13) guarantees the unique solvability of system (3.1), (3.2) for all
(z1, z2) ∈ X2. Formulae (3.6), (3.7) and (3.14), (3.15), which represent the unique
solution of this system in the respective cases, imply, in particular, that the solution
mentioned depends continuously on (z1, z2). Therefore, in view of Lemma 3.1, the
conditions indicated guarantee that equation (1.2) has a unique solution for an arbi-
traryz ∈ X, and the dependence of this solution onz is continuous. Thus, there exists
a bounded inverse operator (1.4), i. e., 1 is a regular value forA1 − A2. �

4. U    (1.2)

Proposition 4.1. Let P be a wedge in the spaceX and A1 and A2 be completely
continuous linear operators inX preservingP, satisfying the condition

bl P ⊂ kerA1 ∩ kerA2, (4.1)

and such that†

im A1 ⊂ H1, (4.2)

im A1 + im A2 ⊂ H2, (4.3)

†Recall that we use notation (2.1). Inclusion (4.3) thus means thatA1u1 + A2u2 ∈ H2 for arbitrary
u1 andu2 from X.
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whereH1 andH2 are certain linear manifolds inX. Assume also that the relations

A1 f1 5P α1 f1 (4.4)

and
A1 f2 + A2 (1X − A1)−1 A2 f2 5P α2 f2 (4.5)

are true with some{α1, α2} ⊂ [0, 1) and{ f1, f2} ⊂ P such that

f1 �P;H1 0 (4.6)

and
f2 �P;H2 0. (4.7)

Then inequality(1.3) is true.

Remark4.2. As follows from the proof below, the existence of the inverse operator

(1X − A1)−1 : X→ X (4.8)

involved in inequality (4.5) is guaranteed by the rest of the conditions assumed and,
thus, relation (4.5) makes sense.

Proof of Proposition 4.1.By virtue of Corollary 2.9, assumptions (4.1), (4.2), (4.4),
and (4.6) guarantee that operator (4.8) is well-defined.

It is obvious that the inclusion

im
[
A1 + A2 (1X − A1)−1 A2

] ⊂ im A1 + im A2

is true and, hence, in view of (4.3), the operator

A := A1 + A2 (1X − A1)−1 A2 (4.9)

satisfies the condition imA ⊂ H2. Since conditions (4.1), (4.5), and (4.7) are assumed
to be satisfied, we see that Corollary 2.9 can be applied withf := f2, α := α2, andA
given by formula (4.9). Application of Corollary 2.9 implies inequality (3.5) for the
spectral radius of operator (4.9), whence, by Proposition 3.2, it follows that system
(3.1), (3.2) is uniquely solvable for arbitraryz1 and z2. Formulae (3.6) and (3.7)
representing the unique solution of system (3.1), (3.2) show that its dependence on
(z1, z2) is continuous and, hence, taking Lemma 2.5 into account, we conclude that
the spectral radius of the operatorA1 − A2 satisfies the required inequality (1.3).�

To obtain more constructive conditions sufficient for the unique solvability of
equation (1.2), namely, Theorems 4.4 and 4.6 below, we need the following simple
supplement to Corollary 2.9.

Lemma 4.3. Let P be wedge inX andA : X→ X be a completely continuous linear
operator preservingP, satisfying conditions(2.10)and (2.11)with a certain linear
manifoldH ⊂ X and, moreover, such that there exists an elementf ∈ P for which
relations(2.7)and (2.12)are true with a certain constantα, 0 ≤ α < 1.
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Then the inverse operator

(1X − A)−1 : X→ X (4.10)

exists, is bounded, preserves the wedgeP, and, furthermore, the relation

(1X − A)−1 f 5P
1

1− α f (4.11)

is true.

Proof. Corollary 2.9 guarantees that operator (4.10) is well-defined and bounded. By
assumption,A preservesP and, hence, inequality (2.12) implies thatAi f 5P α

i f for
all i = 0,1, 2, . . . . Using now the Neumann series representation of operator (4.10),
we arrive at the relation

(1X − A)−1 f =

+∞∑

i=0

Ai f 5P

+∞∑

i=0

αi f ,

which, clearly, yields (4.11). �

Theorem 4.4. Let A1 : X → X, A2 : X → X be completely continuous linear
operators preserving a wedgeP in X and satisfying condition(4.1). Assume the
existence of an elementf ∈ P satisfying condition(2.4), possessing the property

Ai
1A2 f 5P A2Ai

1 f for all i = 0,1, 2, . . . , (4.12)

and such that the relations

A1 f 5P α f , (4.13)

A2
2 f 5P γ (1− α) f (4.14)

are true with certain constantsα ∈ [0,1) andγ ∈ [0,1− α).
Then1 is a regular value of the operatorA1 − A2.

Proof. Let us show that the assumptions of Proposition 4.1 are satisfied withf1 = f ,
f2 = f , α1 = α, α2 = γ + α, H1 = X, andH2 = X.

Indeed, (4.13) is nothing but (4.4) withα1 replaced byα. Condition (4.5) with
f2 = f has the form

A1 f + A2 (1X − A1)−1 A2 f 5P α2 f . (4.15)

Considering the Neumann series (3.12) for operator (3.8), we get

(1X − A1)−1 A2 f =

+∞∑

i=0

Ai
1A2 f ,

whence, by taking assumptions (4.12), (4.13), and (1.5) into account and applying
Lemma 4.3 withH = X andA = A1, we obtain

(1X − A1)−1 A2 f 5P A2

+∞∑

i=0

Ai
1 f = A2 (1X − A1)−1 f 5P

1
1− αA2 f .
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Therefore, for relation (4.15) to be true, it would suffice that

A1 f +
1

1− αA2
2 f 5P α2 f . (4.16)

In view of (4.13), relation (4.16) is satisfied whenever

α f +
1

1− αA2
2 f 5P α2 f ,

i. e., if

A2
2 f 5P (1− α) (α2 − α) f . (4.17)

Condition (4.17) coincides with (4.14) if we putα2 := γ + α. Note that this value of
α2 is such that 0≤ α2 < 1 because, by assumption, 0≤ γ < 1− α. Finally, according
to Definition 2.3, condition (2.4) is a particular case of (4.6) withf1 = f andH1 = X,
and it remains to refer to Proposition 4.1 to obtain the conclusion desired. �

Remark4.5. Condition (4.12) is satisfied for everyf =P 0 if A1 andA2 are such that‡

A1A2u 5P A2A1u for all u ∈ P. (4.18)

Another kind of conditions ensuring the unique solvability of equation (1.2) can
be obtained by using Proposition 3.3.

Theorem 4.6. Let A1 : X → X, A2 : X → X be completely continuous linear
operators preserving a wedgeP ⊂ X and satisfying condition(4.1)and the relation

im A1 ⊂ H (4.19)

with a certain linear manifoldH ⊂ X. Let, moreover, the relations

A1A2g 5P αA2g, (4.20)

A2
2g 5P β (1− α) g (4.21)

hold, where{α, β} ⊂ [0,1) andg ∈ P is an element having the following properties:

g �P 0 (4.22)

and

A2g �P;H 0. (4.23)

Then1 is a regular value of the operatorA1 − A2.

‡Condition (4.18) implies, in particular, that the operator [A1,A2] = A1A2 − A2A1 preserves the
blade blP of the wedgeP. In the case whereP is a cone (i. e., if blP = {0}), a pair of operators (A1,A2)
satisfying (4.18) is sometimes referred to assemicommuting[1].
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Proof. Conditions (4.19), (4.20), and (4.23) guarantee that the inverse operator (4.8)
is well-defined and bounded (it suffices to apply Corollary 2.9 withA := A1 and
f := A2g). Let us show that the rest of assumptions ensure that relation (3.13) holds.

Indeed, according to Corollary 2.9, it will suffice to show that the relation

(1X − A1)−1 A2 f 5P γ f (4.24)

is true with someγ ∈ [0,1) and f satisfying (2.4). However, by virtue of Lemma 4.3
applied with f = A2g, we have

(1X − A1)−1 A2A2g 5P
1

1− αA2g

and, hence, (4.24) will be satisfied forf = A2g provided that
1

1− αA2
2g 5P γA2g. (4.25)

Note now that (4.21) is nothing but (4.25) withγ := β. �

Remark4.7. To every statement appearing in Sections 3.2 and 4, a dual one corre-
sponds, with the r̂oles ofA1 andA2 interchanged.
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