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Abstract. We generalize some classical results on Nijenhuis tensor for an almost Cliffordian
manifold based on arbitrary Clifford algebra and suggest its relations with the integrability of the
corresponding G-structure. We prove the set of properties for Nijenhus tensors with respect to
arbitrary Clifford algebra.
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1. ALMOST CLIFFORDIAN MANIFOLDS

Let O D Cl.s; t/ be a Clifford algebra. If M is an km-dimensional manifold,
where k D 2sCt and m 2 N, then an almost Clifford manifold is given by a reduction
of the structure group GL.km;R/ of the principal frame bundle of M to

GL.m;O/ D fA 2 GL.km;R/jAI D IA; I 2 Og;

where O is arbitrary Cliffford algebra. In other words, an almost Clifford manifold
is a smooth manifold equipped by the set of anti commuting and commuting affinors
Ii ; i D 1; : : : ; t; I 2i D �E and Jj ; j D 1; : : : ; s; J 2

j D E such that the free
associative unitary algebra generated by hIi ; Jj ; Ei is isomorphically equivalent to
O. In particular, on the elements of this reduced bundle, one can define affinors in
the form F1; : : : ; Fk globally.

Definition 1. Let M be a smooth manifold such that dim.M/ D m: Let A be
a smooth `-dimensional .` < m/ vector subbundle in T �M 
 TM such that the
identity affinor E D idTM restricted to TxM belongs to AxM � T �xM 
 TxM at
each point x 2M: We say that M is equipped with an `-dimensional A-structure.

It is easy to see that an almost Clifford structure is not an A-structure because the
affinors in the form F0; : : : ; F` 2 A have to be defined only locally.
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Definition 2. The A-structure, where A is a Clifford algebraO, is called an almost
Cliffordian manifold.

In particular, the almost Clifford and almost Cliffordian structures are G-structures
based on Clifford algebras. Two most important examples are an almost hypercom-
plex geometry and an almost quaternionic geometry, which are based on Clifford
algebra Cl.0; 2/. Note that the geometric property of an almost hypercomplex struc-
ture reads that there is no nontrivial G-invariant subspace D in V 
 ^2

V
� because

the first prolongation g.1/ of the Lie algebra g vanishes. For an almost quaternionic
structure, the situation is more complicated, because g.1/ D V

� and there is a class
of these structures indexed by V , see [1]. Note that for Cliffordian structures based
on Cl.0; 3/ is g.1/ D V

� and there is a class of these structures indexed by V too,
see [2].

2. NIJENHUIS TENSOR

The Nijenhuis tensor plays an important role in the theory of integrability. As a
classical concept, Nijenhuis introduced NJ 2 ^2T �M 
 TM of an almost complex
structure J 2 T �M 
 TM . This tensor is an obstruction for an almost complex
structure which distinguished it from the complex structure, i. e. their integrability.
Recall that Nijenhuis tensor N.P;Q/ 2 ^2T �M 
TM for a pair of tensors P;Q 2

T �M 
 TM is given by the expression

N.P;Q/.X; Y / D �PX;QY � � P �QX; Y � �Q�X;PY �C �QX;PY �

�Q�PX; Y � � P �X;QY �C .PQCQP/�X; Y �:

An almost quaternionic manifold M is integrable if and only if the Nijenhuis
tensors N.I; I / and N.J; J / vanish, where I; J; IJ 2 T �M
TM is a quaternionic
structure. Let us finally note that in [3], the author proved a similar fact for Clifford
algebra Cl.0; 3/.

If P D Q, then, by straightforward computing,

N.P;P /.X; Y / D 2.�PX;PY � � P �PX; Y � � P �X;PY �C P 2�X; Y �/

and if P D E, where E is an identity, then

N.E;Q/.X; Y / D 0:

Following [6,7], we reformulate Nijenhuis tensor calculus with respect to arbitrary
Clifford algebra. In those papers, a set of classical results for Cl.0; 2/ and Cl.2; 0/
was proved. In fact, most of the arguments work generally, but we have to formulate
and prove them for any Clifford algebra. First of all, following papers [6,7], we recall
the operation N̂

.S N̂P /.X; Y / WD S.PX; Y /C S.X;PY / (1)
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and

.P N̂ S/.X; Y / WD PS.X; Y / (2)

where S 2 
2
V 
 V

� and N 2 V 
 V
�. Now, one can easily check the following

identities

N.L;QP /CN.Q;LP / D N.L;QP / N̂P C L N̂N.Q;P / (3)

CQ N̂N.L;P /

.S N̂Q/ N̂P � .S N̂P / N̂Q D S N̂QP � S N̂PQ (4)

.L N̂ S/ N̂P D L N̂ .S N̂P / (5)

Lemma 1. LetO D Cl.s; t/ be a Clifford algebra. If F;G 2 O such that F ¤ G,
then the following identities hold:

N.FG;F / D �
1

2
N.F;G/ N̂F �

1

2
G N̂N.F; F /C

1

4
N.F; F / N̂G (6)

0 D N.F;G/ N̂F C 2F N̂N.F;G/CG N̂N.F; F /C
1

2
N.F; F / N̂G (7)

N.G;H/ D N.F;G/ N̂G CG N̂N.F;G/C F N̂N.G;G/: (8)

Proof. Putting L D Q D F; P D G in (3), we find

N.F; FG/CN.F; FG/ D N.F; F / N̂G C F N̂N.F;G/C F N̂N.F;G/;

that is,

N.FG;F / D
1

2
N.F; F / N̂G C F N̂N.F;G/: (9)

Putting L D G; P D Q D F in (3), we find

N.G;F 2/CN.F;GF / D N.G;F / N̂F CG N̂N.F; F /C F N̂N.G;F /;

that is,

N.F;GF / D N.G;F / N̂F CG N̂N.F; F /C F N̂N.G;F /: (10)

Adding (9) and (10) and dividing the sum by 2, we find

N.FG;F / D �
1

2
N.F;G/ N̂F �

1

2
G N̂N.F; F /C

1

4
N.F; F / N̂G

and subtracting (10) from (9), we find

N.F;G/ N̂F C 2F N̂N.F;G/CG N̂N.F; F /C
1

2
N.F; F / N̂G D 0 (11)

Finally, putting L D P D G; Q D F in (3), we find

N.F;G2/CN.G;FG/ D N.F;G/ N̂G C F N̂N.G;G/CG N̂N.F;G/;

that is,
N.G;H/ D N.F;G/ N̂G CG N̂N.F;G/C F N̂N.G;G/:
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�

Lemma 2. LetO D Cl.s; t/ be a Clifford algebra. If F;G 2 O such that F ¤ G,
then the following identity holds:

�1N.F; F / � �2N.G;G/CN.H;F / N̂G CG N̂N.H;F / (12)

�N.G;H/ N̂F C F N̂N.G;H/C 2H N̂N.F;G/ D 0;

where H D FG and �i D 1 for K2 D �1 and �i D �1 for K2 D 1.

Proof. Putting L D FG; Q D F;P D G in (3), we find

N.FG;FG/ �N.F; FGG/ D N.FG;F / N̂G C FG N̂N.F;G/

CF N̂N.FG;G/;

that is,

N.H;H/ D �N.F; F /CN.FG;F / N̂G C FG N̂N.F;G/

C F N̂N.FG;G/; (13)

where � D 1 for G2 D �1 and � D �1 for G2 D 1.
Putting L D FG; Q D G;P D F in (3), we find

N.FG;GF / �N.G;FGF / D N.FG;G/ N̂F C FG N̂N.G;F /

CG N̂N.FG;F /;

that is,

N.H;H/ D �N.G;G/ �N.G;H/ N̂F �H N̂N.F;G/ �G N̂N.H;F /; (14)

where � D 1 for G2 D �1 and � D �1 for G2 D 1. Thus, from (13) and (14), we
find

N.H;H/ D
1

2
f�N.F; F /C �N.G;G/CN.H;F / N̂G

CG N̂N.H;F / �N.G;H/ N̂F C F N̂N.G;H/C 2H N̂N.F;G/g D 0

and

�N.F; F / � �N.G;G/CN.H;F / N̂G

CG N̂N.H;F / �N.G;H/ N̂F C F N̂N.G;H/C 2H N̂N.F;G/ D 0;

which completes the proof. �

Lemma 3. Let O D Cl.s; t/ be a Cliffod algebra. If F 2 O, then the following
identity holds:

N.F; F / N̂F D �2F N̂N.F; F /:

Proof. One can easily check that putting L D P D Q D F gives N.F; F 2/ C

N.F; F 2/ D N.F; F / N̂F C F N̂N.F; F /C F N̂N.F; F / �
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Theorem 1. Let O be a Clifford algebra Cl.s; t/ and let F;G 2 O such that
F ¤ G. If the Nijenhuis tensors N.F; F / and N.G;G/ vanish, then N.FG;FG/

vanishes.

Proof. Since N.F; F / D 0, we have from (9) N.H;F / D F N̂N.F;G/; and from
(11),

N.F;G/ N̂F D �2F N̂N.F;G/: (15)

Since N.G;G/ D 0, we have from (9), where we changed F and G,

N.F;G/ N̂G D �2G N̂N.F;G/ (16)

and from (11), where we changed F and G,

N.F;G/ N̂G D �2G N̂N.F;G/: (17)

Now, if we substitute N.F; F / D 0;N.G;G/ D 0, and (16) into (12), then the part
containing �i vanishes and the proof is correct for any Clifford algebra, i. e., we find

.F N̂N.F;G// N̂G CG N̂ .F N̂N.F;G//

� .G N̂N.F;G// N̂F � F N̂ .G N̂N.F;G//C 2H N̂N.F;G/ D 0;

from which

.F N̂N.F;G// N̂G � .G N̂N.F;G// N̂F D 0; (18)

since
G N̂ .F N̂N.F;G// D �F N̂ .G N̂N.F;G// D �H N̂N.F;G/

by virtue of GF D �FG D �H . Now, using (5), (15) and (17), we find, from (18)

F N̂ .N.F;G/ N̂G/ �G N̂ .N.F;G/ N̂F / D 0;

�2F N̂ .G N̂N.F;G//C 2G N̂ .F N̂N.F;G// D 0;

�4FG N̂N.F;G/ D 0;

that is,

H N̂N.F;G/ D 0: (19)

Since H 2 D �1, we have from (19) N.F;G/ D 0. �

Corollary 1. LetO be a Clifford algebraCl.s; t/. If the Nijenhuis tensorsN.Ii ; Ii /
vanish, where Ii are the algebra generators of O, then

N.Fi ; Fj / D 0;

where Fi are vector space generators.
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3. CLASSES OF SUBORDINATED CONNECTIONS

Recall the concept of A-planar curves on A-structures equipped with the linear
connection r. For any tangent vector X 2 TxM , we shall write Ax.X/ for the
vector subspace

Ax.X/ D fFi .X/jFi 2 AxM g � TxM

and call it the A-hull of the vector X . Similarly, A-hull of a vector field is a sub-
bundle in TM obtained pointwise. Let M be a smooth manifold equipped with an
A-structure and a linear connection r. A smooth curve c W R ! M is said to be
A-planar if

r Pc Pc 2 A. Pc/:

In [5], the authors proved a set of facts about the class of D-connections. The theor-
ems below, about Cliffordian structures, are proved in paper [5] and some examples
of this concept can be found in papers [2,4]. The theorems about D-connections can
be found in [1].

Following [4, 5], we have a set of results on Clifford and Cliffordian manifolds.

Corollary 2. Let M be a smooth manifold equipped with a G-structure, where
G D GL.n;O/, O D Cl.s; t/, sC t > 1; i. e. an almost Clifford manifold. Then the
G-structure is of type 1 and there exists a unique D-connection.

One can see that an almost Cliffordian manifold M is given as a G-structure
provided that there is a reduction of the structure group of the principal frame bundle
of M to G WD GL.m;O/GL.1;O/ D GL.m;O/ � GL.1;O/; the action of G on
TxM looks like QXq; where Q 2 GL.m;O/; q 2 GL.1;O/; where the right action
of GL.1;O/ is blockwise. In this case the tensor fields in the form F1; : : : ; Fk can
be defined only locally. It is easy to see that the Lie algebra gl.m;O/ of a Lie group
GL.m;O/ is of the form

gl.m;O/ D fA 2 gl.km;R/jAIi D IiA;AJj D JjAg

and the Lie algebra g of a Lie group GL.m;O/GL.1;O/ is of the form g D gl.m;O/�
gl.1;O/:

Let us note that the cases of Cl.s; t/, where s C t D 2, were studied in [6, 7] and
the case of Cl.0; 3/ was studied in a detailed way in [2].

Corollary 3. Let M be an almost Cliffordian manifold based on Clifford algebra
O D Cl.s; t/, where dim.M/ � 2.s C t /, i. e., a smooth manifold equipped with a
G-structure, where G D GL.n;O/GL.1;O/ or equivalently an A-structure, where
A D O. Then the class of D-connections preserves A and shares the same A-planar
curves, which are isomorphic to .Rkm/�:
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4. CONCLUSION

From the classical theory, the Nijenhuis tensor is a part of a torsion of any almost
complex connection r and is J -antilinear in each argument ,

NJ .X; Y / D Tr.X; Y /C JTr.JX; Y /C JTr.X; J Y / � Tr.JX; J Y /

and the connection r called minimal such that NJ D 4Tr , i. e. the structure is
integrable if and only if NJ vanishes. Let M be an almost quaternionic manifold
or an almost quaternionic manifold of the second kind (paraquarernionic). In [6]
and [7], the authors proved that the structure is integrable if and only if the structure
tensor TQ D N.I; I /CN.J; J /CN.K;K/ vanishes. In this case, there is the class
of D-connections without torsion.

A similar fact was proved for an almost Cliffordian manifold, where Cl.0; 3/,
see [3]. In this article, the autohors proved that the structure tensor which is locally
generated by Fi is given by

TQ D

6X

iD1

N.Fi ; Fi /C

6X

iD1

N.Fi ; Fi /@.�a 
 Fa/;

where @ denotes Spencer’s operator of alternation. The following step is to find a
description of the structure preserving connection based on the Nijenhuis tensor for
any Cliffordian manifold.
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