Conformal holomorphically projective mappings satisfying a certain initial condition

Hana Chudá and Mohsen Shiha
CONFORMAL HOLOMORPHICALLY PROJECTIVE MAPPINGS SATISFYING A CERTAIN INITIAL CONDITION

HANA CHUDÁ AND MOHSEN SHIHA

Abstract. In this paper we study conformal holomorphically projective mappings between conformal \(e \)-Kähler manifolds \(K_n = (M, g, F) \) and \(\tilde{K}_n = (\tilde{M}, \tilde{g}, \tilde{F}) \), i.e. diffeomorphisms \(f: M \to \tilde{M} \) satisfying \(f = f_1 \circ f_2 \circ f_3 \), where \(f_1, f_3 \) are conformal mappings and \(f_2 \) is a holomorphically projective mapping between \(e \)-Kähler manifolds (i.e. Kähler, pseudo-Kähler and hyperbolic Kähler manifolds).

Suppose that the initial condition \(f^* \tilde{g} = k \cdot g \) is satisfied at a point \(x_0 \in M \) and that at this point the Weyl conformal tensor satisfies a certain inequality. We prove that the mapping \(f \) is then necessarily conformal.

2000 Mathematics Subject Classification: 53B20; 53B30; 53C21

Keywords: conformal mappings, holomorphically projective mappings, conformal holomorphically projective mappings, conformal \(e \)-Kähler manifolds, initial conditions

1. INTRODUCTION

One may say that the pioneering work in conformal and projective geometry was done by H. Weyl [19] and T. Thomas [17]. The topic of the holomorphically projective (HP) mappings was introduced (for classical, elliptic) Kähler manifolds \(K_n^- \) by T. Otsuki and Y. Tashiro [13], for hyperbolic Kähler manifolds \(K_n^+ \) by M. Prvanović [14], and for parabolic Kähler manifolds \(K_n^o \) by V. V. Vishnevskij [18]. See, e.g., [1, 7, 10, 11, 16, 20].

Let us mention that geodesic, conformally geodesic and holomorphically projective mappings were studied under a certain additional condition based on the proportionality of the metrics. It turns out that even under this condition, the mapping is a homothety. See, e.g., [2–6, 8, 12].

In this paper we consider the following question, whether properties of conformal geodesic mappings are applicable for the composition of the conformal and holomorphically projective mappings — conformal holomorphically projective mappings of conformal \(e \)-Kähler manifolds.

The paper was supported by the project CZ.1.07/2.3.00/30.0035.

© 2013 Miskolc University Press
An analysis of the HP mappings of e-Kähler manifolds in terms of differentiability is presented in paper by I. Hinterleitner [9]. If the contrary is not specified, consideration is given in the tensor form in the class of real sufficiently smooth functions, the dimension $n \geq 4$, and is not mentioned specially. All the spaces are assumed to be connected.

2. MAIN PROPERTIES OF KähLER AND CONFORMAL KähLER MANIFOLDS

We introduce in the following definition generalizations of (pseudo-) Kähler, conformal Kähler and Hermitian manifolds.

Definition 1. An n-dimensional (pseudo-) Riemannian manifold (M, g) is called an e-Hermite manifold $\mathcal{H}_n = (M, g, F)$ if besides the metric tensor g, a tensor field $F \neq \text{Id}$ of type $(1,1)$ is given on manifold M^n, such that $F^2 = e \text{Id}$, $e = \pm 1$, and $g(X, FX) = 0$ for all tangent vector X. Moreover, if $\nabla F = 0$ then \mathcal{H}_n is e-Kähler manifold $\mathcal{K}_n = (M, g, F)$.

We remark, that for $e = -1$ are manifolds \mathcal{H}_n and \mathcal{K}_n (pseudo-) Hermitian and (pseudo-) Kähler manifolds, respectively, F is (almost) complex structure. For $e = 1$ we get hyperbolic Hermitian and hyperbolic Kähler manifold, respectively, F is (almost) product structure. See [9, 12, 12, 16, 20].

We remind the fundamental knowledge of a conformal mapping, that to be found in many monographs, see [6, 7, 12, 16, 20].

Definition 2. A diffeomorphism f between pseudo-Riemannian manifolds $V_n = (M, g)$ and $\tilde{V}_n = (\tilde{M}, \tilde{g})$ is called a conformal mapping, if f preserves angles between all (smooth) curves on V_n. Equivalently, a mapping $f : V_n \to \tilde{V}_n$ is conformal if and only if $\tilde{g} = \rho \cdot g$, where ρ is a nowhere zero function on M and we will again suppose, $\tilde{M} = M$.

From the equation $\tilde{g} = \rho \cdot g$ it follows that
\[
(\tilde{\nabla} - \nabla)_X X = 2 \sigma(X) \cdot X - g(X, X) \cdot \Sigma,
\]
(2.1)
where ∇ and $\tilde{\nabla}$ are the Levi-Civita connections on V_n and \tilde{V}_n, respectively, $\sigma(X) = \frac{1}{2} \nabla_X \ln |\rho|$, $\sigma(X) = g(X, \Sigma)$ and X is an arbitrary tangent vector.

Let us recall a definition of a conformal Weyl tensor C on V_n $(n \geq 3)$:
\[
C^h_{ijk} = R^h_{ijk} + \delta^h_j L_{ik} - \delta^h_k L_{ij} + L^h_{ijk} g_{ik} + L^h_{ikj} g_{ij},
\]
where $L_{ij} = -\frac{1}{n-2} (R_{ij} - \frac{R}{2(n-1)} g_{ij})$, $L^h_{ij} = g^{h\alpha} L_{i\alpha} j$, R_{ijk}^h are the components of the Riemannian tensor of (M, g), $R_{ij}^\alpha = R_{i\alpha j}^\alpha$ are the components of the Ricci tensor, $R = R_{\alpha\beta\gamma} g^{\alpha\beta}$ is the scalar curvature and g^{ij} are components of the inverse matrix of g_{ij}.

If there is a conformal mapping $V_n \to \tilde{V}_n$ $(n > 2)$, then the conformal Weyl tensor remains invariant (i.e. $\tilde{C} = C$). The converse is not true.
For $n > 3$, a pseudo-Riemannian space is locally \textit{conformally flat} if and only if, the conformal Weyl tensor vanishes ($\mathcal{C} = 0$).

Definition 3. A \textit{conformal e-Kähler manifold} is conformally equivalent to \textit{e-Kähler} manifold.

Clearly, any conformal \textit{e-Kähler} manifold K_n may be considered as an \textit{e-Hermite} manifold and it may be characterised by an \textit{e-Hermite} structure. This structure has the following properties (for $e = -1$, see [15]):

\[\nabla_Y F(X) = \varphi(X) \cdot Y - g(X, Y) \cdot \Phi + \varphi(FX) \cdot (FY) + g(FX, Y) \cdot F\Phi, \]

where $\varphi(X) = g(X, \Phi) = \nabla_X \mathcal{F}, \mathcal{F}$ is a function on M and X, Y are tangent vector fields.

3. \textit{Holomorphically Projective Mappings of e-Kähler Manifolds}

Assume the \textit{e-Kähler} manifolds $K_n = (M, g, F)$ and $\tilde{K}_n = (\tilde{M}, \tilde{g}, \tilde{F})$ with metrics g and \tilde{g}, structures F and \tilde{F}, the Levi-Civita connections ∇ and $\tilde{\nabla}$, respectively. Likewise, as in [13]

Definition 4. A curve ℓ in K_n which is given by the equation $\ell = \ell(t), \lambda = d\ell/dt (\neq 0), t \in I$, where t is a parameter is called \textit{analytically planar}, if under the parallel translation along the curve, the tangent vector λ belongs to the two-dimensional distribution $\mathcal{D} = \text{Span}\{\lambda, F\lambda\}$ generated by λ and its conjugate $F\lambda$, that is, it satisfies $\nabla_T \lambda = a(t)\lambda + b(t)F\lambda$, where $a(t)$ and $b(t)$ are some functions of the parameter t.

Particularly, in the case $b(t) = 0$, an analytically planar curve is a geodesic.

Definition 5. A diffeomorphism $f: K_n \rightarrow \tilde{K}_n$ is called a \textit{holomorphically projective mapping} if f maps any analytically planar curve in K_n onto an analytically planar curve in \tilde{K}_n.

Let there exist a HP mapping $f: K_n = (M, g, F) \rightarrow \tilde{K}_n = (\tilde{M}, \tilde{g}, \tilde{F})$. Since f is a diffeomorphism, we can suppose local coordinate charts on M or \tilde{M}, respectively, such that locally $f: K_n \rightarrow \tilde{K}_n$ maps points onto points with the same coordinates, and $M = \tilde{M}$.

A manifold K_n admits a holomorphically projective mapping onto \tilde{K}_n if and only if the following equations [12]

\[\tilde{\nabla}_X Y = \nabla_X Y + \psi(X) \cdot Y + \psi(Y) \cdot X + e\psi(FX) \cdot FY + e\psi(FY) \cdot FX \]

(3.1) hold for any tangent fields X, Y and where ψ is a differential form. If $\psi \equiv 0$ than f is \textit{affine} or \textit{trivially holomorphically projective}. Beside these facts it was proved [12], that $\tilde{F} = \pm F$; for this reason we can suppose that $\tilde{F} = F$.
The holomorphically projective tensor, which is defined by the following form,
\[
P^h_{ijk} = R^h_{ijk} + \frac{1}{n+2} \left(\delta^h_k R_{ij} - \delta^h_j R_{ik} - e F^h_i R_{i\alpha} F^\alpha_j + e F^h_j R_{i\alpha} F^\alpha_i + 2 e F^h_i R_{j\alpha} F^\alpha_k \right)
\]
is invariant with respect to holomorphically projective mappings, i.e., \(\tilde{P} = P \).

It is known that an \(e \)-Kähler \(K_n \) is a manifold of the constant holomorphically projective curvature if and only if the holomorphically projective tensor vanishes \(P = 0 \).

4. Conformal Holomorphically Projective Mappings

After we have sketched some basic properties of holomorphically projective and conformal mappings, let us focus our attention to the already mentioned conformal holomorphically projective ones. In papers \[8, 9\] by I. Hinterleitner so called conformal projective mappings were studied. These mappings are closely related to our subject. Inspired by her observations, we will derive some further results on them.

Definition 6. A diffeomorphism \(f : K_n \to \tilde{K}_n \) is called a conformal holomorphically projective mapping if \(f = f_1 \circ f_2 \circ f_3 \), where

\[
\begin{align*}
f_1 : & \quad K_n = (M, g, F) \to \tilde{K}_n = (M, \tilde{g}, \tilde{F}) \quad \text{is a conformal mapping,} \\
f_2 : & \quad \tilde{K}_n = (M, \tilde{g}, \tilde{F}) \to \tilde{K}_n = (M, \tilde{2} g, F) \quad \text{is a HP mapping and} \\
f_3 : & \quad \tilde{K}_n = (M, \tilde{2} g, F) \to \tilde{K}_n = (M, \tilde{g}, F) \quad \text{is a conformal mapping.}
\end{align*}
\]

Evidently, \(K_n \) and \(\tilde{K}_n \) are conformal \(e \)-Kähler manifolds, and \(1 K_n \) and \(2 K_n \) are \(e \)-Kähler manifolds. We will assume, that structures \(F \) are on the same manifold \(M \).

We have the following theorem.

Theorem 1. A diffeomorphism \(f : K_n = (M, g, F) \to \tilde{K}_n = (M, \tilde{g}, \tilde{F}) \) is a conformal holomorphically projective mapping if and only if for each vector field \(X \) the following condition holds
\[
(\tilde{\nabla} - \nabla) X = 2 \psi(X \cdot X) + e 2 \psi(FX \cdot FX + g(X, X) \cdot \Sigma + \tilde{g}(X, X) \cdot \Omega, \quad (4.1)
\]
where \(\psi \) is a differential \(1 \)-form, \(\Sigma \) and \(\Omega \) are vector fields and there exist the functions \(\mathcal{Q}_1, \mathcal{Q}_2 \) and \(\mathcal{Q}_3 \) on the manifold \(M \) such that for each field \(X \),
\[
\begin{align*}
\nabla_X \mathcal{Q}_1 &= g(X, \Sigma), \\
\nabla_X \mathcal{Q}_2 &= \tilde{g}(X, \Omega), \\
\nabla_X \mathcal{Q}_3 &= \psi(X).
\end{align*}
\]

Proof. The necessity of (4.1) and the existence of the functions \(\mathcal{Q}_1, \mathcal{Q}_2 \) and \(\mathcal{Q}_3 \) follow from the relations (2.1) and (3.1). The conditions are sufficient due to the following observation.

Suppose the conditions (4.1) are satisfied. Then one may construct metrics \(1 g = \exp(-2 \mathcal{Q}_1) \cdot g \) and \(2 g = \exp(2 \mathcal{Q}_2) \cdot \tilde{g} \). Computing the difference between the Levi-Civita connections associated to \(1 g \) and \(2 g \), we get formula, thus according to (3.1), the spaces \(1 K_n \) and \(2 K_n \) are in HP correspondence. \(\square \)
It is evident that the relation of “being conformal holomorphically projective equivalent” is symmetric and reflexive. Unfortunately, the conformal holomorphically projective mappings do not form a group because of lack of transitivity — the relation is not an equivalence relation.

5. CONFORMAL HP MAPPINGS WITH INITIAL CONDITIONS

We generalized the following Theorem:

Theorem 2 (Chudá and Mikeš [4]). Let \(f \) be a holomorphically projective mapping between \(e \)-Kähler manifolds \((M, g, F)\) and \((\tilde{M}, \tilde{g}, \tilde{F})\). \(x_0 \in M \) and \(\tilde{x}_0 = f(x_0) \). Suppose that the initial condition \(\tilde{g}(\tilde{x}_0) = k \cdot g(x_0) \) is satisfied for a \(k \in \mathbb{R} \). If the holomorphically projective tensor does not vanish at \(x_0 \), then the mapping \(f \) provides a homothety between \((M, g, F)\) and \((\tilde{M}, \tilde{g}, \tilde{F})\), i.e. \(\tilde{g} = k \cdot g, k = \text{const} \).

We introduce: \(Q^h_{ijk} = \delta^h_{ijk} - \frac{\alpha - 1}{3e}(F^h_{ij}F^h_{jk} - F^h_{ik}F^h_{j}) + 2F^h_{ijk} \), where \(F_{ik} = g_{i\alpha}F^\alpha_k \), and we prove the following lemma:

Lemma 1. If \(x_0 \) be a fixed point on \(e \)-Kähler manifold \(K_n \) and \(P(x_0) = 0 \), then at the point \(x_0 \) the formula \(C_{hijk} = \frac{R^n}{n(n+2)} \cdot Q_{hijk} \) holds.

Proof. Let at the point \(x_0 \) the holomorphically projective tensor vanishes, i.e. \(P^h_{ijk} = 0 \). After contraction of \(g^ij \) we persuade, that \(R_{ij} = \frac{n}{n-1} \cdot g_{ij} \), and finally we get \(C_{hijk} = \frac{R^n}{n(n+2)} \cdot Q_{hijk} \). \(\square \)

Theorem 3. Let \(f \) be a conformal holomorphically projective mapping between two conformal \(e \)-Kähler manifolds \((M, g, F)\) and \((\tilde{M}, \tilde{g}, \tilde{F})\). If the metrics are proportional at the point \(x_0 \), i.e. \(\tilde{g}_{ij}(x_0) = \mu \cdot g_{ij}(x_0), \mu \in \mathbb{R} \) and there exists no \(\alpha \in \mathbb{R} \) so that \(C_{hijk}(x_0) = \alpha \cdot Q_{hijk}(x_0) \), then \(f \) is conformal.

Proof. Let \(K_n \) admit a conformal holomorphically projective mapping \(f \) onto \(\tilde{K}_n \) and at the point \(x_0 \in M \), the inequality \(C_{hijk} \neq \alpha \cdot Q_{hijk} \) holds. Because the mapping \(f_1: K_n \to K_n \) is a conformal, then for metrics \(g_{ij} = f \cdot g_{ij} \) and for conformal Weyl tensor \(C_{hijk} = C_{hijk}^f \) hold.

Therefore the inequality \(C_{hijk} \neq \alpha \cdot Q_{hijk} \) from \(K_n \) has on manifold \(1K_n \) form: \(1C \neq \alpha \cdot 1Q \). Based on the contraposition of Lemma 1 we known, that the holomorphically projective tensor \(1P \neq 0 \). Consequently are satisfied the conditions from Theorem 2, the mapping \(f_2: 1K_n \to 2K_n \) is homothetic. Moreover at the point \(x_0 \) the following assertion holds \(1g_{ij}(x_0) = \varphi \cdot 2g_{ij}(x_0) \), i.e. mapping \(f = f_1 \circ f_2 \circ f_3 \) is conformal. \(\square \)

References

Authors’ addresses

Hana Chudá
Tomas Bata University in Zlín, Department of Mathematics, Faculty of Applied Informatics, nám. T. G. Masaryka 5555, 760 01 Zlín, Czech Republic
E-mail address: chuda@fai.utb.cz

Mohsen Shiha
University of Homs, Department of Mathematics, Homs, Syria
E-mail address: mohsen_shiha@yahoo.com