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Abstract. We present a rough classification of differential forms on a Riemannian manifold,
we consider definitions and properties of conformal Killing forms on a compact Riemannian
manifold and define Tachibana numbers as an analog of the well known Betti numbers. We state
the conditions that characterize these numbers. In the last section we show connections between
the Betti and Tachibana numbers.
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1. INTRODUCTION

The the paper is based on our plenary lecture at the International Conference
AGMP-8 (Brno, 12–14 September 2012). The paper is organized as follows. In
the first section, we introduce some notations and give some basic definitions of the
theory of differential forms on a Riemannian manifold .M; g/ and natural operat-
ors on forms. In addition, we present a rough classification of differential forms on a
Riemannian manifold. In the next two paragraphs of the paper we consider properties
of harmonic and conformal Killing forms on an n-dimensional compact Riemannian
manifold .M; g/ and determine the Tachibana number tr.M/ as an analog of the Betti
number br.M/ of .M; g/ for 1 � r � n�1. Moreover, we state some conditions that
characterize these numbers. In the last section we formulate results on relationships
between Betti and Tachibana numbers.

2. ON A CLASSIFICATION OF DIFFERENTIAL FORMS ON RIEMANNIAN
MANIFOLD

In this section we will show a rough classification of differential forms on a Rieman-
nian manifold, which will be useful for the establishment of the desired results.
Moreover, we want to fix some notations and basic concepts.

Let .M; g/ be an n-dimensional compact and orientable Riemannian manifold
with the Levi–Civita connection r and let 
r.M/ denote the vector space of smooth
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r-forms on M for 1 � r � n � 1. We define an inner product on 
r.M/ by the for-
mula: h!;!0i D

R
M g.!; !0/ d vol for any !;!0 2 
r.M/. The inner product

structures on 
r.M/ allow us to define the exterior co-differential operator d�:

r.M/ ! 
r�1.M/ as a formal adjoint to the well known exterior differential
operator d : 
r.M/! 
rC1.M/ by the following formula hd!; �i D h!; d��i.

More than thirty years ago, Bourguignon [3] considered the space of Riemannian
natural (with respect to isometric diffeomorphisms) first-order differential operators
on 
r.M/ with values in the space of homogeneous tensors on M . He proved the
existence of a basis of this space which consists of three operators fD1;D2;D3g

where D1 WD d and D2 WD d�. As for the third operator D3, Bourguignon said
that D3 does not have any geometric interpretation for r > 1. It was also pointed
out that, in the case r D 1, the kernel of D3 consists of infinitesimal conformal
transformations of M .

By way of specification of Bourguignon’s result, we showed [14, 15] that

D1 D
1

p C 1
d;

D2 D
1

n � p C 1
g ^ d�;

D3 D r �
1

p C 1
d �

1

n � p C 1
g ^ d�

and proved [14,15] that the kernel of the third basis operatorD3 consists of conformal
Killing r-forms. These forms were introduced by Tachibana [22] and Kashiwada [8]
as a natural generalization of conformal Killing vector fields, which are also called in-
finitesimal conformal transformations [12]. The space of conformal Killing r-forms
will be denoted by Tr.M;R/.

In addition, we mention that the kernel of the first basis differential operator D1

consists of closed r-forms and the kernel of the second basis differential operator D2

consists of co-closed r-forms. The two vector spaces of closed and co-closed r-forms
will be denoted by Dr.M;R/ and Fr.M;R/.

The condition ! 2 kerD1 \ kerD2 characterizes the form ! as a harmonic form
[11, p. 204], therefore the vector space Hr.M;R/ of harmonic r-forms is defined as

Hr.M;R/ D Dr.M;R/ \ Fr.M;R/:

The condition ! 2 kerD2 \ kerD3 characterizes the r-form as a co-closed con-
formal Killing form, which is also called a Killing form (see [4, p. 65–66] and [16]).
Therefore, the vector space Kr.M;R/ of co-closed conformal Killing r-forms is
defined as

Kr.M;R/ D Tr.M;R/ \ Fr.M;R/:

Co-closed conformal Killing forms can be regarded as a generalization of Killing
vector fields that define infinitesimal isometric transformations [12].
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The condition ! 2 kerD1 \ kerD3 characterizes ! as a closed conformal Killing
form. Therefore, the space Fr.M;R/ of closed conformal Killing r-forms is defined
as (see [14])

Fr.M;R/ D Dr.M;R/ \ Tr.M;R/:

Closed conformal Killing forms (which are also called planar forms) are a general-
ization of closed conformal Killing vector fields, which are also called local gradient
infinitesimal conformal transformations [12]. We denote by Cr.M;R/ the subspace
of 
r.M/ which consists of parallel r-forms, which are also called covariant con-
stant r-forms. It is clear that

Cr.M;R/ D Kr.M;R/ \ Pr.M;R/ � Hr.M;R/:

Using definitions and propositions which we have formulated above, we obtain the
3D-diagram of inclusions of subspaces of differential r-forms on an n-dimensional
.1 � r � n � 1/ Riemannian manifold .M; g/.
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Here, for instance, the arrow Fr.M;R/! Kr.M;R/ means that the vector space
Kr.M;R/ is subspace of Fr.M;R/.

3. HARMONIC FORMS AND BETTI NUMBERS

One of the motivations for studying Tachibana numbers of a compact Rieman-
nian manifold .M; g/ is their close relation to Betti numbers. In this section we will
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present a brief review of the results of the theory of harmonic forms and Betti num-
bers.

The Laplacian on forms �: 
r.M/! 
r.M/, also called the Hodge Laplacian,
is defined in terms of the natural Riemannian operators d and d� as� D d d�Cd� d

(see [3, p. 52], [2, p. 377], [6, p. 316], [11, p. 204]). The operator � is a nonnegative
elliptic second order linear differential operator and its kernel is finite dimensional
on a compact Riemannian manifold .M; g/.

Two following equivalent conditions define ! 2 
r.M/ as a harmonic form
d! D 0 and d�! D 0 or �! D 0 on a compact Riemannian manifold .M; g/

(see [11, p. 204]).
If we denote by Hr.M;R/ the vector space of harmonic r-forms on a compact

Riemannian manifold .M; g/, then, by Hodge theory (see [7]), the r th Betti number
br.M/ of .M; g/ is defined by the equation br.M/ D dim Hr.M;R/<1.

The Hodge Laplacian commutes �� D �� with the well known (see [3, p. 33],
[11, p. 203]) Hodge star operator �
r.M/! 
n�r.M/, which implies the follow-
ing isomorphism �Hr.M;R/! Hn�r.M;R/. From the isomorphism we obtain (see
[11, p. 389]) the Poincaré duality theorem br.M/ D bn�r.M/.

4. CONFORMAL KILLING FORMS AND TACHIBANA NUMBERS

Before explaining the main results of our paper, we want to point out that they
are extensions of our results in [14–20] for conformal Killing forms and Tachibana
numbers. In this section we will present a brief review of these results.

Throughout in this section we let .M; g/ be an n-dimensional compact and ori-
ented Riemannian manifold. For any linear differential operator D, the inner product
structures on 
r.M/ allow us to define the formal adjoint operator D� to D (see
[3, p. 460]). In the case of the first order natural Riemannian (with respect to iso-
metric diffeomorphisms) operator D, we can define a strong Laplacian D� �D (see
[2, p. 377], [6, p. 316–317]). The first simple property of these operators comes from
the fact that any strong Laplacian is a non-negative elliptic second order linear dif-
ferential operator (see [6, p. 314–315]) with a finite dimensional kernel (see [3, pp.
461–463]). For the other properties of these operators, see [2, 6, 11, 24].

We showed in [17] that the formal adjoint operator D�
3 to D3 determined by the

formula D�
3 D r� � 1

pC1
d� � 1

n�pC1
d � trace and the Tachibana Laplacian

� D D�
3 �D3 have the form

� D D�
3 �D3 D

1

r.r C 1/

�
N� �

1

r C 1
d� � d �

1

n � r C 1
d � d�

�
: (4.1)

The symbol N� is called the Bochner rough Laplacian and N� WD r� � r where we
denote the formal adjoint of r by r� (see [3, p. 52], [2, p. 377]).
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We proved the following three propositions (see [17]):

! 2 Tr.M;R/, ! 2 ker.D�
3D3/I (4.2)

! 2 Kr.M;R/, ! 2 ker.D�
3D3/ \ ker d�I (4.3)

! 2 Pr.M;R/, ! 2 ker.D�
3D3/ \ ker d: (4.4)

It is known that the kernel of the Tachibana Laplacian � D D�
3 � D3 has a finite

dimension and, therefore, we concluded that (see [20])

dim Tr.M;R/ D dimR.kerD�
3D3/ D tr.M/ <1I

dim Kr.M;R/ D kr.M/ <1I

dim Pr.M;R/ D pr.M/ <1

on a compact Riemannian manifold .M; g/. The numbers tr.M/, kr.M/ and pr.M/

we have called the Tachibana number, the Killing number and the planarity number
of a compact Riemannian manifold .M; g/, respectively (see [18]). These numbers
satisfy the following duality properties tr.M/ D tn�r.M/ and pr.M/ D kn�r.M/

for all r D 1; : : : ; n � 1. These equalities are analogues of the Poincaré duality for
Betti numbers and corollaries of the following isomorphisms (see [9, 14, 15])

� W Tr.M;R/! Tn�r.M;R/ and � W Pr.M;R/! Kn�r.M;R/:

Moreover, Tachibana numbers tr.M/ are conformal scalar invariants, the Killing
number kr.M/ and the planarity number pr.M/ are projective scalar invariants of
a Riemannian manifold .M; g/ for all r D 1; : : : ; n � 1. In addition, we mention
that the first proposition is a corollary of conformal invariance of conformal Killing
r-forms (see [1]). The second proposition of our theorem is a corollary of projective
invariance of closed and co-closed conformal Killing r-forms (see [16]).

Let .M; g/ be an n-dimensional connected Riemannian manifold. Then the Tachi-
bana number tr.M/, the Killing number kr.M/ and the planarity number pr.M/ of
.M; g/ satisfy the following inequalities

0 � tr.M/ �
.nC 2/�

.r C 1/� .n � r C 1/�
I 0 � kr.M/ �

.nC 1/�

.r C 1/� .n � r/�

0 � pr.M/ �
.nC 1/�

r� .n � r C 1/�
I

for all r D 1; : : : ; n � 1. Moreover, any of two numbers pr.M/ and kr.M/ is max-
imal if and only if .M; g/ is a Riemannian manifold with positive constant curvature
(see [10,14,16]). In addition, the Tachibana number tr.M/ is maximal if and only if
.M; g/ is conformal flat Riemannian manifold (see [8, 13]).

5. TACHIBANA AND BETTI NUMBERS

In this section we will show some relationships between Tachibana and Betti num-
bers.
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First, we formulate the vanishing theorems of Betti and Tachibana numbers. Let
.M; g/ be an n-dimensional compact oriented Riemannian manifold and let
R W 
2.M/ ! 
2.M/ be the standard symmetric Riemannian curvature operator
of .M; g/ (see [11, p. 35–36]).

Assuming R � 0, we have br.M/ � n�
r� .n�r/�

D br.T
n/ where Tn is a flat

Riemannian n-torus and r D 1; : : : ; n � 1 (see [11, p. 212]). Moreover, an n-
dimensional compact Riemannian manifold with the positive curvature operator R
is a spherical space form (see [5]) and its Betti numbers b1.M/, : : : , bn�1.M/ are
zeros (see [11, p. 212]). In addition, we proved (see [20]) that, in this case, an ar-
bitrary conformal Killing r-form ! is uniquely decomposed in the form !0 C !00

where !0 is a Killing and !00 is a closed conformal Killing r-forms on .M; g/ for all
r D 1; : : : ; n � 1 and hence tr.M/ D kr.M/C pr.M/.

On the other hand, if R is non-positive, then tr.M/ � n�
r� .n�r/�

D tr.T
n/ and, if

R < 0 somewhere, then tr.M/ D 0 for r D 1; : : : ; n � 1 (see [20]).
Second, we consider Betti and Tachibana numbers of a compact conformally flat

Riemannian manifold and prove the following theorem as a corollary of above results.

Theorem 1. Let .M; g/ be an n-dimensional .n � 3/ compact conformally flat
Riemannian manifold with the positive or negative definite Ricci tensor Ric then
tr.M/ � bh.M/ D 0 for all h; r D 1; : : : ; n � 1.

Proof. Let one the two following conditions be satisfied Ric > 0 or Ric < 0 at
every point of .M; g/. If we suppose that .M; g/ is conformally flat Riemannian
manifold of dimension n � 3, then, in the first case, we have R > 0 and Betti
numbers b1.M/ D � � � D bn�1.M/ D 0 because there are no non-zero harmonic
r-forms for all r D 1; : : : ; n�1 (see [4, pp. 78-79]). On the other hand, in the second
case, we have R < 0 and Tachibana numbers t1.M/ D � � � D tn�1.M/ D 0 because
there are no non-zero conformal Killing r-forms for all r D 1; : : : ; n � 1 (see [19]).
Therefore, we conclude that tr.M/ � bh.M/ D 0 for all h; r D 1; : : : ; n � 1, which
finishes the proof of the theorem. �

Next, we consider the case of an even-dimensional compact and oriented conform-
ally flat Riemannian manifold. In this special case, the following theorem is true.

Theorem 2. Let .M; g/ be a 2r-dimensional compact and oriented conformally
flat Riemannian manifold. Then, the following propositions are true.

(1) If the scalar curvature s ¤ 0 and the Tachibana number tr.M/ ¤ 0, then
the Betti number br.M/ D 0. Moreover, if s is a positive constant, then

tr.M/ D kr.M/C pr.M/

for kr.M/ D dimR.kerD�
3D3 \ Im d�/ and pr.M/ D dimR.kerD�

3D3 \

Im d/.
(2) If the scalar curvature s ¤ 0 and the Betti number br.M/ ¤ 0, then the

Tachibana number tr.M/ D 0.
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(3) If the scalar curvature s D 0, then the Betti number br.M/ ¤ 0 if and only
if the Tachibana number tr.M/ ¤ 0 and, moreover,

tr.M/ D br.M/ D .2r/� .r�/�2:

Proof. First of all, we recall, that the Hodge Laplacian operator � admits the well
known Weitzenböck decomposition (see [3, p. 53])

�! D N�! C Fr.!/; (5.1)

where (see [4, pp. 60–61])

Fr.!/.X1; : : : ; Xr/ D

rX
�D1

Ric.ej ; X�/!.X1; : : : ; X��1; ej ; X�C1; : : : ; Xr/

�

1;:::;rX
�<�

R.ej ; ek; X�; X� /!.X1; : : : ; X��1; ej ; X�C1; : : : ; X��1; ek; X�C1; : : : ; Xr/

for an arbitrary ! 2 
r.M/; X1; : : : ; Xr 2 C1TM , for any orthonormal basis
fe1; : : : ; eng, and the curvature tensor R and the Ricci tensor Ric of .M; g/. As a
consequence of this fact, we obtain from (4.1) the following

�! D
1

r.r C 1/

�
�! � Fr.!/ �

1

r C 1
d�d! �

1

n � r C 1
d d�!

�
(5.2)

for any ! 2 
r.M/. In particular, we have

�! D Fr.!/C
1

r C 1
d�d! C

1

n � r C 1
d d�! (5.3)

for an arbitrary conformal Killing r-form !.
Next, if we suppose that our Riemannian manifold .M; g/ has the dimension 2r

and can be reduced to an Euclidean space by suitable conformal transformation the
metric tensor g, then we have the equality (see [4, p. 79])

Fr.!/ D
1

2.2r � 1/
s � !; (5.4)

After that, from (5.3) and (5.4) we can deduce the equation

�! D
r C 1

2r.2r � 1/
s � !; (5.5)

where s is the scalar curvature of .M; g/. In particular, if s ¤ 0 we deduce from
(5.5) that �! D 0 if and only if ! D 0. Moreover, if we suppose that s is a positive
constant, we can rewrite the equation (5.5) in the form

! D d�d!0 C d d�!0 (5.6)
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where !0 D 2r.2r�1/
.rC1/s

!. The equality (5.6) is the well known Hodge – de Ram de-
composition where there is no harmonic form. From (5.6) we conclude the following
orthogonal decomposition

Tr.M;R/ D Pr.M;R/� Kr.M;R/ (5.7)

where
Kr.M;R/ D f! 2 
r.M/ j! 2 kerD�

3D3 \ Im d�g (5.8)
and

Pr.M;R/ D f! 2 
r.M/ j! 2 kerD�
3D3 \ Im dg (5.9)

From (5.7) – (5.9), we obtain the following equalities tr.M/ D kr.M/ C pr.M/,
kr.M/ D dimR.kerD�

3D3\ Im d�/ and pr.M/ D dimR.kerD�
3D3\ Im d/, which

finish the proof of the first assertion of the theorem.
Next, from (4.1), (5.1) and (5.4) we infer

s

2.2r � 1/
! D

r

r C 1
�! � r.r C 1/�! (5.10)

for any ! 2 
r.M/.
Then, for an arbitrary harmonic r-form ! we have

s

2.2r � 1/
! D �r.r C 1/�!: (5.11)

In particular, if s ¤ 0 we deduce from (5.5) that�! D 0 if and only if ! D 0.
Finally, we consider a 2r-dimensional compact conformally flat Riemannian man-

ifold with zero scalar curvature. In this case, from (5.10) we obtain �! D .r C

1/2�!. If we suppose that br.M/ ¤ 0, then there exists a nonzero harmonic r-
form ! such that �! D .r C 1/2�! D 0. Then, ! is conformal Killing and from
(5.1) we obtain the equation r! D 0. In this case we have br.M/ D tr.M/ D

n�
r� .n�r/�

D .2r/� � .r�/�2, because a parallel form is completely determined by its
value at the point. This finishes the proof of the theorem. �

As a consequence of the previous theorem we obtain the following corollary.

Corollary 1. Let .M; g/ be a 2r-dimensional compact and oriented conform-
ally flat Riemannian manifold with constant nonzero scalar curvature s. Then, any
nonzero conformal Killing r-form is an eigenform of the Hodge Laplacian � corres-
ponding to the eigen-value � D .r C 1/ .2r.2r � 1//�1s for s > 0 and any nonzero
harmonic r-form is an eigenform of the Tachibana Laplacian� corresponding to the
eigenvalue � D �..2r.r C 1/.2r � 1//�1s for s < 0.

Proof. It is well known that, if a nonzero r-form ! satisfies the equation �! D

�! for a constant � > 0, it is called an eigenform of the Laplacian � correspond-
ing to the eigen-value �. Then, if we suppose that s is a positive constant, then,
from (5.5), we conclude that the conformal Killing r-form ! is an eigenform of
� corresponding to the eigenvalue � D .r C 1/ .2r.2r � 1//�1s (see also [21]).
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Moreover, if we suppose that s is a negative constant, then, from (5.11), we conclude
that the harmonic r-form ! is an eigenform of � corresponding to the eigenvalue
� D �..2r.r C 1/.2r � 1//�1s. �

Next, we consider conformal Killing and harmonic forms on a Riemannian man-
ifold of constant sectional curvature, which is an example of a conformally flat
Riemannian manifold.

Theorem 3. Let .M; g/ be an n-dimensional compact and oriented Riemannian
manifold of constant nonzero sectional curvature C. Then, we have three proposi-
tions.

(1) A nonzero r-form ! is harmonic if and only if ! is an eigenform of the
Tachibana Laplacian � corresponding to the eigenvalue � D �.n � r/.r C

1/�1C for C < 0.
(2) Any nonzero closed conformal Killing r-form ! is an eigenform of the Hodge

Laplacian � corresponding to the eigenvalue � D r.n�rC1/C for C > 0.
For n < 2r converse is true.

(3) Any nonzero Killing r-form ! is an eigenform of the Hodge Laplacian �

corresponding to the eigenvalue � D .n � r/.r C 1/C for C > 0. For
n > 2r converse is true.

Proof. Let .M; g/ be an n-dimensional compact and oriented Riemannian mani-
fold with constant sectional curvature C . Then (see [9]), we have the identity

Fr.!/ D r.n � r/ C � ! (5.12)

for an arbitrary ! 2 
r.M/. In this case we can rewrite (5.2) in the form

�! D
1

r.r C 1/

�
�! � r.n � r/ C � ! �

1

rC1
d�d ! �

1

n�rC1
d d� !

�
: (5.13)

From this, we see d! D 0 and d�! D 0 hold if and only if

�! D .n � r/.r C 1/�1C � !

holds. On the other hand, we can rewrite (5.2) in two different forms

�! D
1

r.rC1/

�
n � r

n�rC1
�! � r.n�r/ C � ! �

n � 2r

.r C 1/.n� r C 1/
d�d!

�
(5.14)

and

�! D
1

r.rC1/

�
r

rC1
�! � r.n � r/ C � ! C

n � 2r

.rC1/.n�rC1/
dd�!

�
: (5.15)

From (5.14) we can conclude that if d! D 0 and �! D 0 hold, then �! D r.n �

r C 1/C � ! holds. At the same time, from (5.15) we conclude that if d�! D 0 and
�! D 0 hold, then �! D .n� r/.rC 1/C �! holds. It is easy to see that converses
are true only for cases when n < 2r and n > 2r , respectively. �
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In the following theorem, we study compact Riemannian manifolds whose Ricci
tensor is negative and positive semi-definite and we give the lower bound for the Betti
number br.M/ and the Tachibana number tr.M/, respectively. More precisely, we
have

Theorem 4. Let .M; g/ be a compact n-dimensional Riemannian manifold satisfy
one of the following conditions:

(1) the Ricci tensor Ric of .M; g/ is negative semi-define and the first Tachibana
number t1.M/ D h � n;

(2) the Ricci tensor Ric of .M; g/ is positive semi-define and the Betti number
b1.M/ D h � n. Then,

h�

r� .h � r/
� br.M/ D tr.M/ �

n�

r� .h � r/

for 1 � r < h D b1.M/ � n. If Ric � 0 and t1.M/ D n or Ric � 0 and
b1.M/ D n, then .M; g/ is a flat Riemannian n-torus.

Proof. Let .M; g/ be a compact n-dimensional Riemannian manifold and t1.M/ D

h ¤ 0. Then there are h linearly independent nonzero conformal Killing 1-forms
!1; : : : ; !h. We denote by X1; : : : ; Xh the dual conformal Killing vector fields,
i. e. !a.Y / D g.Y;Xa/ for a D 1; : : : ; h. If we suppose that the Ricci tensor
Ric is negative semi-definite, then X1; : : : ; Xh are parallel (see [4, p. 53–55]), i. e.
rX1 D 0; : : : ;rXh D 0. In this case, the following 1-forms !1; : : : ; !h are parallel
and, hence, are harmonic 1-forms. Using this result, we conclude that �i1i2���ir D

!i1 ^ !i2 ^ � � � ^ !ir for any 1 � i1 < � � � < ir � h are parallel r-forms and,
hence, conformal Killing r-forms. Since these �i1i2���ir are h�

r� .h�r/�
linearly inde-

pendent conformal Killing r-forms, we have tr.M/ � h�
r� .h�r/�

for r < h. Moreover,

we have br.M/ � h�
r� .h�r/�

for r < h because an arbitrary parallel r-form ! is
harmonic. On the other hand, let .M; g/ be a compact n-dimensional Riemannian
manifold with b1.M/ D h ¤ 0. Then, there are h linearly independent nonzero
harmonic 1-forms !1; : : : ; !h. We denote by X1; : : : ; Xh the dual harmonic vec-
tor fields, i. e. !a.Y / D g.Y;Xa/ for a D 1; : : : ; h. If we suppose that the Ricci
tensor Ric is positive semi-definite, then X1; : : : ; Xh are parallel (see [4, p. 53–55]),
i. e. rX1 D 0; : : : ;rXh D 0. From this we can conclude that br.M/ � h�

r� .h�r/�

for r < h and hence tr.M/ � h�
r� .h�r/�

. Next, if Ric � 0 and t1.M/ D n or
Ric � 0 and b1.M/ D n, then .M; g/ has a parallel frame. The curvature tensor of
.M; g/ vanishes in this frame, so .M; g/ is a flat torus (see [11, p. 208]) and hence
br.M/ D tr.M/ D h�

r� .h�r/�
. This concludes the proof of the theorem. �

Finally, we prove the following theorem and formulate its corollary.
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Theorem 5. Let .M; g/ be a compact n-dimensional Riemannian manifold with
its zero first Betti number b1.M/ and non-zero first planarity number p1.M/. Then,
Betti numbers b2.M/; : : : ; bn�1.M/ equal zeros, too.

Proof. If b1.M/ D 0 and p1.M/ ¤ 0, then there exists a non-zero exact con-
formal Killing 1-form ! D d f such that rgradf D �n�1�f � g for a smooth
function f . In this case, due to Tashiro theorem (see [23]), .M; g/ is conform-
ally diffeomorphic to a Euclidean sphere Sn and hence br.M/ D br.S

n/ D 0 for
r D 1; : : : ; n � 1. This finishes the proof. �

Corollary 2. Let .M; g/ be a compact n-dimensional Riemannian manifold such
that its Betti number bn�1.M/ D 0 and Killing number kn�1.M/ ¤ 0. Then, Betti
numbers b1.M/; : : : ; bn�2.M/ equal zeros, too.
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