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Abstract. We shall outline geometrical and algebraic ideas which appear to lie at the foundation
of the theory of defective crystals that was introduced by Davini [5] in 1986. The focus of
the paper will be on the connection between continuous and discrete models of such crystals,
approached by consideration of the symmetries inherent in these models. To begin with, we
review briefly the results of analysis of variational problems where relevant functionals have the
symmetry of perfect (as opposed to defective) crystals, in order to motivate the subsequent study
of symmetry in the case when defects are present. In the body of the paper we indicate how the
theory of Lie groups, and their discrete subgroups, relates to this geometrical theory of defects,
and discuss types of symmetry that occur.
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1. INTRODUCTION

In Davini’s [5] model of defective crystals, the kinematical state of the crystal
corresponds to a distribution of three vector fields in a region 
 � R3. Thus the
defective crystal state, � say, is represented by

� D f`a.�/;
I a D 1; 2; 3g ; (1.1)

where `1.�/; `2.�/; `3.�/ are three ‘lattice’ vector fields defined and linearly independ-
ent at each x 2 
. One imagines that these three smooth fields also determine the
local discrete structure at any point x 2 
. Thus, in the particular case where the
crystal is ‘perfect’, the lattice vector fields are independent of the point x, `a.x/ D ea
say, x 2 
; a D 1; 2; 3, where e1; e2; e3 is a basis of R3, and it is common to asso-
ciate the perfect crystal lattice

L � fx W x D n1e1 C n2e2 C n3e3; n1; n2; n3 2 Zg ; (1.2)

(the translational symmetries of which are e1; e2; e3) with these ‘constant’ fields.
The manner in which states � determine corresponding discrete structures, in the
general case, will be made explicit later.

The second author is the corresponding author.

c
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So far as continuum mechanical theories based on kinematical models such as
(1.1) are concerned, it is a central task to prescribe how quantities such as stress, en-
ergy, etc., depend on the geometrical fields – this is a specification of the constitutive
behaviour of the material. We shall not be concerned here with detailed mechanical
theories, but remark that there are two experimentally well documented types of kin-
ematical change (i. e. change of crystal state) which are generally reckoned to play a
significant role in any mechanical theory which purports to describe these materials.
The first of these types of change of state is elastic deformation: two crystal states,
� and � 0 � f`0a.�/;


0I a D 1; 2; 3g are said to be elastically related to one another
if there exists a smooth invertible mapping u W 
 ! u.
/ D 
 0 such that

`0a .u.x// D ru.x/`a.x/; a D 1; 2; 3: (1.3)

It is commonly held that a change of state which is inelastic (i. e., not an elastic
deformation) is irreversible, in a thermodynamic sense. (We do not embrace that
prejudice here). The second type is a particular inelastic change of state: in slip,
or rearrangement of the lattice vector fields, thin layers of the crystal slide one over
the other with the ‘internal structure’ (i. e. the distribution of fields in each layer)
unchanged in the process. We shall not need to be mathematically precise regarding
this type of change of state in this paper (see Chipot and Kinderlehrer [4], Fonseca
and Parry [9] for such treatments).

We proceed as follows: in the next section we motivate the consideration of sym-
metry in defective crystals by reviewing results for a variational problem that cor-
responds to minimizing a functional which represents the energy of a perfect crystal
(in that the corresponding energy density has perfect crystal symmetries). It turns
out that the symmetry properties determine qualitative properties of the set of min-
imizers. Subsequently, we indicate how ‘elastic invariants’ may be constructed from
the lattice vector fields and their derivatives – the invariants are measures of inelastic
change (since they are invariant under elastic deformation). It turns out that certain
rearrangements of the lattice vector fields also preserve the elastic invariants, so that
the ‘slip’ type of change of state has an abstract status in this kinematical theory,
subordinate to the elastic invariants.

The main part of the paper describes how one associates a discrete structure with
the continuous lattice vector fields of (1.1), how a simple constitutive assumption
regarding the energy density of a defective crystal leads to the theory of Lie groups
and their discrete subgroups, how perfect crystal symmetries are generalized to the
defective crystal case. It will turn out that the symmetries with which we are con-
cerned correspond to changes in sets of generators of certain discrete Lie groups. We
indicate, briefly, that particular symmetries (those which extend to automorphisms
of the corresponding discrete group) extend to symmetries of the continuous model
(the automorphisms of the ambient Lie group), following Gorbatsevich [10] in part.
This last observation is important from the continuum mechanics point of view, for
it shows that certain discrete symmetries are embedded in elastic deformation, so
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that these discrete geometrical changes can themselves be regarded as elastic, even
though elastic deformation is a continuum concept.

2. A VARIATIONAL PROBLEM FOR PERFECT CRYSTALS

In the context of elastic changes of state determined by a deformation gradient
F.x/ � ru.x/, cf. (1.3), Chipot and Kinderlehrer [4] considered the following
variational problem: for a given non–singular 3 � 3 matrix A, find

E
.A/ � inf
A.A/

Z



w .ru.x// dx; (2.1)
where

A.A/ �
�
u 2 W 1;1.
IR3/I detru > 0 a.e. in 
; u D Ax on @


	
; (2.2)

and where the prescribed energy density function w has the properties

w.F / � 0; w.I/ D 0; lim
detF!0

w.F / D1; w.F / D w.QFH/; (2.3)

whenever Q is proper orthogonal, det.F / > 0, and H is an element of a particular
group conjugate to GL3.Z/. The requirement on the form of the matrix H relates to
the assumption that the material under consideration is a perfect crystal — it derives
from two facts: first that if e1; e2; e3 is an integral basis ofL, cf. (1.2), then e01; e

0
2; e

0
3

is also a basis of L if and only if e0a D 
abeb; a; b D 1; 2; 3, where 
 � .
ab/ 2

GL3.Z/; second that the crystal structure corresponding to deformation gradient F
is a perfect lattice with basis vectors F e1; F e2; F e3. They find that:

(i) E
.A/ D j
j zw.A/ whenever 
 � R3 is a bounded domain with @
 of
measure zero;

(ii) zw is the greatest convex function less that the function � defined by

�.detA/ D inf
detFDdetA

w.F /I (2.4)

(iii) For all uniformly bounded (in L1) minimizing sequences frung of (2.1),
with corresponding Young measure f�xgx2
 , the average limiting Cauchy
stress, defined by

T .x/ D

Z
M3�3

1

detF
@w

@F
.F /F T d�x; (2.5)

where F T denote the transpose of F , M 3�3 is the set of all 3 � 3 matrices,
is a pressure, i. e., T .x/ D �.x/I, for some � W R3 ! R; I the 3� 3 identity.

In particular, according to (iii) the ‘perfect’ symmetry of the energy density, ex-
pressed through the requirementw.F / D w.QFH/, cf. (2.3), implies that the crystal
cannot sustain any stress other than a pressure i. e., it cannot sustain shear stresses in
equilibrium. This result is contradicted by experiment, so one is forced to concede
that real crystals are not perfect, and one is forced to consider what symmetry prop-
erties should apply to energy density functions appropriate for defective crystals.
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Note that Chipot and Kinderlehrer’s results were extended by Fonseca and Parry
[9] to the case where the class of competitor functionsA.A/ includes rearrangements
of the crystal state as well as elastic deformations.

3. INVARIANT INTEGRALS

Since inelastic changes of state play an essential role in the mechanics of defective
crystals, it is important to consider the following question: given two crystal states,
how does one determine whether or not those states are elastically related to one an-
other. To discuss this we construct elastic invariants, which are unchanged in elastic
deformation — then if two states are elastically related, it is a necessary condition
that these objects match in the two states. As an example, consider the scalar fields

Sab � r ^ da � db= det .fdag/ ; a; b D 1; 2; 3; (3.1)

where d1.�/;d2.�/;d3.�/ are fields dual to the lattice vector fields, and

det .fdag/ � d1 � d2 ^ d3:

One calculates that if (1.3) holds, and if S 0
ab

is calculated from the fields `0a.�/, a D
1; 2; 3, then

S 0ab .u.x// D Sab.x/; a; b D 1; 2; 3: (3.2)
Therefore

range
y2
0

S 0ab.y/ D range
x2


Sab.x/; a; b D 1; 2; 3; (3.3)

and each of the nine quantities rangex2
 Sab.x/ is an elastic invariant. Likewise, for
example, if � is a circuit in
, one calculates that

H
� da �dx; a D 1; 2; 3, is an elastic

invariant integral. In fact, there exists an infinite number of elastic invariant objects,
there is a finite functional basis for these quantities, see Olver [16], Davini and Parry
[6, 7]. So one obtains a finite number of conditions necessary that two crystal states
be elastically related.

Consider the particular case where � D fea; 
I a D 1; 2; 3g, where e1; e2; e3
is a basis of R3 with e1 � e2 ^ e3 D 1, so that the lattice vector fields are constant
in 
. Then all of the quantities Sab; a; b D 1; 2; 3, are zero, and it turns out that
� 0 � f`0a.�/;
g (we choose 
 0 D 
 for simplicity) is such that all the elastically
invariant objects match those of � if and only if

d 0a.x/ D r�a.x/; x 2 
; a D 1; 2; 3I d1.x/ �d2.x/^d3.x/ D 1; x 2 
; (3.4)

for some potentials �1; �2; �3 such that r�1;r�2;r�3 are linearly independent at
each x 2 
. The important point to note is that � and � 0 are not elastically related
to each other, in this case. Indeed,� 0 is elastically related to z� � fea;�.
/g where
� � .�a/, but z� is not elastically related to � because, if that were so, there would
exist u W 
 ! u.
/ D �.
/ such that ru D I, from (1.3). Then we would have
that u D xC c; c 2 R3;u.
/ D �.
/ D 
 C c, which is false for general choices
of �. One says that� and z� are related by slip, or rearrangement of the lattice vector
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fields, since � and z� are defined on regions which have the same volume (because
detr� D 1 in 
), and the corresponding fields `a.�/; z̀a.�/ are restrictions of fields
which have the same constant values in R3. (This is just a particular example of slip).

The slip mechanism is the archetypical inelastic change of state in phenomeno-
logical theories of defective crystals. The remarks above that indicate the slips are
inelastic changes of state which preserve the elastic invariants – and this is so.

4. ENERGY DENSITY FOR DEFECTIVE CRYSTALS, SYMMETRY OF ENERGY
DENSITY

We assume that point values of quantities associated with the lattice vector fields
determine the values of a corresponding energy density function w, and we make
what seems to be the simplest extrapolation of elasticity theory that accounts for the
existence of continuous distributions of defects. We assume that

w D w .f`ag ; S/ : (4.1)

In (4.1) f`ag denotes a set of vectors `1; `2; `3 2 R3, assumed to consist of values of
the fields `1.�/; `2.�/; `3.�/ at some point, the origin 0 say, and S lies in a particular
class of 3 � 3 matrices. The field S.�/ � .Sab.�//, defined through the duals of the
lattice vector fields by (3.1), measures the non–commutativity of the fields f`a.�/g to
some extent, so it is nonzero in the case of a defective crystal, by definition. S.�/ is
called the dislocation density tensor (even though it represents nine scalar fields). As
an argument of the energy density w, we are given just one value of the field S.�/
and no information regarding any of the derivatives of S.�/ – so we make the major
assumption that the field S.�/ is constant in 
. The fact that S.�/ is constant restricts
the possible values that the constant S D S.0/, say, may take, but we do not make
this explicit.

In a different language, the arguments of the energy density are determined by a
‘uniform crystal state,’ which is a crystal state where the lattice vector fields have
constant dislocation density S , and `a.0/ D `a, a D 1; 2; 3.

In the particular case where S D 0, so the crystal is ‘perfect’, it is a traditional a
priori assumption that the symmetries of the energy density w .f`ag ; 0/ correspond
to symmetries of the perfect lattice L with integral basis vectors `1; `2; `3. Thus the
symmetries of the continuum energy density are derived from an associated discrete
structure, L in this case. We shall consider, in the following sections, ways of associ-
ating a discrete structure,D, say, with given arguments f`ag; S of the energy density,
in the general case where S 6D 0. Also, we shall take the point of view that if different
arguments

�
f`0ag ; S

0
�

lead to the same discrete structure D, then

w .f`ag ; S/ D w
��
`0a
	
; S 0

�
; (4.2)

and say that such equivalent arguments, f`ag ; S and f`0ag ; S
0, represent ‘symmetries’

of the energy density (this argument mimics what is done when S D 0). We shall also
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be concerned with whether or not such equivalent arguments correspond to uniform
crystal states which are elastically related to one another, for in the case when such
arguments are so related there will be a precise sense in which particular discrete
symmetries of (4.2) represent elastic changes of state.

5. DEFECTIVE ANALOGUES OF PERFECT LATTICES AND LINKS TO THE THEORY
OF LIE GROUPS

We are interested in uniform defective crystal configurations where the lattice vec-
tor fields f`a.�/g are defined in 
 � R3, and are such that the dislocation density
tensor S.�/ is constant in R3. The condition that S is constant is an integrability
condition which guarantees that for given lattice vector fields, the partial differential
system

`a. .x;y// D r1 .x;y/`a.x/; a D 1; 2; 3; (5.1)
where r1 .�; �/ denotes the gradient of  with respect to its first argument, has a
solution for the function  . Moreover, the function  W R3 � R3 ! R3 can be taken
to satisfy the properties required for it to be a Lie group composition function, i. e.

 .0;x/ D  .x; 0/ D x;

 .x;x�1/ D  .x�1;x/ D 0;
 . .x;y/; z/ D  .x; .y; z//;

where 0 is the group identity element and x�1 is the unique inverse of the element
x [17, 21]. Given an appropriate value of the dislocation density tensor S one can
specify a corresponding Lie group G by constructing fields `a.�/, a D 1; 2; 3 such
that the dual fields satisfy (3.1) and then solving (5.1) for the group composition
function  .

Since the dislocation density tensor S is an elastic invariant, the composition func-
tion obtained from (5.1) is just one amongst the infinite number of those which may
be found by making different choices of the lattice vector fields, given a value of S .

Each Lie group G D .R3; / has a corresponding Lie algebra g consisting of the
vector space R3, here, with Lie bracket operation ��; �� W R3 � R3 ! R3 defined by

�x;y� D Cijkxjykei ; x;y 2 R3; (5.2)

where fe1; e2; e3g is a basis of R3, x D xj ej , y D yj ej , Cijk are the structure
constants given by

Cijk D
@2 i

@xj @yk
.0; 0/ �

@2 i

@xk@yj
.0; 0/; (5.3)

where  .x;y/ D  i .x;y/ei . The structure constants with respect to the basis
fe1; e2; e3g are related to the components of the dislocation density tensor by

Ckij `rj .0/`sk.0/ D �prsSkp`ki .0/; (5.4)
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where �rij is the permutation symbol and `r.0/ D `rj .0/ej , see Elzanowski and
Parry [8].

Given a value of S , for a particular choice of  (equivalently G), the correspond-
ing geometrical structure D, which we take to be the defective crystal analogue of
the perfect lattice, is constructed as follows. Let `a.�/, a D 1; 2; 3; satisfy (5.1)
and let �1; �2; �3 be given real numbers. Define the integral curve through x0 of the
field �a`a.�/ to be the solution fx.t/ W t 2 Rg of the ordinary differential equation
Px.t/ D �a`a.x.t//, x.0/ D x0. Note that � WD �a`a.0/ determines the field �a`a.�/
by (5.1). One defines the mapping exp .�/ W G ! G, and the group element e.�/, by

exp.�/.x0/ D x.1/; e.�/ D exp.�/.0/ (5.5)

It is standard result of Lie group theory that

exp.�/.x/ D  .e.�/;x/; (5.6)

which states that the flow along the integral curves of the lattice vector fields corres-
ponds to group multiplication by the group element e.�/.

The set of points of the geometrical structure D can be built through an iteration
process. One begins with the origin then adds the six points which are reached by
flowing along each of the vector fields `a.�/, a D 1; 2; 3, forwards and backwards
one ‘unit’, i. e. e.`a/ and e�.`a/, a D 1; 2; 3, where `a D `a.0/. One repeats this
process starting at each of these six points, and continues in this way. By (5.6) the
structure, D that one obtains in this way is the subgroup of G that is generated by
the group elements e.`1/, e.`2/, e.`3/ (noting that e�.`a/ is the inverse of e.`a/ in the
group G).

Remark 1. In the case of perfect crystals S D 0, and one can choose `a.x/ �
`a.0/ � `a as a solution of (3.1) where f`1; `2; `3g is a basis of R3. Then .x;y/ D
x C y is a solution of (5.1) which has the properties of a Lie group composition
function. Flow along the lattice vector fields corresponds in this case to translation
by `1; `2; `3. Successive translations produce the perfect lattice L as in (1.2). Hence
the geometrical structure D produced by the iteration process described above is a
generalisation of the perfect lattice L.

Let G be a three-dimensional Lie group with group multiplication  and write
 .x;y/ � xy as an alternative notation. Let .x;y/ D x�1y�1x;y denote the
commutator of two group elements x;y 2 G and denote by G0 the commutator
subgroup of G - that is, the group generated by all commutators of elements of G.
Notice that .e.`a/; e.`b// D e�.`a/e�.`b/e.`a/e.`b/ is the group element obtained by
successive flows along the vector fields `b.�/, `a.�/, �`b.�/, �`a.�/ so there is a clear
correspondence between the commutator of group elements e.`a/; e.`b/ and the con-
struction of the Burgers vector in mechanics.
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5.1. Conditions for discreteness

In general, the geometric structures generated by the iterative process outlined
above are not discrete sets of points. The structures D are discrete when D is a uni-
form discrete subgroup of the Lie groupG (i. e. the left coset spaceG=D is compact).
This is a generalisation of the requirement in the perfect crystal case that R3=L (the
unit cell of the lattice L with appropriate identification of boundary points) is com-
pact. According to Auslander et al. [1] there are three classes of three-dimensional
Lie group which contain uniform discrete subgroups. These are a certain class of
nilpotent groups and two non-isomorphic classes of solvable Lie groups. Recall that
a three-dimensional Lie group G is nilpotent if .G0; G/ D 0, i. e. elements of the
commutator subgroup G0 commute with elements of the group G. Also a three-
dimensional Lie groupG is solvable if .G0; G0/ D 0, i. e. elements of the commutator
subgroup commute with each other.

We next summarize conditions on the dislocation density tensor which guarantee
that the structures D are discrete, and give the forms of D explicitly, in the cases
D is a uniform discrete subgroup of a three-dimensional nilpotent or (one type of)
solvable Lie group. We also discuss the symmetries of D.

6. THE NILPOTENT CASE

Suppose that G is a three-dimensional nilpotent Lie group which contains a uni-
form discrete subgroup D. Mal’cev [12] shows that D must be generated by three
elements and that the Lie algebra g corresponding to G must have rational structure
constants with respect to some basis. Taking an equivalent approach, following Thur-
ston [22], it can be shown, by assuming first that there is a non-zero minimum dis-
tance between the points of D (generated by the iterative process outlined in section
2) and second that the points e.`a/, a D 1; 2; 3; are ‘close enough’ to the origin (see
Parry [17] for details) that the Lie group G must be nilpotent and that the dislocation
density has the form

Sab D ��a�b a; b D 1; 2; 3; (6.1)
where � 2 Q, and �1; �2; �3 are relatively prime integers [3, 17].

Now recall that, given a value of the dislocation density tensor S of the form (6.1),
there are infinitely many possible choice of corresponding nilpotent Lie groups G
corresponding to different choices of  . We make a canonical choice as follows. Let
 be the group composition function for a three dimensional nilpotent Lie group G
and let e.�/ W g ! G be the exponential function as defined by (5.5). The Campbell-
Baker-Hausdorff formula gives an explicit expression for c in the relation e.c/ D
e.a/e.b/ for a;b 2 g. For three-dimensional nilpotent Lie groups

c D aC bC 1
2
�a;b� ; (6.2)

and c.a;b/ satisfies the required conditions for it to be a group composition function
on R3. Thus for any G in the relevant isomorphism class of Lie groups one can
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define a canonical Lie group J by taking the group operation in J to be given by
 0.a;b/ D c. With this choice of composition function the one parameter subgroups
of J are straight lines through the origin and e.x/ D x (Lie group and Lie algebra
elements can be identified).

When the components of the dislocation density tensor have the form (6.1) the
structure constants with respect to the basis e1; e2; e3 where ea D `a.0/, are given
by

Cijk D ��i�r�rjk : (6.3)

Then the composition function in J has the form (dropping the prime in  0)

 .x;y/ D x C y C 1
2
��.� � x ^ y/ x;y 2 R3; (6.4)

where � D �rer .
Let D be the discrete subgroup of J which is generated by e.`1/, e.`2/, e.`3/. The

translation group T of D is defined by

T D ft 2 J W if d 2 D; d C t 2 Dg: (6.5)

Let � D p=q 2 Q where p and q 2 Z have no common factors and define � D
�1�2�3. Also define the integer k as

k D

�
p if � is even or if (� is odd and p 2 4Z)
p
2

if � is odd and p 2 2Z, p � 4Z
2p if � is odd and p is odd.

(6.6)

Cermelli and Parry [3] show that if k is even then T D D and T consists of
all integer linear combinations of e1; e2; e3; ��=k. Thus the points of D form a
three-dimensional lattice, as an integral basis of T D D may be found in terms of
e1; e2; e3; ��=k. Also, if k is odd they show that T consists of all integer linear com-
binations of 2e1; 2e2; 2e3; ��=k and D=T has four elements which may be written
as T;�T;�T;��T for some �;� 2 D. Thus the points of D form a 4-lattice in the
sense of Pitteri and Zanzotto [20].

6.1. Canonical Coordinates and Symmetries of D

The uniform discrete subgroup D � J is generated by three elements e.`1/, e.`2/,
e.`3/. According to Mal’cev [12], in a three dimensional nilpotent Lie group with
structure constants given by (6.3) there are generators of D and corresponding Lie
algebra elements c1; c2; c3 2 R3 such that for some integer kc

�c1; c2� D kcc3; �c1; c3� D �c2; c3� D 0:

Recalling that group and algebra elements may be identified in J , Mal’cev shows
further that any d 2 D can be written uniquely in the form

d D c�1 c
�
2 c



3 ; �; �; 
 2 Z:
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(This relation is a generalisation of the expression of a point x of a perfect lattice
with basis `1; `2; `3 as x D �`1 C �`2 C 
`3, �; �; 
 2 Z.) Also note that, for
x;y 2 J , x�1 D �x, etc., and one can show that the commutator and Lie bracket
can also be identified. In particular,

.c1; c2/ D c
kc
3 ; .c1; c3/ D .c2; c3/ D 0;

so the commutator subgroupD0 is generated by ckc3 . The commutator .c1; c2/ D c
kc
3

represents flow along the vector fields defined by the Lie algebra elements
c2; c1;�c2;�c1 successively, because Lie group and algebra elements can be identi-
fied in this canonical representation. The corresponding Burgers vector is an integer
multiple of the third vector c3 and one may picture this lack of commutativity as a
‘screw dislocation’.

Let the discrete subgroup D � J be generated by c1; c2; c3 where these three
elements provide a canonical basis for D as described above. Parry and Sigrist [19]
compute the necessary and sufficient conditions that elements e1; e2; e3 2 D also
generate D. These changes of generators are the geometrical symmetries of the set
of points D. The computations in [19] use the fact that the translation group consists
of all integer linear combinations of c1; c2; c3 in the case that kc is even and consists
of all integer linear combinations of 2c1; 2c2 and c3 in the case that kc is odd.

Let De denote the group generated by e1; e2; e3 2 D. In the case where the
(canonical) generators of D satisfy .c1; c2/ D c

kc
3 with kc even there exists a matrix


 of integers with determinant � , say, such that ei D 
ij cj and 
�1 D � 1
�
.plk/

where plk 2 Z. We define �i D p3i . (There are similar results in the case kc
odd). Parry and Sigrist [19] prove the following result regarding the geometrical
symmetries of D (we give the results only for the case kc even).

Theorem 2. De D D if and only if there exist integers l0; m0; � , and a matrix
A 2 GL3.Z/ with third row of relatively prime integers �1; �2; �3 with � WD �1�2�3
such that if kc is even, then0

@1 0 �l0
0 1 �m0

0 0 ��

1
A
0
@c1c2
c3

1
A D A

0
@e1e2
e3

1
A (6.7)

where if kc 2 4Z then hcf .kc ; � / D 1 or if kc 2 2Z, kc � 4Z then either (� is even
and hcf .kc ; � / D 1) or (� is odd and hcf .kc ; � / D 2).

7. THE SOLVABLE CASES

According to Auslander et al [1] there are two non-isomorphic classes of three-
dimensional solvable Lie groups which have uniform discrete subgroups. They call
these two classes S1 and S2. Group elements x 2 Sp, p D 1; 2, are identified with
points of R3 by expressing them as x D xiei with respect to some basis e1; e2; e3.
Auslander et al. [1] choose to represent the group elements as 4 � 4 matrices (still
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parameterised by .x1; x2; x3/) and these matrix representations form an isomorphic
group Sp;m where the matrix representation of x 2 Sp is rm.x/ 2 Sp;m which has
the form

rm.x/ �

0
BB@
�.x3/

0 0

0 0

0 x1
0 x2
1 x3
0 1

1
CCA ; x �

0
@x1x2
x3

1
A 2 R3; �.x3/ D

�
a.x3/ b.x3/

c.x3/ d.x3/

�
:

Here, f�.x3/ W x3 2 Rg is a one parameter subgroup of the unimodular group SL2.R/
and �.1/ 2 SL2.Z/. Let us define

�.1/ � � D

�
a.1/ b.1/

c.1/ d.1/

�
D

�
a b

c d

�
; a; b; c; d 2 Z; ad � bc D 1: (7.1)

If tr.�/ > 2 then the eigenvalues of � are real and distinct and the group of matrices
of the form rm.x/ is isomorphic to S1. We discuss S1 only. (S2 will be treated
elsewhere). Group multiplication  in S1 is defined as follows:

rm.x/rm.y/ D rm. .x;y//; x;y 2 R3 (7.2)

Let us also define

�0.0/ D A D

�
a0.0/ b0.0/

c0.0/ d 0.0/

�
; where 0 denotes

d

dx
: (7.3)

It is shown in [14] that tr.A/ D 0 and det.A/ ¤ 0 and that the dislocation density
tensor is given by the following symmetric matrix:

S D

0
@�b

0.0/ a0.0/ 0

a0.0/ c0.0/ 0

0 0 0

1
A : (7.4)

The discrete subgroup D of S1 is generated by e1; e2; e3. Let these vectors have
matrix representations rm.e1/ WD B , rm.e2/ WD C and rm.e3/ WD A. Note that A
depends on the matrix � D �.1/. The matrix group Dm generated by A;B;C is
isomorphic to D. The commutators of the generating matrix elements satisfy

.A;B/ D B1�dC c ; .A; C / D BbC 1�a; .B; C / D 0; (7.5)

and from this one can show that D D .Z3; /. Thus the discrete structure which is
the analogue of perfect lattice L is the cubic lattice Z3 with group multiplication  
defined by (7.2).

7.1. Symmetries of D

The set of global symmetries of a discrete subgroup D � S1 corresponds to the
choices of three elements g1;g2;g3 2 D such that the group generated by these
elements, denotedG D gp.g1;g2;g3/ in [14,15] equalsD. These are the changes of
generators which preserves the integer latticeZ3 in S1. It turns out that the conditions
on g1;g2;g3 that are necessary and sufficient that G D D are the same as those that
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are necessary and sufficient that the commutator subgroups G0 and D0 are equal.
Here, we merely note that the elements fg1;g2;g3g can be put into canonical form
by a sequence of the following operations: permuting a pair of elements, inversion of
a single element, multiplication of precisely one element by another. Then, explicit
formulae given in [14, 15] provide conditions, on the canonical set of elements so
obtained, which are necessary and sufficient in order that the set generate D.

8. ELASTIC SYMMETRIES OF DEFECTIVE CRYSTALS

In Sections 6 and 7 we have summarised results about the nature and geometrical
symmetries of the discrete structures D which we take to be the defective crystal
analogues of the perfect lattice whose symmetries are widely used in classical crys-
tallography. These structures D are embedded in a continuous Lie group, just as a
perfect lattice L is embedded in R3 with addition as the group multiplication. Recall
that the geometrical symmetries of a perfect lattice L with basis vectors f`1; `2; `3g
are the bijections of L which preserve addition. These are given by �L.`a/ D 
ab`b ,
a; b D 1; 2; 3 where 
 D .
ab/ 2 GL3.Z/. Note that these bijections �L W L ! L

extend uniquely to smooth bijections of R3 that preserve addition so that every geo-
metrical symmetry of L represents a (restriction of an) elastic deformation.

In contrast, in the case of the uniform defective crystal whose discrete structures
D are discrete subgroups of nilpotent or solvable Lie groups, the analogous results
do not hold. There is a difference between the set of ‘symmetries’ (the changes of
generators summarised in Sections 6 and 7 which preserve the elements of D) and
the subset of these symmetries which preserve the group structure of D (these are
the automorphisms of D). We consider now whether or not the automorphisms of
D extend uniquely to automorphisms of the ambient Lie group. First, an elastic
deformation provides an isomorphism of Lie groups, see [18]. Recall, too, that if
� W G ! H is a Lie group homomorphism, and g; h are the corresponding Lie
algebras, then r�.0/ is a Lie algebra homomorphism and

�.e.�// D e.r�.0/�/; � 2 g; (8.1)

where the exponential on the left hand side is the exponential which maps g to G and
that on the right hand side maps h to H .

Next, the nilpotent group G, and S1, are exponential groups in the sense that each
group element is the exponential of some element in the corresponding algebra. So
the automorphisms of G and S1 are straightforwardly calculated.

The automorphisms of discrete subgroups of G and S1 are calculated as follows.
Given a discrete subgroup D which is generated by the three elements d1;d2;d3,
i; j D 1; 2; 3, one may compute the subset of the geometrical symmetries which
represent automorphisms of D using a result of Magnus, Karrass and Solitar [11].
Thus, a mapping �D W fd1;d2;d3g ! D is an automorphism of D if and only if for
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any word w in the generators such that w.d1;d2;d3/ D 0,

w.�D.d1/;�D.d2/;�D.d3// D 0 and w.��1D .d1/;�
�1
D .d2/;�

�1
D .d3// D 0; (8.2)

where ��1D is the mapping that takes �D.d1/ to d1, �D.d2/ to d2 and �D.d3/ to d3.
Thus, we determine the conditions that must be satisfied by �D by taking the words
w in (8.2) to be the relevant commutator relations.

8.1. Automorphisms of nilpotent discrete subgroups

Let D � J be the discrete subgroup generated by the canonical set of elements
c1; c2; c3 with .c1; c2/ D ck3 and .c1; c3/ D .c2; c3/ D 0. From (8.1) the auto-
morphisms ofD (and J ) are linear mappings since e.x/ D x in J . It is shown in [18]
that the automorphisms ofD have the form �D W D ! D where �.ci / D c

�i
1 c

�i
2 c


i
3 ,

i D 1; 2; 3 and 0
@ �1 �2 �3
�1 �2 �3

1 
2 
3

1
A D

0
@ �1 �2 0

�1 �2 0


1 
2 �

1
A

where � D �1, �1�2 � �2�1 D � and 
1; 
2 are arbitrary integers.
In this case, a theorem of Mal’cev [12] states that every automorphism of D ex-

tends uniquely to an automorphism of J . Thus every symmetry of D which corres-
ponds to an automorphism ofD is an elastic symmetry ofD in that it is the restriction
of an elastic deformation of J . Symmetries of D which do not satisfy (8.2) cannot
be extended to automorphisms of J , so they may be called inelastic symmetries.

8.2. Automorphisms of solvable discrete subgroups

In the recent work [13] we showed that �D W Dm ! Dm is an automorphism
if �D.A/ D A�1B�1C�1 , �D.B/ D A�2B�2C�2 ; �D.C / D A�3B�3C�3 , where
�1 D � D �1; �2 D �3 D 0; �1; 
1 arbitrary and

� WD

�
�2 �3

2 
3

�
2 GL2.Z/ is such that ��� D ��: (8.3)

There is an algorithm for determining the matrices � which satisfy (8.3) for a given
matrix � , described in [13], following the method used in [2]. Note that from (7.2)
and (7.5), it is the dislocation density tensor that determines the automorphisms of
D, via (8.3). Aut.D/ is a finitely generated infinite group.

In the case where D is a uniform discrete subgroup of S1 a theorem of Gorbat-
sevich [10] implies that every automorphism ofD extends uniquely to an automorph-
ism of S1. The automorphism of the discrete group D are therefore restrictions of
elastic deformations.
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