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Abstract. In this paper, we revisit the existence, background independence and uniqueness of
closed, open and open-closed bosonic- and topological string field theory, using the machinery
of homotopy algebra. In the theory of classical open- and closed strings, the space of inequivalent
open string field theories is isomorphic to the space of classical closed string backgrounds. We
then discuss obstructions of these moduli spaces at the quantum level. For the quantum theory of
closed strings, uniqueness on a given background follows from the decomposition theorem for
loop homotopy algebras. We also address the question of background independence of closed
string field theory.
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1. INTRODUCTION

The standard formulation of classical string theory consists of a set of rules to com-
pute scattering amplitudes for a set of n (excited) strings typically propagating on a
D-dimensional Minkowski space-time MD . This prescription involves an integration
over the moduli space of disks with n punctures for open strings (or spheres with n

punctures for the closed strings). Comparing this with the approach taken for point
particles the situation in string theory seems incomplete. Indeed, for point particles
one starts with an action principle and then obtains the classical scattering amplitudes
by solving the equations of motions deriving from this action. Since the various string
excitations ought to be interpreted as particles one would hope to be able to apply the
same procedure for the scattering of strings. The aim of string field theory is precisely
to provide such an action principle so that the set of rules to compute scattering amp-
litudes for strings follow from this action. Since the string consists of a infinite linear
superpositions of point particle excitations one would expect that such an action may
be rather complicated. Yet the first construction of a consistent classical string field
theory of interacting open strings [11] has a remarkably simple algebraic structure of
a differential graded algebra (DGA) together with a non-degenerate odd symplectic
form.
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The geometric approach for the construction of string field theory [13, 14], starts
with a decomposition of the relevant moduli space of Riemann surfaces into element-
ary vertices and graphs. The condition that the moduli space is covered exactly once
implies that the geometric vertices satisfy a classical Batalin-Vilkovisky master equa-
tion. From this one then anticipates that any string field theory action should realize
some homotopy algebra. The subject of this talk is to investigate to what extend
this algebraic structure is useful, and to determine certain additional properties that
should be satisfied by any consistent string field theory. In particular, it is of interest
to know in what sense string field theory is unique. Another related issue stems from
the fact that the construction of string field theory assumes that the string propagates
in a certain string background whose geometry is that of Minkowski space. However,
since string theory includes gravity, this background is dynamical. The question of
background independence of this construction is thus relevant.

To set the stage, let us start with the well understood case of a single point particle
propagating on a non-compact manifold MD with a pseudo-Riemannian metric g.
The world line of the particle is described by a curve � W �a; b�!MD that extremizes
the action

S��; h� D
Z
�a;b�

1p
ht t

g. P�; P�/dt

where ht t is a non-dynamical ”metric” on the world line that can be set to 1 by a
suitable reparametrization of t . Similarly, for an open string we have a map � W � D
�a; b� � �c; d �!MD that extremizes the action

S��; h� D
Z
�

p
hhijg.@i�; @j�/ (1.1)

so that the area is minimal. If the Riemann curvature of MD vanishes, then the action
(1.1) is invariant under conformal mappings of the world sheet � . For �a; b� D
��1;1�, we can conformally map � to a disk with 2 punctures. Analogously, a
world sheet describing n � 1 strings joining into one can be mapped into a disk with
n punctures. In order to specify which particles (or string excitations) are involved in
the scattering amplitude, we need to endow the puncture with additional structures.
This is done by attaching conformal tensors fVi ���g built out of the maps � evaluated
at the puncture and the coefficients of the Laurent polynomial of � evaluated in local
coordinates. The amplitude is then expressed in terms of the n-point correlator

hVi1.´1/; � � � ; Vin.´n/i; (1.2)

with respect to the (formal) Gaußian measure defined by S���. In fact, the correlator,
(1.2) which is called a conformal field theory correlator in physics, is not quite what
one needs. In order to get the string scattering amplitude we need to integrate over the
moduli space of the punctured disk. Now, since the action S��; h� is invariant under
diffeomorphisms on the world sheet � as well as under Weyl re-scalings of the world
sheet metric h, we really want to integrate over the .n � 3/-dimensional gauge-fixed
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moduli space Mn�3 (for a review, see, e. g., [12] and references therein). Treating
the gauge-fixed action using the standard BRST formalism, we end up with an action
S��; c; b� including odd world sheet tensor fields (BRST ghosts) together with an
odd differential Qo that generates the odd symmetry transformations of the gauge
fixed action. Similarly, the insertions at the punctures of � contain added Laurent
coefficients of the b and c ghosts. The string amplitude can be written schematically
as in Figure 1, where the n � 3 meromorphic vector fields vi are constant near the

1

2

3 n-2
n-1

n
=

Vin

Vi3

Vi1 b.v1/

b.v2/
b.v3/

Vi2

R

Mn�3

FIGURE 1. Sketch of the CFT realization of the scattering amplitude
of n open strings.

puncture Pi , and cannot be extended to the whole disk. These vector fields generate
translations in the moduli space; they move the punctures. Concretely, this amplitude
becomesZ
Mn�3

ds1 : : : dsn�3 hb.v1/ : : : b.vn�3/ Vi1 ��; b; c�.´1/ : : : Vin ��; b; c�.´n/i; (1.3)

where the correlator is evaluated with respect to the measure obtained from the
world sheet action S��; c; b�. What we have just described is what is usually re-
ferred to as the operator formalism of the world sheet conformal field theory (CFT),
which dresses the geometric amplitudes (punctured disks) with the physical states
(particles). The amplitudes (1.3) are well defined on the cohomology of Qo.

The purpose of string field theory is two-fold. First to reproduce these amplitudes
in terms of vertices and graphs built from them and second to generalize the amp-
litudes (1.3) on coh.Qo/ to the module Ao of all conformal tensors with suitable
regularity conditions. At the geometrical level, the simplest possible construction
would be that of a single vertex of 3 joining strings which has no moduli, with all
amplitudes recovered from graphs built from 3-vertices. This is indeed possible for
the open bosonic string [11]. However, the decomposition of moduli space is not
unique so that other realizations are possible where higher order vertices are needed
to recover the amplitudes (1.3). In any case, the geometric vertices in any consistent
decomposition form a BV algebra.

The world sheet CFT then defines a morphism of BV algebras between the set
of geometric vertices fVng, and the dressed ”physical” vertices. It also provides us
with an inner product on the graded module Ao generated by the conformal tensors
Vi ��; b; c� of the .�; b; c/ – CFT inserted at the origin in the local coordinate ´ around
a puncture P on the disk. With the help of the latter, we can interpret the set of
physical vertices as multilinear maps mi W A
io ! Ao; m1 D Qo, with some further
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symmetry properties implied by the cyclic symmetry of the vertices. We denote by
C.Ao/ the space of such multilinear maps on Ao. It is then not hard to see that the
BV-master equation implies that the mapsmi define anA1-structure. One way to see
this is to define a coderivation M of degree 1 on the tensor algebra TAo D �nA
no
with components

.M/n;u D
X

rCsCtDn

rC1CtDu

1
r 
ms 
 1
t

Imposing vanishing of the graded commutator �M;M�, we obtain a characterization
of all differentials compatible with the A1-structure.

The classical solutions of the string field theory action defined by the maps mi
together with h�; �i are given by the Maurer–Cartan elements, M.e 0/ D 0.

There is an analogous story for classical closed strings obtained from the above
by replacing the punctured disk by a punctured sphere with world sheet conformal
field theory S��; c; Nc; b; Nb� and dressed by conformal tensors Vi ��; b; Nb; c; Nc� where
b; Nb; c and Nc depend holomorphically and anti-holomorphically on the world sheet
coordinates ´ and Ń , respectively. The CFT then provides a morphism between the
set of geometric vertices and the (dressed) physical vertices of closed string field
theory. The latter can again be interpreted as maps, li on the garaded symmetric
module SAc D �nA^nc . Accordingly, they realize an L1 algebra .Ac ; L/, with
�L;L� D 0.

Finally, we let open and closed strings interact with each other. The open closed
vertices consist of disks with punctures on the boundary as well as on the disk. These
vertices realize an L1 morphism F , between the closed and open sector taken sep-
arately,

.Ac ; L/
F�! .Codercycl.TAo/; dh; ��; ��/: (1.4)

This is the open-closed homotopy algebra of Kajiura and Stasheff [5].

Remark 1. Note that, while the geometric decomposition of the moduli spaces
appearing in the construction of string field theory just reviewed is independent of
the details of MD , the operator formalism makes explicit use of the geometry of MD

as well as possible other background fields inserted at the punctures. In particular,
the module A of conformal tensors typically depends on these data. This is where
the background dependence enters in the construction of string field theory. This
is in contrast to, e. g., General Relativity where the action does not depend on any
background metric on MD .

A natural question that arises in the above context is whether, for a given back-
ground (in the sense just described), the generalization of (1.3) as well as its closed
string version is unique. For classical string field theory, the answer to this question
is affirmative, as follows from the decomposition theorem [5] for homotopy algebras.
This theorem establishes an isomorphism between a given homotopy algebra and the
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direct sum of a linear contractible algebra and a minimal model. In the context of
string field theory, the structure maps of the minimal model are given by (1.3).

In this talk, we discuss the following generalizations of the results reviewed above:
� classification of inequivalent deformations of classical open string field the-

ory;
� background independence of closed string field theory;
� decomposition theorem for quantum closed string field theory;
� quantization of the open closed homotopy algebra.

2. RESULTS

Let us start with non-trivial deformations of open string field theory. That is we
consider continuous deformations of the worldsheet CFT that do not preserve Qo

and (1.3) simultaneously . The usefulness of the homotopy formulation of SFT in
this respect is that this problem can be formulated as a cohomology problem. Indeed,
since any consistent open string field theory realizes an A1 algebra, i.e. defines
a coderivation M of degree 1 on the tensor algebra TAo with �M;M� D 0, any
infinitesimal deformation M C �M satisfies dH .�M/ � �M; �M� D 0. For a given
worldsheet CFT, one would therefore like to determine coh.dH /. The outcome of
this analysis is contained in

Theorem 1 ([8]). Let S��; c; b� be the open string world sheet CFT onMD , Ao the
corresponding module of conformal tensors, Qo the BRST differential, and (1.3) the
corresponding string amplitudes on coh.Qo/. Then the only non-trivial infinitesimal
deformations of S��; c; b� preserving Ao are infinitesimal deformations of the closed
string background in the relative cohomology of Qc ,

coh.dH / � coh.b0 � Nb0;Qc/:

Remark 2. A particular class of deformations that do not preserve Qo and (1.3)
are shifts in the open string background �0 ! �0C��� with M.e�0C���/ D O.�2/.
Such transformations are, however, dH -exact as are all field redefinitions of �. From
a physics perspective, an interesting fact implied by theorem 1 is that open string
theory already contains the complete information of the particle content of closed
string theory.

Proof. The proof of this assertion proceeds via a detailed analysis of the deforma-
tions of the CFT correlator (1.3). �

Given the isomorphism between the cohomologies, one may wonder whether this
isomorphism holds for finite deformations. On the closed string side, finite deforma-
tions correspond to classical solutions of the closed string field theory equation of mo-
tion, that is Maurer–Cartan elementsL.e� / D 0, whereas finite deformations of open
string field theory are Maurer–Cartan elements of ��; �� on fM 2 Codercycl.TAo/g, that
is, �M;M� D 0. A classic theorem of Kontsevich then guarantees isomorphism at the
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SCFT

S 0CFT

flngn2N

fl 0ngn2N

SCFT ! SCFT C
R
�0

operator formalism

operator formalism

L! e��0 � L � e�0

Vn 7! ln

Vn 7! l 0n

FIGURE 2. Background independence requires that the L1 maps
fl 0ng obtained upon conjugation by the MC-element e�0 are equival-
ent to those obtained from the world sheet CFT in the back-
ground �0.

finite level, or more precisely that the moduli spaces of two L1-algebras connected
by a L1-quasi-isomorphism are isomorphic. Thus, we have

Corollary 1. LetM.Ac ; L/ andM.Codercycl.TAo/; ��; ��/ be the moduli space of
Maurer–Cartan elements obtained by moding out L- and ��; �� -gauge transformations
respectively, then we have

M.Ac ; L/ �M.Codercycl.TAo/; dh; ��; ��/:
We will return to the question whether this isomorphism survives quantization be-

low, but first we would like to turn to background independence of closed string field
theory. As mentioned above, for a given background the operator, formalisms realize
a certain L1 algebra. Furthermore, for a given classical solution �0 in this field
theory, we then obtain a new homotopy algebra upon conjugation by this Maurer–
Cartan element. Background independence then would imply that the structure maps
of the minimal model obtained from this homotopy algebra are equivalent to the amp-
litudes (1.3) obtained with the measure of the world-sheet CFT S��; c; Nc; b; Nb� in the
new background (see figure 2).

We can answer this question by addressing the cohomology problem on fL 2
Codersym.SAc/g. The bracket ��; �� on Coder.SA/ induces the Chevalley-Eilenberg
differential dC D �L; �� on the deformation complex. The analysis proceeds in close
analogy with that for open string theory with the result,
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Proposition 1. Let S��; c; Nc; b; Nb� be the closed string world sheet CFT on MD ,
Ac the corresponding module of conformal tensors and Qc the BRST differential.
Then

coh.dc/ D ¿:
An immediate consequence of this proposition is that the diagram in figure 2 com-

mutes, which, in turn, implies independence under shifts in the background that pre-
serve Ac .

Remark 3. We should note that generic shifts in the background � will not pre-
serve the module Ac .

Let us now return to the decomposition theorem, which states that a homotopy al-
gebra defined on a certain complex can be decomposed into the direct sum of a min-
imal and a linear contractible part. By definition, the linear contractible part is just
a complex with vanishing cohomology, whereas the minimal part is a homotopy al-
gebra of the same type as the initial one but without differential [6]. Furthermore, the
initial and the decomposed algebras are isomorphic in the appropriate sense. Clearly,
the minimal part can be extracted from the decomposed algebra by projection and,
thus, the decomposition theorem implies the minimal model theorem.

The relevance of the minimal model theorem in physics is as follows: Suppose that
the vertices of some field theory satisfy the axioms of some homotopy algebra. Then
the minimal model describes the corresponding S -matrix amplitudes [3, 4]. Further-
more, the S -matrix amplitudes and the field theory vertices are quasi-isomorphic,
which implies that their respective moduli spaces are isomorphic (this follows in
general from the minimal model theorem).

Now we conclude that string field theory is unique up to isomorphisms on a fixed
conformal background (CFT): In string field theory, the differential is generically
given by the BRST charge Q. Furthermore the CFT determines the S -matrix amp-
litudes. Thus a conformal background determines the minimal and the linear con-
tractible part, which implies uniqueness up to isomorphisms.

An explicit construction of the decomposition model is known for the classical
algebras (A1 and L1) [3, 4]. In the following, we construct the decomposition
model for quantum closed string field theory, formulated in the framework of IBL1-
algebras (see, e. g., [2, 10] for a definition).

Quantum closed string field theory has the algebraic structure of a loop homotopy
Lie-algebra .A;L/ [7], i.e.

L D
X

�gLg C �
�1; L2 D 0; (2.1)

where Lg D D.lg/ 2 Codercycl.SA/ and 
�1 D D.!�1/ 2 Coder2.SA/ is the
lift of the inverse of the odd symplectic structure (D denotes the lift from multilinear
maps to coderivations). We define lq WDP

g �g lg . The differential on A is given by
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d D lcl � i1. Furthermore, we abbreviate the collection of multilinear maps without
the differential by l�q WD lq � d .

Definition 1. A pre-Hodge decomposition of A is a map h W A ! A of degree
minus one which is compatible with the symplectic structure and squares to zero.

For a given pre-Hodge decomposition of A, we define the map

P D 1C dhC hd; (2.2)

and
g WD �! � d and g�1 WD h � !�1 2 A^2; (2.3)

where the symplectic structure ! and its inverse !�1 are considered as a map from
A to A� and A� to A, respectively. We define trees constructed recursively from l�q
and h via

Tq D h � l�q � e1CTq and Tq � i1 D 0: (2.4)

Theorem 2 ([9]). Let .A;L D D.d C l�q C �!�1// be a loop homotopy Lie al-
gebra. For a given pre-Hodge decomposition h, there is an associated loop homotopy
Lie algebra

NL D D
�
d C

.P /

T q � e�g�1 C � N!�1
�
; (2.5)

where N!�1 D P^2.!�1/ and
.P /

T q �e�g�1 represents the graphs with a single output
labeled by P . Furthermore, there is an IBL1-isomorphism from .A; NL/ to .A;L/. d

is called the linear contractible part and
.P /

T q �E.�g�1/C � N!�1 the minimal part.

Proof. The proof follows from explicit verification, using equation (2.1), (2.2) and
(2.4). �

Finally, we describe the quantum generalization of the classical open-closed ho-
motopy algebra (OCHA) of Kajiura and Stasheff. As already alluded to in the in-
troduction, the OCHA can be described by an L1-morphism, N , mapping from the
closed string algebra .Ac ; L/ to the deformation complex of the open string algebra
.Codercycl.TAo/; dh; ��; ��/, i. e.,

eN � L D D.dh C ��; ��/ � eN ;
or equivalently

N � L D dh �N C 1

2
�N;N � ��; (2.6)

where N describes the open-closed vertices and the comultiplication � W TA !
TA
 TA is defined by

�.a1 
 : : :
 an/ D
nX
iD0

.a1 
 : : :
 ai /
 .aiC1 
 : : :
 an/:
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In a similar way, one can describe the QOCHA by an IBL1-morphism from the
loop homotopy Lie algebra .Ac ;L/ of closed strings to the involutive Lie bialgebra
.Ao; dh; ��; ��; �/, where�Ao WD Homcycl.TAo;k/. The operation

� W Ao ! A
^2
o ;

is defined by

.�f /.a1; : : : ; an/.b1; : : : ; bm/ WD .�1/f
nX
iD1

mX
jD1

.�1/� �

f .ek; ai ; : : : ; an; a1; : : : ; ai�1; e
k; bj ; : : : ; bm; b1; : : : ; bj�1/; (2.7)

where .�1/� denotes the Koszul sign, feig is a basis of Ao and feig is the corres-
ponding dual basis satisfying !o.ie; e

j / D i�
j . This operation can be interpreted

geometrically as the sewing of open strings on one boundary component. In [1, 2]
it has been shown that .Ao; dh; ��; ��; �/ defines an involutive Lie bialgebra, a special
case of an IBL1-algebra. In the language of IBL1-algebras, this is equivalent to the
statement that

Lo WD D.dh C ��; ��C � �/
squares to zero.

Definition 2 ([10]). The quantum open-closed homotopy algebra is defined by an
IBL1-morphism from a loop homotopy Lie algebra .Ac ;Lc/ to the involutive Lie
bialgebra .Ao;Lo/, i.e.

en � Lc D Lo � en (2.8)

The maps n describe the open-closed vertices to all orders in �.
Equation (2.8) can be recast so that the five distinct sewing operations in open-

closed string field theory become apparent:

n � Lc C
�
2

�
n �D.ei / ^ n �D.ei /

� �� (2.9)

D Lo � nC
1

2
D.��; ��/ � .n ^ n/ �� � �.D.��; ��/ � n/ ^ n

� ��:
In equation (2.9), ei and ei denote a basis and corresponding dual basis of Ac w.r.t.
the symplectic structure !c . Obviously we recover the OCHA of equation (2.6) in
the limit � ! 0.

Similarly to the classical case, the morphism en is a quasi-isomorphism which
implies isomorphism of the corresponding moduli spaces, i.e.

M.Ac ;Lc/ �M.Ao;Lo/:

�In the quantum case it is more convenient to work with Homcycl.TAo;k/ rather than with
Codercycl.TAo/
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Theorem 3 ([10]). The moduli space of any loop homotopy Lie algebra is empty,

M.Ac ;Lc/ D ¿:
Proof. The proof follows from considering the order � term of the Maurer Cartan

equation for a general ansatz. This equation, together with the non-degeneracy of
the symplectic form implies triviality of the cohomology, which in turn implies that
M.Ac ;Lc/ D ¿. �

Remark 4. The story is different for the topological string, where the symplectic
structure ! degenerates on-shell. Under this condition, Theorem 3 does not hold
anymore, which implies consistency of open topological string theory at the quantum
level in contrast to bosonic string theory.
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