

Miskolc Mathematical Notes Vol. 6 (2005), No 1, pp. 31-41 HU e-ISSN 1787-2413 DOI: 10.18514/MMN.2005.90

Upper and lower slightly α -continuous multifunctions

Erdal Ekici

UPPER AND LOWER SLIGHTLY α -CONTINUOUS MULTIFUNCTIONS

ERDAL EKICI

[Received: January 20, 2004]

ABSTRACT. The aim of this paper is to introduce and study upper and lower slightly α -continuous multifunctions as a generalization of upper and lower α -continuous multifunctions, respectively, due to Neubrunn (1988). Some characterizations and several properties concerning upper (lower) slightly α -continuous multifunctions are obtained. The relationships between upper (lower) slightly α -continuous multifunctions and upper (lower) α -continuous multifunctions are also discussed.

Mathematics Subject Classification: 54C05, 54C60, 54C08, 54C10 Keywords: α -open, slightly α -continuity, multifunction

1. INTRODUCTION

Various types of functions play a significant role in the theory of classical point set topology. A great number of papers dealing with such functions have appeared, and a good many of them have been extended to the setting of multifunctions. In 1988, Neubrunn introduced the concept of α -continuous multifunctions [7]. α -continuity which is a weaker form of continuity, in ordinary topology was extended to multifunctions.

The purpose of the present paper is to define upper (lower) slightly α -continuous multifunctions and to obtain several characterizations of upper (lower) slightly α -continuous multifunctions and basic properties of such multifunctions. Moreover, the relationships between upper (lower) slightly α -continuous multifunctions and upper (lower) slightly α -continuous multifunctions are also discussed.

2. PRELIMINARIES

Throughout this paper, spaces (X, τ) and (Y, υ) (or simply X and Y) always mean topological spaces in which no separation axioms are assumed unless explicitly stated. Let A be a subset of a space X. For a subset A of (X, τ) , cl (A) and int (A) represent the closure of A with respect to τ and the interior of A with respect to τ , respectively.

A subset A is said to be α -open [8] (resp., preopen [4]) if $A \subset int(cl(int(A)))$, (resp., $A \subset int(cl(A))$). The complement of a α -open (resp., preopen) set is said to be

© 2005 Miskolc University Press

 α -closed (preclosed). The family of all α -open (resp., preopen) sets of X is denoted by $\alpha O(X)$ (resp., PO(X)).

It is shown in (Njastad, 1965) that $\alpha O(X)$ is a topology for *X*.

By a multifunction $F : X \to Y$, we mean a point-to-set correspondence from X into Y, and always assume that $F(x) \neq \emptyset$ for all $x \in X$. For a multifunction $F : X \to Y$, following [1, 2] we shall denote the upper and lower inverse of a set B of Y by $F^+(B)$ and $F^-(B)$, respectively, that is, $F^+(B) = \{x \in X : F(x) \subset B\}$ and $F^-(B) = \{x \in X : F(x) \cap B \neq \emptyset\}$. In particular, $F^-(y) = \{x \in X : y \in F(x)\}$ for each point $y \in Y$. For each $A \subset X$, $F(A) = \bigcup_{x \in A} F(x)$. Then F is said to be a surjection if F(X) = Y, or equivalently if for each $y \in Y$ there exists an $x \in X$ such that $y \in F(x)$.

Moreover, $F : X \to Y$ is called upper semi-continuous (resp., lower semi-continuous) if $F^+(V)$ (resp., $F^-(V)$) is open in X for every open set V of Y [10].

For a multifunction $F : X \to Y$, the graph multifunction $G_F : X \to X \times Y$ is defined as follows $G_F(x) = \{x\} \times F(x)$ for every $x \in X$ and the subset $\{\{x\} \times F(x) : x \in X\} \subset X \times Y$ is called the multigraph of F and is denoted by G(F).

Definition 1. A multifunction $F : X \to Y$ is said to be:

- (1) Upper α -continuous at $x \in X$ [7] if for each open set V of Y containing F(x), there exists $U \in \alpha O(X)$ containing x such that $F(U) \subset V$;
- (2) Lower α-continuous at x ∈ X [7] if for each open set V of Y such that F(x) ∩ V ≠ Ø, there exists U ∈ αO(X) containing x such that F(u) ∩ V ≠ Ø for every u ∈ U;
- (3) Upper (lower) α -continuous if it has this property at each point of X.

3. Slightly α -continuous multifunctions

Definition 2. A multifunction $F : X \rightarrow Y$ is said to be:

- (1) Upper slightly α -continuous at $x \in X$ if for each clopen set V of Y containing F(x), there exists $U \in \alpha O(X)$ containing x such that $F(U) \subset V$;
- (2) Lower slightly α-continuous at x ∈ X if for each clopen set V of Y such that F(x) ∩ V ≠ Ø, there exists U ∈ αO(X) containing x such that F(u) ∩ V ≠ Ø for every u ∈ U;
- (3) Upper (lower) slightly α -continuous if it has this property at each point of *X*.

The following theorem states some characterizations of upper slightly α -continuous multifunctions.

We know that a net (x_{α}) in a topological space (X, τ) is called eventually in the set $U \subset X$ if there exists an index $\alpha_0 \in J$ such that $x_{\alpha} \in U$ for all $\alpha \ge \alpha_0$.

Definition 3. A sequence (x_n) is said to α -converge to a point x if for every α open set V containing x, there exists an index n_0 such that for $n \ge n_0$, $x_n \in V$. This is
denoted by $x_n \rightarrow_{\alpha} x$.

Theorem 1. Let $F : X \to Y$ be a multifunction from a topological space (X, τ) to a topological space (Y, v). Then the following statements are equivalent.

- (i) F is upper slightly α -continuous;
- (ii) For each $x \in X$ and for each clopen set V such that $x \in F^+(V)$, there exists an α -open set U containing x such that $U \subset F^+(V)$;
- (iii) For each $x \in X$ and for each clopen set V such that $x \in F^+(Y \setminus V)$, there exists an α -closed set H such that $x \in X \setminus H$ and $F^-(V) \subset H$;
- (iv) $F^+(V)$ is an α -open set for any clopen set $V \subset Y$;
- (v) $F^{-}(V)$ is an α -closed set for any clopen set $V \subset Y$;
- (vi) $F^{-}(Y \setminus V)$ is an α -closed set for any clopen set $V \subset Y$;
- (vii) $F^+(Y \setminus V)$ is an α -open set for any clopen set $V \subset Y$;
- (viii) For each $x \in X$ and for each net (x_{α}) which α -converges to x in X and for each clopen set $V \subset Y$ such that $x \in F^+(V)$, the net (x_{α}) is eventually in $F^+(V)$.

PROOF. (i) \Leftrightarrow (ii). Clear.

(ii) \Leftrightarrow (iii). Let $x \in X$ and let V be a clopen such that $x \in F^+(Y \setminus V)$. By (ii), there exists an α -open set U containing x such that $U \subset F^+(Y \setminus V)$. Then $F^-(V) \subset X \setminus U$. Take $H = X \setminus U$. We have $x \in X \setminus H$ and H is α -closed.

The converse is similar.

(i) \Leftrightarrow (iv). Let $x \in F^+(V)$ and let V be a clopen set. From (i), there exists an α open set U_x containing x such that $U_x \subset F^+(V)$. It follows that $F^+(V) = \bigcup_{x \in F^+(V)} U_x$ and hence $F^+(V)$ is α -open.

The converse can be shown easily.

(iv) \Rightarrow (v). Let $V \subset Y$ be a clopen set. We have that $Y \setminus V$ is a clopen set. From (iv), $F^+(Y \setminus V) = X \setminus F^-(V)$ is an α -open set. Then it is obtained that $F^-(V)$ is an α -closed set.

 $(v) \Rightarrow (iv)$. similar to the above.

(iv) \Leftrightarrow (vi), (v) \Leftrightarrow (vii). Since $F^-(Y \setminus V) = X \setminus F^+(V)$ and $F^+(Y \setminus V) = X \setminus F^-(V)$, the proof is clear.

(i) \Rightarrow (viii). Let (x_{α}) be a net which α -converges to x in X and let $V \subset Y$ be any clopen set such that $x \in F^+(V)$. Since F is an upper slightly α -continuous multifuction, it follows that there exists an α -open set $U \subset X$ containing x such that $U \subset F^+(V)$. Since $(x_{\alpha}) \alpha$ -converges to x, it follows that there exists an index $\alpha_0 \in J$ such that $x_{\alpha} \in U$ for all $\alpha \ge \alpha_0$. From here, we obtain that $x_{\alpha} \in U \subset F^+(V)$ for all $\alpha \ge \alpha_0$. Thus, the net (x_{α}) is eventually in $F^+(V)$.

(viii) \Rightarrow (i). Suppose that (i) is not true. There exists a point *x* and a clopen set *V* with $x \in F^+(V)$ such that $U \nsubseteq F^+(V)$ for each α -open set $U \subset X$ containing *x*. Let $x_U \in U$ and $x_U \notin F^+(V)$ for each α -open set $U \subset X$ containing *x*. Then for the α -neighbourhood net $(x_U), x_U \to_{\alpha} x$, but (x_U) is not eventually in $F^+(V)$. This is a contradiction. Thus, *F* is an upper slightly α -continuous multifunction.

ERDAL EKICI

Remark 1. For a multifunction $F : X \to Y$ from a topological space (X, τ) to a topological space (Y, ν) , the following implications hold:

upper semi-continuity \implies upper α -continuity \implies upper slightly α -continuity

However, the converse implications are not true in general.

Example 1. Let $X = \{a, b, c\}$ and $Y = \{1, 2, 3, 4, 5\}$. Let τ and v, respectively, be the topologies on X and on Y given by $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$ and $v = \{\emptyset, Y, \{1, 2\}, \{3, 4\}, \{3, 4, 5\}, \{1, 2, 3, 4\}\}$. Define the multifunction $F : X \to Y$ by $F(a) = \{1, 3, 4, 5\}, F(b) = \{1, 5\}$ and $F(c) = \{1, 2, 3\}$. Then F is a lower slightly α -continuous multifunction but F is not lower α -continuous.

Example 2. Let $X = \{a, b, c\}$ and $Y = \{1, 2, 3, 4, 5\}$. Let τ and v, respectively, be the topologies in X and Y given by the formulae $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$ and $v = \{\emptyset, Y, \{1, 2\}, \{3, 4\}, \{3, 4, 5\}, \{1, 2, 3, 4\}\}$. Define the multifunction $F : X \to Y$ by $F(a) = \{3, 4, 5\}, F(b) = \{1, 2\}$ and $F(c) = \{1, 2, 3\}$. Then F is an upper slightly α -continuous multifunction but F is not upper α -continuous.

The other implication is not reversible as shown in [7].

Recall that a space is 0-dimensional if its topology has a base consisting of clopen sets.

Theorem 2. Let $F : X \to Y$ be a multifunction from a topological space (X, τ) to a topological space (Y, v). Suppose that Y is a 0-dimensional space. If F is an upper (lower) slightly α -continuous multifunction, then F is an upper (lower) α -continuous.

PROOF. Let $x \in X$ and let V be any open set such that $x \in F^+(V)$. Since Y is a 0-dimensional space, then there exists a clopen set G containing x such that $x \in$ $F^+(G) \subset F^+(V)$. Since F is an upper slightly α -continuous multifunction, there exists an α -open set U containing x such that $U \subset F^+(G) \subset F^+(V)$. Thus, we obtain that F is upper α -continuous.

The proof of lower continuity is similar.

The following theorem states some characterizations of a lower slightly α -continuous multifunction.

Theorem 3. Let $F : X \to Y$ be a multifunction from a topological space (X, τ) to a topological space (Y, v). Then the following statements are equivalent.

- (i) *F* is lower slightly α -continuous;
- (ii) For each $x \in X$ and for each clopen set V such that $x \in F^-(V)$, there exists an α -open set U containing x such that $U \subset F^-(V)$;
- (iii) For each $x \in X$ and for each clopen set V such that $x \in F^-(Y \setminus V)$, there exists an α -closed set H such that $x \in X \setminus H$ and $F^+(V) \subset H$;
- (iv) $F^{-}(V)$ is an α -open set for any clopen set $V \subset Y$;
- (v) $F^+(V)$ is an α -closed set for any clopen set $V \subset Y$;
- (vi) $F^+(Y \setminus V)$ is an α -closed set for any clopen set $V \subset Y$;

- (vii) $F^{-}(Y \setminus V)$ is an α -open set for any clopen set $V \subset Y$;
- (viii) For each $x \in X$ and for each net (x_{α}) which α -converges to x in X and for each clopen set $V \subset Y$ such that $x \in F^{-}(V)$, the net (x_{α}) is eventually in $F^{-}(V)$.

PROOF. It can be obtained similarly as Theorem 4.

Theorem 4. Let $F : X \to Y$ be a multifunction from a topological space (X, τ) to a topological space (Y, υ) and let F(X) be endowed with subspace topology. If F is an upper slightly α -continuous multifunction, then $F : X \to F(X)$ is an upper slightly α -continuous multifunction.

PROOF. Since *F* is an upper slightly α -continuous, $F^+(V \cap F(X)) = F^+(V) \cap F^+(F(X)) = F^+(V)$ is α -open for each clopen subset *V* of *Y*. Hence $F : X \to F(X)$ is an upper slightly α -continuous multifunction.

Suppose that (X, τ) , (Y, υ) and (Z, ω) are topological spaces. It is known that if $F_1 : X \to Y$ and $F_2 : Y \to Z$ are multifunctions, then the multifunction $F_2 \circ F_1 : X \to Z$ is defined by $(F_2 \circ F_1)(x) = F_2(F_1(x))$ for each $x \in X$.

Theorem 5. Let (X, τ) , (Y, υ) , (Z, ω) be topological spaces and let $F : X \to Y$ and $G : Y \to Z$ be multifunctions. If $F : X \to Y$ is an upper (lower) α -continuous multifunction and $G : Y \to Z$ is an upper (lower) semi-continuous multifunction, then $G \circ F : X \to Z$ is an upper (lower) slightly α -continuous multifunction.

PROOF. Let $V \subset Z$ be any clopen set. From the definition of $G \circ F$, we have $(G \circ F)^+(V) = F^+(G^+(V))$ $((G \circ F)^-(V) = F^-(G^-(V)))$. Since G is an upper (lower) semi-continuous multifunction, it follows that $G^+(V)$ $(G^-(V))$ is an open set. Since F is an upper (lower) α -continuous multifunction, it follows that $F^+(G^+(V))$ $(F^-(G^-(V)))$ is an α -open set. It shows that $G \circ F$ is an upper (lower) slightly α -continuous multifunction.

Lemma 1. If $A \in PO(X)$ and $B \in \alpha O(X)$, then $A \cap B \in \alpha O(A)$ [5].

Theorem 6. Let $F : X \to Y$ be a multifunction and let $U \in PO(X)$. If F is a lower (upper) slightly α -continuous multifunction, then the restriction multifunction $F|_U : U \to Y$ is a lower (upper) slightly α -continuous multifunction.

PROOF. Suppose that $V \subset Y$ is a clopen set. Let $x \in U$ and let $x \in F^-|_U(V)$. Since F is a lower slightly α -continuous multifunction, it follows that there exists $G \in \alpha O(X)$ containing x such that $G \subset F^-(V)$. From here we obtain that $x \in G \cap U \in \alpha O(U)$ and $G \cap U \subset F^-|_U(V)$. Thus, we show that the restriction multifunction $F|_U$ is a lower slightly α -continuous.

The proof of the upper slightly α -continuity of $F|_U$ is similar to the above.

Lemma 2. If $A \in \alpha O(Y)$ and $Y \in \alpha O(X)$, then $A \in \alpha O(X)$ [5].

ERDAL EKICI

Theorem 7. Let $\{U_{\lambda} : \lambda \in \Lambda\}$ be an α -open cover of a space X. Then a multifunction $F : X \to Y$ is upper slightly α -continuous (resp., lower slightly α -continuous) if and only if the restriction $F|_{U_{\lambda}} : U_{\lambda} \to Y$ is upper slightly α -continuous (resp., lower slightly α -continuous) for each $\lambda \in \Lambda$.

PROOF. We prove only the case when F is an upper slightly α -continuous.

(⇒) Let $\lambda \in \Lambda$ and V be any clopen set of Y. Since F is upper slightly α continuous, $F^+(V)$ is α -open in X. By Lemma 12, $(F|_{U_{\lambda}})^+(V) = F^+(V) \cap U_{\lambda}$ is α -open in U_{λ} and hence $F|_{U_{\lambda}}$ is slightly α -continuous.

(⇐) Let *V* be any clopen set of *Y*. Since $F|_{U_{\lambda}}$ is slightly α -continuous for each $\lambda \in \Lambda$, $(F|_{U_{\lambda}})^+(V) = F^+(V) \cap U_{\lambda}$ is α -open in U_{λ} . By Lemma 14, $(F|_{U_{\lambda}})^+(V)$ is α -open in *X* for each $\lambda \in \Lambda$. We obtain that $F^+(V) = \bigcup_{\lambda \in \Lambda} (F|_{U_{\lambda}})^+(V)$ is α -open in *X*. Hence *F* is upper slightly α -continuous.

Lemma 3. For a multifunction $F : X \to Y$, the following holds:

(1) $G_F^+(A \times B) = A \cap F^+(B);$

(2) $\overline{G}_F(A \times B) = A \cap F^-(B)$

for any subsets $A \subset X$ and $B \subset Y$ [9].

Theorem 8. Let $F : X \to Y$ be a multifunction from a topological space (X, τ) to a topological space (Y, υ) . If the graph multifunction of F is an upper slightly α -continuous multifunction, then F is an upper slightly α -continuous multifunction.

PROOF. Let $x \in X$ and let $V \subset Y$ be a clopen set such that $x \in F^+(V)$. We obtain that $x \in G_F^+(X \times V)$ and that $X \times V$ is a clopen set. Since graph multifunction G_F is an upper slightly α -continuous, it follows that there exists an α -open set $U \subset X$ containing x such that $U \subset G_F^+(X \times V)$. Since $U \subset G_F^+(X \times V) = X \cap F^+(V) = F^+(V)$, we obtain that $U \subset F^+(V)$. Thus, F is upper slightly α -continuous multifunction. \Box

Theorem 9. A multifunction $F : X \to Y$ is lower slightly α -continuous if $G_F : X \to X \times Y$ is lower slightly α -continuous.

PROOF. Suppose that G_F is lower slightly α -continuous. Let $x \in X$ and V be any clopen set of Y such that $x \in F^-(V)$. Then $X \times V$ is clopen in $X \times Y$ and $G_F(x) \cap (X \times V) = (\{x\} \times F(x)) \cap (X \times V) = \{x\} \times (F(x) \cap V) \neq \emptyset$. Since G_F is lower slightly α -continuous, there exists an α -open set U containing x such that $U \subset G_F^-(X \times V)$. By the previous lemma, we have $U \subset F^-(V)$. This shows that F is lower slightly α -continuous.

Theorem 10. Suppose that (X, τ) and $(X_{\alpha}, \tau_{\alpha})$ are topological spaces where $\alpha \in J$. Let $F : X \to \prod_{\alpha \in J} X_{\alpha}$ be a multifunction from X to the product space $\prod_{\alpha \in J} X_{\alpha}$ and let $P_{\alpha} : \prod_{\alpha \in J} X_{\alpha} \to X_{\alpha}$ be the projection multifunction for each $\alpha \in J$ which is defined by $P_{\alpha}((x_{\alpha})) = \{x_{\alpha}\}$. If F is an upper (lower) slightly α -continuous multifunction, then $P_{\alpha} \circ F$ is an upper (lower) slightly α -continuous multifunction for each $\alpha \in J$.

PROOF. Take any $\alpha_0 \in J$. Let V_{α_0} be a clopen set in $(X_{\alpha_0}, \tau_{\alpha_0})$. Then $(P_{\alpha_0} \circ F)^+(V_{\alpha_0}) = F^+(P^+_{\alpha_0}(V_{\alpha_0})) = F^+(V_{\alpha_0} \times \prod_{\alpha \neq \alpha_0} X_\alpha)$ (respectively, $(P_{\alpha_0} \circ F)^-(V_{\alpha_0}) = F^-(P^-_{\alpha_0}(V_{\alpha_0})) = F^-(V_{\alpha_0} \times \prod_{\alpha \neq \alpha_0} X_\alpha)$). Since F is an upper (lower) slightly α -continuous multifunction and since $V_{\alpha_0} \times \prod_{\alpha \neq \alpha_0} X_\alpha$ is a clopen set, it follows that $F^+(V_{\alpha_0} \times \prod_{\alpha \neq \alpha_0} X_\alpha)$ (respectively, $F^-(V_{\alpha_0} \times \prod_{\alpha \neq \alpha_0} X_\alpha)$) is α -open in (X, τ) . It shows that $P_{\alpha_0} \circ F$ is an upper (lower) slightly α -continuous multifunction.

Hence, we obtain that $P_{\alpha} \circ F$ is an upper (lower) slightly α -continuous multifunction for each $\alpha \in J$.

Theorem 11. Suppose that for each $\alpha \in J$, $(X_{\alpha}, \tau_{\alpha})$, $(Y_{\alpha}, \upsilon_{\alpha})$ are topological spaces. Let $F_{\alpha} : X_{\alpha} \to Y_{\alpha}$ be a multifunction for each $\alpha \in J$ and let $F : \prod_{\alpha \in J} X_{\alpha} \to \prod_{\alpha \in J} Y_{\alpha}$ be defined by $F((x_{\alpha})) = \prod_{\alpha \in J} F_{\alpha}(x_{\alpha})$ from the product space $\prod_{\alpha \in J} X_{\alpha}$ to the product space $\prod_{\alpha \in J} Y_{\alpha}$. If F is an upper (lower) slightly α -continuous multifunction, then each F_{α} is an upper (lower) slightly α -continuous multifunction for each $\alpha \in J$.

PROOF. Let $V_{\alpha} \subset Y_{\alpha}$ be a clopen set. Then $V_{\alpha} \times \prod_{\alpha \neq \beta} Y_{\beta}$ is a clopen set. Since F is an upper (lower) slightly α -continuous multifunction, it follows that $F^+(V_{\alpha} \times \prod_{\alpha \neq \beta} Y_{\beta}) = F^+_{\alpha}(V_{\alpha}) \times \prod_{\alpha \neq \beta} X_{\beta}$ ($F^-(V_{\alpha} \times \prod_{\alpha \neq \beta} Y_{\beta}) = F^-_{\alpha}(V_{\alpha}) \times \prod_{\alpha \neq \beta} X_{\beta}$) is an α -open set. Consequently, we obtain that $F^+_{\alpha}(V_{\alpha})$ ($F^-_{\alpha}(V_{\alpha})$) is an α -open set. Thus, we show that F_{α} is an upper (lower) slightly α -continuous multifunction.

For two multifunctions $F_1 : X_1 \to Y_1$ and $F_2 : X_2 \to Y_2$, the product multifunction $F_1 \times F_2 : X_1 \times X_2 \to Y_1 \times Y_2$ is defined as follows: $(F_1 \times F_2)(x_1, x_2) = F_1(x_1) \times F_2(x_2)$ for every $x_1 \in X_1$ and $x_2 \in X_2$.

Theorem 12. Suppose that $F_1 : X_1 \to Y_1$, $F_2 : X_2 \to Y_2$ are multifunctions. If $F_1 \times F_2$ is an upper (lower) slightly α -continuous multifunction, then F_1 and F_2 are upper (lower) slightly α -continuous multifunctions.

PROOF. Let $K \subset Y_1$, $H \subset Y_2$ be clopen sets. It is known that $K \times H$ is a clopen set and $(F_1 \times F_2)^+(K \times H) = F_1^+(K) \times F_2^+(H)$. Since $F_1 \times F_2$ is an upper slightly α -continuous multifunction, it follows that $F_1^+(K) \times F_2^+(H)$ is an α -open set. From here, $F_1^+(K)$ and $F_2^+(H)$ are α -open sets. Hence, it is obtained that F_1 and F_2 are upper slightly α -continuous multifunctions.

The proof of the lower slightly α -continuity of F_1 and F_2 is similar to the above argument.

Theorem 13. Suppose that (X, τ) , (Y, υ) , (Z, ω) are topological spaces and F_1 : $X \to Y$, $F_2 : X \to Z$ are multifunctions. Let $F_1 \times F_2 : X \to Y \times Z$ be a multifunction which is defined by $(F_1 \times F_2)(x) = F_1(x) \times F_2(x)$ for each $x \in X$. If $F_1 \times F_2$ is an upper (lower) slightly α -continuous multifunction, then F_1 and F_2 are upper (lower) slightly α -continuous multifunctions.

PROOF. Let $x \in X$ and let $K \subset Y$, $H \subset Z$ be clopen sets such that $x \in F_1^+(K)$ and $x \in F_2^+(H)$. Then we obtain that $F_1(x) \subset K$ and $F_2(x) \subset H$ and from here, $F_1(x) \times F_2(x) =$

 $(F_1 \times F_2)(x) \subset K \times H$. We have $x \in (F_1 \times F_2)^+(K \times H)$. Since $F_1 \times F_2$ is upper slightly α -continuous multifunction, it follows that there exists an α -open set U containing x such that $U \subset (F_1 \times F_2)^+(K \times H)$. We obtain that $U \subset F_1^+(K)$ and $U \subset F_2^+(H)$. Thus, we obtain that F_1 and F_2 are upper slightly α -continuous multifunctions.

The proof of the lower slightly α -continuity of F_1 and F_2 is similar to the above. \Box

Definition 4. Let (X, τ) be a topological space. *X* is said to be a strongly normal space if for any disjoint closed subsets *K* and *F* of *X*, there exists two clopen sets *U* and *V* such that $K \subset U, F \subset V$ and $U \cap V = \emptyset$.

Example 3. Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$. Then (X, τ) is a strongly normal space.

Recall that a multifunction $F : X \to Y$ is said to be punctually closed if, for each $x \in X$, F(x) is closed.

Theorem 14. If Y is strongly normal space and $F_i : X_i \to Y$ is an upper slightly α -continuous multifunction such that F_i is punctually closed for i = 1, 2, then a set $\{(x_1, x_2) \in X_1 \times X_2 : F_1(x_1) \cap F_2(x_2) \neq \emptyset\}$ is an α -closed set in $X_1 \times X_2$.

PROOF. Let $A = \{(x_1, x_2) \in X_1 \times X_2 : F_1(x_1) \cap F_2(x_2) \neq \emptyset\}$ and $(x_1, x_2) \in (X_1 \times X_2) \setminus A$. Then $F_1(x_1) \cap F_2(x_2) = \emptyset$. Since Y is strongly normal and F_i is punctually closed for i = 1, 2, there exist disjoint clopen sets V_1, V_2 such that $F_i(x_i) \subset V_i$ for i = 1, 2. Since F_i is upper slightly α -continuous, $F_i^+(V_i)$ is α -open for i = 1, 2. Put $U = F_1^+(V_1) \times F_2^+(V_2)$, then U is α -open and $(x_1, x_2) \in U \subset (X_1 \times X_2) \setminus A$. This shows that $(X_1 \times X_2) \setminus A$ is α -open and hence A is α -closed in $(X_1 \times X_2)$.

Theorem 15. Let *F* and *G* be upper slightly α -continuous and punctually closed multifunctions from a topological space *X* to a strongly normal topological space *Y*. Then the set $K = \{x : F(x) \cap G(x) \neq \emptyset\}$ is α -closed in *X*.

PROOF. Let $x \in X \setminus K$. Then $F(x) \cap G(x) = \emptyset$. Since *F* and *G* are punctually closed multifunctions and *Y* is a strongly normal space, it follows that there exist disjoint clopen sets *U* and *V* containing F(x) and G(x), respectively. Since *F* and *G* are upper slightly α -continuous, then the sets $F^+(U)$ and $G^+(V)$ are α -open and contain *x*. Let $H = F^+(U) \cup G^+(V)$. Then *H* is an α -open set containing *x* and $H \cap K = \emptyset$. Hence, *K* is α -closed in *X*.

Definition 5. A space X is said to be α -Hausdorff if for each pair of distinct points x and y in X, there exist disjoint α -open sets U and V in X such that $x \in U$ and $y \in V$ [6].

Theorem 16. Let $F : X \to Y$ be an upper slightly α -continuous multifunction and punctually closed from a topological space X to a strongly normal topological space Y and let $F(x) \cap F(y) = \emptyset$ for each distinct pair $x, y \in X$. Then X is a α -Hausdorff space.

PROOF. Let x and y be any two distinct points in X. Then we have $F(x) \cap F(y) = \emptyset$. Since Y is a strongly normal space, it follows that there exist disjoint clopen sets U and V containing F(x) and F(y) respectively. Thus $F^+(U)$ and $F^+(V)$ are disjoint α -open sets containing x and y, respectively. Thus, it is obtained that X is α -Hausdorff.

4. Some properties

Definition 6. A space *X* is said to be mildly compact if every clopen cover of *X* has a finite subcover [11].

Definition 7. A space X is said to be α -compact if every α -open cover of X has a finite subcover [3].

Theorem 17. Let $F : X \to Y$ be an upper slightly α -continuous surjective multifunction such that F(x) is mildly compact for each $x \in X$. If X is an α -compact space, then Y is mildly compact.

PROOF. Let $\{V_{\lambda} : \lambda \in \Lambda\}$ be a clopen cover of *Y*. Since F(x) is mildly compact for each $x \in X$, there exists a finite subset $\Lambda(x)$ of Λ such that $F(x) \subset \bigcup \{V_{\lambda} : \lambda \in \Lambda(x)\}$. Put

$$V(x) = \bigcup \{ V_{\lambda} : \lambda \in \Lambda(x) \}.$$

Since *F* is an upper slightly α -continuous, there exists an α -open set U(x) of *X* containing *x* such that $F(U(x)) \subset V(x)$. Then the family $\{U(x) : x \in X\}$ is a α -open cover of *X* and since *X* is α -compact, there exists a finite number of points, say, $x_1, x_2, x_3, \ldots, x_n$ in *X* such that $X = \bigcup \{U(x_i) : i = 1, 2, 3, \ldots, n\}$. Hence we have

$$Y = F(X) = F\left(\bigcup_{i=1}^{n} U(x_i)\right) = \bigcup_{i=1}^{n} F(U(x_i)) \subset \bigcup_{i=1}^{n} V(x_i) = \bigcup_{i=1}^{n} \bigcup_{\lambda \in \Lambda(x_i)} V_{\lambda}.$$

This shows that *Y* is mildly compact.

Definition 8. Let $F : X \to Y$ be a multifunction. The multigraph G(F) is said to be α -co-closed if for each $(x, y) \notin G(F)$, there exist α -open set U and clopen set V containing x and y, respectively, such that $(U \times V) \cap G(F) = \emptyset$.

Definition 9. A space *X* is said to be co-Hausdorff if for each pair of distinct points *x* and *y* in *X*, there exist disjoint clopen sets *U* and *V* in *X* such that $x \in U$ and $y \in V$.

Theorem 18. If a multifunction $F : X \to Y$ is an upper slightly α -continuous multifunction such that F(x) is mildly compact relative to Y for each $x \in X$ and Y is co-Hausdorff space, then the multigraph G(F) of F is α -co-closed in $X \times Y$.

PROOF. $(x, y) \notin G(F)$. That is $y \notin F(x)$. Since Y is co-Hausdorff, for each $z \in F(x)$, there exist disjoint clopen sets V(z) and U(z) of Y such that $z \in U(z)$ and $y \in V(y)$.

П

Then $\{U(z) : z \in F(x)\}$ is clopen cover of F(x) and since F(x) is mildly compact, there exists a finite number of points, say, $z_1, z_2, z_3, \dots, z_n$ in F(x) such that

$$F(x) \subset \bigcup \{ U(z_i) : i = 1, 2, 3, \dots, n \}$$

Put

$$U = \bigcup \{ U(z_i) : i = 1, 2, 3, \dots, n \} \text{ and } V = \bigcap \{ V(y_i) : i = 1, 2, 3, \dots, n \}.$$

Then *U* and *V* are clopen in *Y* such that $F(x) \subset U$, $y \in V$ and $U \cap V = \emptyset$. Since *F* is an upper slightly α -continuous multifunction, there exists α -open *W* containing *x* such that $F(W) \subset U$. We have $(x, y) \in W \times V \subset (X \times Y) \setminus G(F)$. We obtain that $(W \times V) \cap G(F) = \emptyset$ and hence G(F) is α -co-closed in $X \times Y$.

Theorem 19. Let $F : X \to Y$ be a multifunction having α -co-closed multigraph G(F). If B is a mildly compact subset relative to Y, then $F^-(B)$ is α -closed in $X \times Y$.

PROOF. Let $x \in X \setminus F^-(B)$. For each $y \in B$, $(x, y) \notin G(F)$ and there exist an α -open set $U(y) \subset X$ and a clopen set $V(y) \subset Y$ containing x and y, respectively, such that $F(U(y)) \cap V(y) = \emptyset$. That is $U(y) \cap F^-(V(y)) = \emptyset$. Then $\{V(y) : y \in B\}$ is clopen cover of B and since B is mildly compact relative to Y, there exists a finite subset B_0 of B such that $B \subset \bigcup \{V(y) : y \in B_0\}$. Put

$$U = \bigcap \{U(y) : y \in B_0\}.$$

Then U is α -open in X, $x \in U$ and $U \cap F^{-}(B) = \emptyset$; i. e., $x \in U \subset X \setminus F^{-}(B)$. This shows that $F^{-}(B)$ is α -closed in X.

Recall that a multifunction $F : X \to Y$ is said to be punctually connected if, for each $x \in X$, F(x) is connected.

Definition 10. A space X is called α -connected provided that X is not the union of two disjoint nonempty α -open sets.

Theorem 20. Let *F* be a multifunction from an α -connected topological space *X* onto a topological space *Y* such that *F* is punctually connected. If *F* is an upper slightly α -continuous multifunction, then *Y* is a connected space.

PROOF. Let $F : X \to Y$ be a an upper slightly α -continuous multifunction from a α -connected topological space X onto a topological space Y. Suppose that Y is not connected and let $Y = H \cup K$ be a partition of Y. Then both H and K are open and closed subsets of Y. Since F is an upper slightly α -continuous multifunction, $F^+(H)$ and $F^+(K)$ are α -open subsets of X. In view of the fact that $F^+(H)$, $F^+(K)$ are disjoint and F is punctually connected, $X = F^+(H) \cup F^+(K)$ is a partition of X. This is contrary to the α -connectedness of X. Hence, it is obtained that Y is a connected space. \Box

References

- BANZARU, T.: Multifunctions and M-product spaces, Bull. Stiin. Teh. Inst. Politeh. Timisoara, Ser. Mat. Fiz. Mer. Teor. Apl., 17 (1972), No. 31, 17–23 (in Romanian).
- [2] BERGE, C.: Espaces topologiques, Fonctions Multivoques, Dunod, Paris, 1959.
- [3] MAHESHWARI, S. N. AND THAKUR, S. S.: On α-compact spaces, Bull. Inst. Sinica, 13 (1985), 341– 347.
- [4] MASHHOUR, A. S., ABD, EL-MONSEF, M. E., AND EL-DEEB, S. N.: On precontinuous and weak precontinuous mappings, Proc. Phys. Soc. Egypt, 53 (1982), 47–53.
- [5] MASHHOUR, A. S., HASANEIN, I. A., AND EL-DEEB, S. N.: On α -continuous and α -open mappings, Acta Math. Hungarica, **41** (1983), 213–218.
- [6] NAVALAGI, G. B.: α -Neighbourhoods, unpublished.
- [7] NEUBRUNN, T.: Strongly quasi-continuous multivalued mappings, In: "General Topology and Its Relations to Modern Analysis and Algebra VI" (Prague 1986), Berlin, Heldermann, 1988, 351– 359.
- [8] NJASTAD, O.: On some classes of nearly open sets, Pacific J. Math., 15 (1965), 961–970.
- [9] NOIRI, T. AND POPA, V.: Almost weakly continuous multifunctions, Demonstratio Math., 26 (1993), No. 2, 363–380.
- [10] PONOMAREV, V. I.: Properties of topological spaces preserved under multivalued continuous mappings, Amer. Math. Soc. Transl., II, Ser. 38 (1964), 119–140.
- STAUM, R.: The algebra of bounded continuous functions into a nonarchimedean field, Pacific J. Math., 50 (1974), 169–185.

Author's Address

Erdal Ekici:

DEPARTMENT OF MATHEMATICS, CANAKKALE ONSEKIZ MART UNIVERSITY, TERZIOGLU CAMPUS, 17100 CANAKKALE, TURKEY

E-mail address: eekici@comu.edu.tr