

HU e-ISSN 1787-2413 DOI: 10.18514/MMN.2003.9

The Libera generalized integral operator and Hardy spaces

Georghe Miclăus

THE LIBERA GENERALIZED INTEGRAL OPERATOR AND HARDY SPACES

GHEORGHE MICLĂUS

[Received: October 14, 2002]

ABSTRACT. In this paper, we determine the Hardy spaces to which $L^n_{\gamma}(f)$ belongs, $n \in \mathbb{N}^*$, if $f \in H^p$, where $L^n_{\gamma} = \underbrace{L_{\gamma} \circ L_{\gamma} \circ \cdots \circ L_{\gamma}}_{}$ is the Libera generalized integral

operator (2). As a corollary we obtain the Hardy spaces for some classes of analytic functions.

Mathematics Subject Classification: 30C35, 30C45 Keywords: Hardy spaces, Libera generalized operator

1. Introduction

Let f be an analytic function in the unit disc $U = \{z | | z| < 1\}$ and let H(U) denote the set of all analytic functions in U. In 1965, R. J. Libera [5] had studied the operator $L: H(U) \to H(U)$ defined by

$$L(f)(z) = \frac{2}{z} \int_{0}^{z} f(t)dt$$
 (1)

showing that $L(S^*) \subset S^*$, where S^* is the class of starlike functions, $L(K) \subset K$, where K is the class of convex functions and $L(C) \subset C$, if C is the class of close-to-convex functions. In 1969, S. D. Benardi generalized these results investigating in [1] a more general integral operator defined by $L_{\gamma}: H(U) \to H(U)$

$$L_{\gamma}(f)(z) = \frac{\gamma + 1}{z^{\gamma}} \int_{0}^{z} f(t)t^{\gamma - 1} dt.$$
 (2)

He showed that if $\gamma \in \mathbb{N}^*$, then L_{γ} preserves these properties. In this paper we determine the Hardy spaces, to which $L_{\gamma}^n(f)$ belongs, $n \in \mathbb{N}^*$, if $f \in H^p$, where $L_{\gamma}^n = \underbrace{L_{\gamma} \circ L_{\gamma} \circ \cdots \circ L_{\gamma}}_{n}$.

©2003 University of Miskolc

2. Preliminaries

For $f \in H(U)$ and $z = re^{i\theta}$, we set

$$M_p(r,f) = \begin{cases} \left(\frac{1}{2\pi} \int_0^{2\pi} \left| f(re^{i\theta}) \right|^p d\theta \right)^{\frac{1}{p}}, & 0$$

A function $f \in H(U)$ is said to be of Hardy spaces $H^p(0 if <math>M_p(r, f)$ remains bounded as $r \to 1^-$. H^{∞} is the class of bounded analytic functions in the unit

We shall need the following well-known lemmas [2].

Lemma 1. If $f' \in H^p$, $0 , then <math>f \in H^{\frac{p}{1-p}}$. If $f' \in H^p$, $1 \le p$, then $f \in H^{\infty}$.

Lemma 2. If
$$f \in H^p$$
 and $g \in H^q$, then $fg \in H^{\lambda}$, $\lambda = \frac{pq}{p+q}$.

Lemma 3 (Integral theorem of Hardy–Littlewood). If $f \in H^p$ and $F = \int_0^z f(t)dt$, then $f \in H^{\frac{p}{1-p}}$ for $0 , and <math>f \in H^{\infty}$ for $p \ge 1$.

3. Main results

Let $\gamma \in C$, Re $\gamma > 0$, let f be an analytic function in U and let L_{γ} be the Libera generalized integral operator (Bernardi's operator) defined by (2).

Theorem 1. *If* $f \in H^p$, *then:*

(i) if
$$n < \frac{1}{p}$$
, $n \in \mathbb{N}^*$, then $L^n_{\gamma}(f) \in H^{\lambda}$, $\lambda = \frac{p}{1 - np}$;
(ii) if $n \ge \frac{1}{p}$, $n \in \mathbb{N}^*$, then $L^n_{\gamma}(f) \in H^{\infty}$, where $L^n_{\gamma} = \underbrace{L_{\gamma} \circ L_{\gamma} \circ \cdots \circ L_{\gamma}}_{n}$;

(iii)
$$\left[L_{\gamma}(f)\right]' \in H^{p}$$
.

Proof. Assertions (i) and (ii). If f is analytic, $f(z) = z + a_2 z^2 + \dots$, then there exists a unique function

$$L_{\gamma}(f)(z) = \frac{\gamma+1}{z^{\gamma}} \int_{0}^{z} f(t)t^{\gamma-1} dt,$$

which is analytic in *U*. Indeed,

$$g(z) = \frac{f(z)}{z} = 1 + a_2 z + \dots$$

is analytic in U. Let $h(z) = z [g(z)]^{\frac{1}{\gamma+1}}$ be the branch that is 1 for z = 0, and we have that $h(z) = z + b_2 z^2 + \dots$ is analytic in U, $\frac{h(z)}{z} \neq 0$, $[h(z)]^{\gamma+1} = (a_2 z + \dots)$. Hence

$$L_{\gamma}(f)(z) = \frac{\gamma + 1}{z^{\gamma}} \int_{0}^{z} f(t)t^{\gamma - 1} dt = \frac{\gamma + 1}{z^{\gamma}} \int_{0}^{z} \frac{h^{\gamma + 1}(t)}{t} dt =$$
$$= \frac{\gamma + 1}{z^{\gamma}} \int_{0}^{z} t^{\gamma} (1 + a_{2}t + \dots) dt = z + \frac{\gamma + 1}{\gamma + 2} a_{2}z^{2}.$$

For the integral operator L_{γ} we have $L_{\gamma} = A \circ B$, where

$$A(f)(z) = \frac{\gamma + 1}{z^{\gamma}} f(z), \quad \gamma \in C, \quad \text{Re}\gamma > 0$$

and

$$B(f)(z)) = \int_0^z f(t)t^{\gamma - 1}dt.$$

We determine the Hardy class for A and B. If $f \in H^p$, $\gamma = a + ib$, a > 0, then

$$M_p(r,A) \leq \frac{\gamma+1}{r^a} \left(\frac{1}{2\pi} \int_0^{2\pi} \left| f(re^{i\theta}) \right|^p d\theta \right)^{\frac{1}{p}},$$

and hence $A(f) \in H^p$.

From integral theorem of Hardy–Littlewood (Lemma 3), we have $B(f) \in H^{\frac{p}{1-p}}$ for $f \in H^p$, p < 1, and $B(f) \in H^\infty$, for $f \in H^p$, $p \ge 1$. Because $L_\gamma(f) = A(B(f))$ we have for $f \in H^p$, p < 1 that $B(f) \in H^{\frac{p}{1-p}}$ and $A(B(f)) \in H^{\frac{p}{1-p}}$. Hence $L_\gamma(f) \in H^{\frac{p}{1-p}}$ for p < 1 and $L_\gamma(f) \in H^\infty$, for $p \ge 1$. Suppose that $n < \frac{1}{p}$, $n \in \mathbb{N}^*$ and $L_\gamma^k(f) \in H^{\frac{p}{1-kp}}$ for $1 \le k \le n-1$. Then

$$L_{\gamma}^{n}(f) \in H^{\lambda}, \quad \lambda = \frac{\frac{p}{1 - (n-1)p}}{1 - \frac{p}{1 - (n-1)p}} = \frac{p}{1 - np}.$$

If $n \geq \frac{1}{p}$, then there is a $k \in \mathbb{N}^*$ such that $k < \frac{1}{p} \leq k + 1 \leq n$ and $L^k_{\gamma}(f) \in H^{\frac{p}{1-kp}}$ and $L^{k+1}_{\gamma}(f) \in H^{\infty}$.

Assertion (iii). We have

$$\left[L_{\gamma}(f)(z)\right]' = \frac{1}{z} \left[(\gamma + 1)f(z) - \gamma L_{\gamma}(f)(z) \right]. \tag{3}$$

Applying the Minkowski inequality, we obtain

$$\begin{split} M_p^p\left(r,\left[L_\gamma(f)\right]\right) &= \frac{1}{2\pi}\int\limits_0^{2\pi}\left|\left[L_\gamma(f)\left(re^{i\theta}\right)\right]\right|^pd\theta = \\ &= \frac{1}{2\pi}\int\limits_0^{2\pi}\frac{1}{\left|re^{i\theta}\right|^p}\left|(\gamma+1)f(re^{i\theta})-\gamma L_\gamma(f)(re^{i\theta})\right|^pd\theta \leq \\ &\leq \frac{1}{2\pi}\frac{|\gamma+1|^p}{r^p}\int\limits_0^{2\pi}\left|f(re^{i\theta})\right|^pd\theta + \frac{1}{2\pi}\frac{|\gamma|^p}{r^p}\int\limits_0^{2\pi}\left|L_\gamma(f)(re^{i\theta})\right|^pd\theta. \end{split}$$

The value $M_p^p(r, [L_\gamma(f)]')$ is bounded for

$$\min\left\{p, \frac{p}{1-p}\right\} = p.$$

Hence, $\left[L_{\gamma}(f)\right]' \in H^p$. That results are best possible because from $\left[L_{\gamma}(f)\right]' \in H^q$, q > p applying (3) we should conclude that $f \in H^q$.

For n = 1, these results were obtained in [4].

Remark 1. Since the results for Hardy classes do not depend on γ , the results remain the same for $L = L_{\gamma 1} \circ L_{\gamma 2} \circ \cdots \circ L_{\gamma n}$, where $Re\gamma_i > 0$, $i = \overline{1, n}$.

For $\gamma = 1$, $L_{\gamma} = L$ is the Libera operator (1), and we have the following

Corollary 1. If f is an analytic function in $U, \gamma \in \mathbb{C}$, $Re\gamma_i > 0$ and $f \in H^p$ then:

(i) if
$$n < \frac{1}{p}$$
, $n \in \mathbb{N}^*$, then $L^n(f) \in H^{\lambda}$, $\lambda = \frac{p}{1 - np}$;

(ii) if
$$n \ge \frac{1}{p}$$
, $n \in \mathbb{N}^*$, then $L^n(f) \in H^\infty$;

(iii) $[L^n(f)]^P \in H^p$.

Corollary 2. If $f \in K$, $f \neq \frac{z}{1 - ze^{i\tau}}$, $\tau \in \mathbb{R}$ then $L_{\gamma}(f)$ is a bounded function.

It is well-known that if $f \in K$ (a convex function) then $f \in H^{1+\varepsilon}$, $\varepsilon = \varepsilon(f) > 0$. Hence, we obtain from Theorem 1 that $L_{\gamma}(f) \in H^{\infty}$.

Therefore, L_{γ} transforms K into its subclass of bounded functions, excepting extremal functions.

Corollary 3. If
$$f \in S^*$$
, $f(z) \neq \frac{z}{(1 + ze^{i\tau})^2}$, then

(i) $L_{\gamma}(f) \in H^1$;

(ii)
$$L^2_{\gamma}(f) \in H^{\infty} \text{ if } L_{\gamma}(f) \neq \frac{z}{(1+ze^{i\tau})^2}, \ \tau \in \mathbb{R}.$$

It is known that if $f \in S^*$, then $f \in H^{\frac{1}{2}+\varepsilon}$, $\varepsilon = \varepsilon(f) > 0$. Hence $L_{\gamma}(f) \in H^1$. If

$$L_{\gamma}(f) = \frac{z}{(1 + ze^{i\tau})},$$

then $L^2_{\gamma}(f) \in H^{\infty}$.

In other words, L_{γ} transforms S^* into its subclass and L_{γ}^2 transforms S^* into a subclass of bounded functions, with the exception of extremal functions.

Corollary 4. If
$$f \in \mathbb{C}$$
, $f(z) \neq \frac{p(z)}{(1+ze^{i\tau})^2}$, $Rep(z) > 0$, then

(i) $L_{\gamma}(f) \in H^1$;

(ii)
$$L^2_{\gamma}(f) \in H^{\infty} \text{ if } L_{\gamma}(f) \neq \frac{p(z)}{(1+ze^{i\tau})}, \operatorname{Re}p(z) > 0.$$

It is known that if $f \in \mathbb{C}$ and $f(z) \neq \frac{p(z)}{(1+ze^{i\tau})^2}$, $\operatorname{Re} p(z) > 0$ then $f \in H^{\frac{1}{2}+\varepsilon}$, $\varepsilon = \varepsilon(f) > 0$. Hence, $L_{\gamma}(f) \in H^1$. If $L_{\gamma}(f) \neq \frac{p(z)}{(1+ze^{i\tau})}$, $\operatorname{Re} p(z) > 0$ from Theorem 1 we obtain $L_{\gamma}^2(f) \in H^{\infty}$.

REFERENCES

- [1] Bernandi, S. D.: Convex and starlike univalent functions, Trans. Amer. Math. Soc., 135, (1969), 429–446.
- [2] Duren, P. L.: Theory of H^p spaces, Academic Press, New York and London, 1970.
- [3] Eenigenburg, P. J. and Keogh, F.R.: *The Hardy classes of some univalent functions and their derivatives*, Mich. Math. J., **17**, (1970), 335-346.
- [4] Fekete, O.: Some integral operators and Hardy spaces, Mathematica (Cluj), 29(52), (1987), 29-31.
- [5] Libera R.J.: Some classes of regular univalent functions, Proc. Amer. Math. Soc., 16, (1965), 755–58.
- [6] MILLER, S. S. and Mocanu, P. T. and Reade, M. O.: The Hardy classes for functions in the class MV[a,k], J. Math. Anal. Appl., **51**, (1975), 33–42.

Author's Address

Gheorghe Miclăus:

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, NORTH UNIVERSITY OF BAIA MARE, ROMANIA *E-mail address*: miclaus5@yahoo.com