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1. INTRODUCTION

This paper presents a new approach to establishing the existence for the Dirichlet
boundary value problem

y// + f(t, Y, y’) =0 a.e.on [O]—]
y(0)=y(1) =0,

where our nonlinearityfy may be singular in the independent variable and may also
be singular ay = 0. Problems of the form (1.1) have received a lot of attention in the
literature; seeJ—4 and the references therein. This paper presents a new approach
based on Schauder’s fixed point theorem and our results extend and complement
those in the literature. Moreover it is easy to see that we could consider Sturm—
Liouville boundary data in (1.1); however, since the arguments are essentially the
same we will restrict our discussion to Dirichlet data. In Section 2, we also discuss a
more general situation, namely

y" + f(t,y,y’) =0 a.e.on [01]
y(0)=y'(1)=0,

where our nonlinearityf may be singular in the independent variable and may also
be singular aiy = 0 andy’ = 0. Only a handful of papers (seg, f]) discuss the
situation whenf may be singular af = 0 andy’ = 0.

(1.1)
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2. EXISTENCE THEORY
Ouir first results concern
y'+ f(t,y,y)=0 a.e.on[01]
y(0) =y(1) =0,

wheref(t,y, 2) may be singular aj = 0. We note thaf may be singular also in the
independent variable at some €et [0, 1] with measure zero.

2.1)

Theorem 2.1. Suppose the following conditions are satisfied:

(2.2) f :[0,1] x (0, 0) x R — R witht — f(t,y, 2 measurable for everfy, z) €
(0,0) x R and(y, 2) — f(t,y,2) continuous for a. et € (0, 1);

(2.3) foranyr > 0, Ay, : [0,1] = R, ¢y > 0a. e. on[0,1], yr € L0, 1] with
f(t,y,2 > y,(t) a. e. on[0, 1] for everyy € (O,r] andz € [T, r];

(2.4) for anyr > Owith [/ G(t,9yr(9ds<rfort e [0,1], T h : [0,1] - R,
h > 0a. e. on[0,1], hy € LY[0, 1] with f(t,y,2) < he(t) for a. e. t € [0, 1]
andy € [fol G(t.9)yr(s) ds r|andze [-r,r], where

(1-t)s, O<s<t<1

G(t, ) =
t.9 {(1—s)t, O<t<s<i;

(2.5) IM > Owith M > [ hu(s) dsandhy(9) = ym(s) for a. e.s € [0, 1].
Then(2.1) has a solutiory € W21[0, 1] with y(t) > O for t € (0, 1).

Remark2.1 In Theorem 2.1, it is possible to replace4@by the following con-
dition:
(2.6) for anyr > 0 with fOlG(t, s)yr(s)ds < r for t € [0, 1], assume thak, €
L1[0, 1] where

1
he (t) = sup{f(t,y, 2): ye [fo G(t, 9 y¥r(s)dsr

Proor. ChooseM so that (23), (24), and (25) hold. Let

and ze [-r, r]} .

1 1
Q= {u e CY0,1] :f G(t, s)ym(s)ds< u(t) < f G(t, 9hm(s)ds
0 0
and U(t) < M for te[o, 1]}.
ClearlyQis a closed, convex subset®f[0, 1]. To establish our result, we will apply
Schauder’s fixed point theorem to the operdfor CY[0,1] — C[0, 1]; here,T is
given by the equality

1
(Ty)(t) = fo G(t.9 F(s y(9).5/(9) ds
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We also note that (8) guarantees that
1

sz G(s, 9 hu(s)ds
0

First we showT : Q — Q. To see this, leti € Q, so, fort € [0, 1], we have (by (5))
1

1 1
f G(t, ) ym(9)ds< u(t) < f G(t, ) hy(s)ds< f G(s s)hu(s)ds< M
0 0 0
and|u'(t)] < M. As aresult, (8) yields

f(su(s),u(s) = ym(s) a.e.on [01],

SO
1

1
(Tu)(t):f G(t, s)f(su(s),u’(s))dszf G(t, ) ym(s)ds for te]0,1].
0 0
Furthermore, (21) implies
f(su(s),u'(s) < hu(s) a.e.on [01],
S0

1
(Tu)(t)sf G(t, s) hm(s)ds
0
and (by (25))

t 1
I(TU)'(t)I=|—f0 Sf(S,U(S),U'(S))dS+ft(l—S)f(SsU(S),U'(S))d%

t 1 1
sf;shv.(s)ds+ft(1—s)hM(s)dssj; hu(s)ds< M

fort € [0,1]. Thus,T : Q — Q. Next we show thal is continuous. Lel, € Q and
yn — y in CY0, 1]. Then, fort € [0, 1], we have

1
I(Tyn)(®) — (Ty)(O)] < j; G(s. 9)If (s yn(9). yn(9) — F(s y(9). 4’ (9))Ids
1

< f 15 yn(9). 14(9) — F(5. (9. ¥/ (9)Ids
0

and

t
(Tum) @) — (T ()] < fo (S yn(9). v(9) — (S 5(9. 4/ ()] ds
1
4 ft (1= 9115 yn(9. 46(9) - (S 5(9. 4/ (9] ds

1
< f 1S un(9) 14(9) — F(S 4(9).4/(9)lds
0
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Thus, the Lebesgue dominated convergence theorem implies

t:‘[g% I(Tyn)(®) - (TY)O)] < follf(s, yn(9), yn(s)) — T(sy(9),4'(s))lds— 0
asn — oo and

tes[(lig] I(Tyn)' (1) = (Ty) (B)] < fo 1If(s, yn(8), yn(9)) = F(sy(s),y/'(9)lds— 0

asn — oo because

1 1
| 119549 - Hsu9.r@ds<2 [ hy(gds
0 0

As a result,T : Q — Qis continuous. It remains to show thét: Q — Qs
compact. This follows from the Arzela—Ascoli theorem and the following relations
(herey € Qandt, t’ € [0, 1] witht < t'):
1
sup [(Ty)(t)| < sup G(s, 9 hm(s) < M,
te[0,1] te[0,1] JO

1

sup [(Ty)' (M) < sup | hm(s) <M,
te[0,1] te[0,1] JO

1
T)®) - (TH)E)] < fo G(t. 9) - G(t, 9 hu(9 ds

and

t’ t’ t’
I(Ty)' () — (Ty)' )] < f shu(s)ds+ (1-9hu(s)ds= f hm(s)ds
t t t
Now Schauder’s fixed point theorem guarantees that the mappiag a fixed point
in Q. O
Our next result is a more “applicable” version of Theorem 2.1.

Theorem 2.2. Suppose thaf2.2) and (2.3) hold and, in addition, the following
conditions are satisfied:
(2.7) T(t,y,2 < qt) [9(y) + 7(y)] #(2) on]O, 1] x (O, o0) x R with g > 0 continuous
and nonincreasing oD, ), T > 0 continuous and nondecreasing () ),
¢ > 0 continuous or{—oo, ), andq : [0,1] —» R withq > Oa. e. on[0, 1];
(2.8) the relation

1
fo A(9) g(Cos(1 - 9) ds< oo
holds for anycy > O;
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(2.9) there existdM > 0 such that
1 1
M > [ sup ¢<w)] J; a]ron o [ ctenum09ax)| ds
we[-M,M] 0 0
and
1
q() [r(M) + g( | et9um ds)] sup ¢(u) > y()
0 we[-M,M]

fora.e.t € [0, 1].

Then(2.1) has a solutiory € W21[0, 1] with y(t) > Ofor t € (0, 1).

Proor. The result follows from Theorem 2.1 once we showtjaand (25) hold.
Notice for a. e.t € [0,1] andy € [fol G(t, 9 ¥r(9)ds r] andz € [-r,r], then (27)
yields
sup  ¢(w).

we[-r,r]

1
f(t.s.2) <) [r(r) . g( fo Gt 9 v (9 ds)

If we take

1
he (t) = q(t) T(f)+g( fo G(t, 5)'ﬁr(5)ds)] sup ¢(w),

we[-r,r]

then (24) is immediate if we shovin, € LY[0,1]. Also (29) guarantees (3). It
remains to show thdf, € L1[O, 1]. To see this, it is enough to establish the inclusion

1
q(t) g( fo G(t, ) ¥ () ds) e LYo, 1].

To show this, notice

flG(L S)¥r(s)ds=t(1-1) O(t),
0

where
1 1 1 [t
0 =177 [ A-9u(@ds+ 7 [ su(9ds
1-t J t Jo
Now since
1 t t
‘YfSl//r(S)d%Sfd/r(S)dS—)o ast— 0"
0 0
and

1t ! .
mft‘(l_s)'ﬁr(s)d%ﬁft‘ Yr(9)ds—0 ast—1

we have tha®, extends to a continuous function on Q. Thus, there exist > 0
with ©,(t) > k. > O fort € [0, 1]. As a result,

flG(t, 9 uyr(s)ds=>k t(1-t) for te][0,1],
0
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o)
he(t) < q(t) [(r) + g(k: t(1-1))] sup | d(w),

we[-M,M
andh, € L[0, 1] from (2.8). O

To show how Theorem 2.2 can be applied in practice, consider the problem

y" +d®) [9() + ()] ¢(") =0 a.e.on [01],
y(0)=y(1)=0.
Theorem 2.3. Assume that the following conditions are satisfied
(2.11) g > Qs continuous and nonincreasing @@, ), * > 0 is continuous and
nondecreasing ofD, ), ¢ > 0 is continuous orf—co, ), g : [0,1] —» R is
measurable and > 0 a. e. on[0, 1];
(2.12) dag > 0 such thaip(2) > ag for z € (—o0, 0);

(2.13) fol a(s) g(cos(1 — s)) ds< oo for anycy > 0;
(2.14) there existdvl > 0 for which

1 1
Mz[ sup ¢(w)] [ Q(S)[T(M)+g(aog(|\/|) [ G(s,x)q(x)dx)] ds

we[-M,M]

(2.10)

and
1
sup o(u) |<(M) + o (o) [ Gt 9 (9| > a0gw)
we[-M,M] 0
fora.e.t €[0,1].

Then(2.10) has a solutiony € W21[0, 1] with y(t) > Ofor t € (0, 1).

Proor. The result follows from Theorem 2.2 once we notice that we can take
Yr(t) = q(t) g(r) ao. o

Remark2.2 Itis possible to replace (22) in Theorem 2.3 by the assumption

forany r >0, da > 0 with ¢(2) > a for ze[-r,r]

providedag in (2.14) is replaced bgy.

Remark2.3. If g(y) = y~%, @ > 0 and forx > 0 we haver(x) = Ax? + B, A > 0,
B> 0,p>0and forw € R we haveg(w) = Clw|9+ D,C > 0,D > 0,9 > 0 then
(2.14) is satisfied if there existsM > 0 with

1 ) 1 -
M=>(C Mq+D)f q(s){AMp+B+ M« (aof G(sx)q(x)dx) }ds
0 0
and

l -
[C M + D] [A MP + B+ M (aof G(t, x)q(x)dx) ds>ayM™®
0




PROBLEMS WITH INTEGRABLE SINGULARITIES 125

for a. e.t € [0,1]. Of course ifa® + q < 1 andq + p < 1, then this inequality is
satisfied forM large.

As we remarked in the introduction, we could discuss Sturm Liouville data instead
of Dirichlet data in (21). If the partial derivative of Green’s function with respect to
the first variable is of fixed sign, we can improve Theorem 2.1 considerably. To show
what can be done, we consider the boundary value problem

y// + f(t, Y, y') =0 a.e.on [Ol],
y(0)=y'(1)=0.

It is easy to state and prove an analogue of Theorem 2.1 fbs)2However, we
will prove more since we will assumit, y, 2) may be singular aj = 0 andz = 0.

(2.15)

Theorem 2.4. Suppose that the following conditions are satisfied:

(2.16) f : [0,1] x (0,0) x (0,0) —» R witht — f(t,y,2) measurable for every
(y,2) € (0,0) x (0,0) and(y, 2 — f(t,y, 2) continuous for a. et € (0, 1);

(2.17) for anyr > 0, 3y, : [0,1] — R, ¢, > O a. e. on[0, 1], ¥, € L0, 1] with
f(t,y,2) > ¥ (1) a. e. on[0, 1] for everyy € (0,r] andz € (0, r];

(2.18)for anyr > Owith [}yr(9ds < r, Ih : [0,1] - R, hy > Oa. e.
on [0,1], hy e LY0,1] with f(t,y,2) < h(t) fora. e. t € [0,1], y €
| o k(t. 9 ur(9)ds r|andze [ [*yr(9ds r], where

_|s O<s<t<1
k(t’s)_{t, O<t<s<l1

(2.19) M > Owith M > fol hm(s) dsandhu(s) > ym(s) for a. e.se [0,1];

Then(2.15) has a solutiorny € W21[0, 1] with y(t) > O for t € (0, 1] (andy’(t) > O
fort e [0, 1)).

Proor. ChooseM so that (217), (218), and (219) hold. Let
1
T = [ Kt.9 f(su(9.y/(9)ds
0
t 1
=f Sf(s,y(S),y’(S))dsﬂf f(s y(9).y'(9)ds
0 t
and
1 1
— 1 .
Q_{ueC [O,l].fo k(t, ym(s)ds < u(t)sfO k(t, shm(s)ds
1 1
d / h ds f 10t
and j; Um(s) ssu(t)sjt‘ m(s)ds for te [0 1]}

Notice that (219) yieldsM > fol shy(g)ds If u e Q, then (217) (and (219)) implies
f(s u(s),u'(s) = ym(s) a.e.on [01],
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and (218) implies
f(su(s),u(s) < hm(s) a.e.on [01].
As a result,Tu € Q (note that Tu)'(t) = ftl f(sy(9),y'(9)d9, soT : Q —» Q.

Essentially the same reasoning as in Theorem 2.1 guarante€b th§ — Q is
continuous and compact. O

Our next result is a more “applicable” version of Theorem 2.4.
Theorem 2.5. Suppose tha2.16) and(2.17) hold and, in addition, the following
conditions are satisfied:
(2.20) the estimate
f(t.y.2) <a®) [9(y) + T W] [4(2) + 1(2]

holds on[0, 1] x (0, ) x (0, ) with g > 0, ¢ > 0 continuous and nonin-
creasing on(0, ), T > 0, 4 > 0 continuous and nondecreasing {B) ),
g:[0,1] - Rwithg> 0a. e. on[0, 1];

(2.21) the inequality

folq<s)g(cos)¢(f:wr(x)dx) ds< oo

is true for anyr > O andcg > O;
(2.22) there existaM > 0 such that

1 1
M > fo a0 [T(M)w( fo k(sx)wM(x)dx)]

and

q0) [T(M) ol [ e s)m(s)ds)] [A(M)w( [ 1 om(9ds)

fora.e.t €[0,1].

Then(2.15) has a solutiorny € W21[0, 1] with y(t) > O for t € (0, 1] (and, further-
more,y’(t) > Ofort € [0, 1)).

A(M)+¢(fl¢//,v|(x)dx)] ds

> ym(t)

Proor. This follows from Theorem 2.4 once one notices that one can take

1 1
he(®) = () r(r>+g( fo k(t,s)wr(s)ds)] [a(r)+¢( ft lj/r(s)ds)

for anyr > 0. We need only to check that

q(t)g(fol k(t, s) zpr(s)ds) ¢(£l lpr(s)ds) e L0, 1].

To see this, notice that

f "KL 9 vr(9 ds= 17 D)
0
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where

t 1
0= ¢ [ su@ds+ [ ur(9ds

Itis easy to see (as in Theorem 2.2) thfatextends to a continuous function on {0.
Thus, there existk > 0 with W, (t) > k; > 0 fort € [0, 1]. As a result, we have

1
f k(t,s) yr(s)ds=> ket for te[0,1],
0

SO 1
he(t) < o(t) [+(r) + (ke D] [A(r) . ¢( [ w ds)],
andh, € L[0, 1] from (2.21). o

Remark2.4. There is also an analogue of Theorem 2.3 for the boundary value
problem

y”" +a®) [g@) + T )] [o(¥') + A¥)] =0 a.e.on [01],
y(0)=y'(1)=0.
We leave the details to the reader.
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