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Asstract. There is developed a symplectic theory approach for partially solving
the problem of algebraic-analytical construction of integral submanifold imbed-
dings for integrable via the abelian and nonabelian Liouville—Arnold theorems for
Hamiltonian systems on canonically symplectic phase spaces. The fundamental
role of so-called Picard—Fuchs type equations is revealed and tlksreditial-
geometric and algebraic properties are studied in detail. Some interesting examples
of integrable Hamiltonian systems demonstrating the algorithm of investigating the
integral submanifolds imbedding mapping are studied in detail.
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1. INTRODUCTION

As itis well-known [1,4], the integrability by quadratures of &diential equation
in spaceR" is a method of seeking its solutions by means of a finite number of
algebraic operations (together with the inversion of functions) and “quadratures”,
i. e., calculation of integrals of known functions.

Assume that our dlierential equation is given as a Hamiltonian dynamical system
on some appropriate symplectic manifoM?", ©®), n € Z,, in the form

du/dt = {H, u}, (1.1)
The first author was supported in part by a local AGH grant.
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whereu € M2, H : M? — R is a sificiently smooth Hamiltonian function [1, 4]
with respect to the Poisson bracket} on D(M?"), dual to the symplectic structure

w?@ e A2(M?), andt € R is the evolution parameter. More than one hundred
and fifty years ago French mathematicians and physicists, first E. Bour and next J.
Liouville, proved the first “integrability by quadratures” theorem which in modern
terms [33] can be formulated as follows.

Theorem 1. LetM?" =~ T* (R") be a canonically symplectic phase space and there
be given a dynamical systefh.1) with a Hamiltonian functiorH : M?" x Ry — R,
possessing a Poissonian Lie algelyaof n € Z, invariantsH;j : M2 x R; — R,

j =1, n, such that

n
(Hi, Hjl = > ¢} Hs, (1.2)

s=1
andforalli, j, k=1, n thec’ € R are constants o2 x Ry. Suppose further that
ML= {(u.t) e Mx Ry h(H) =hj, j=1n he g, (1.3)

the integral submanifold of the sgtof invariants at a regular elemefit € G* is a
well defined connected submanifold\fx R;. Then, if:
(i) All functions ofg are functionally independent dVIQ*l;
(i) X2, cihs=0foralli,j=1n;
(i) The Lie algebrag = spang{H; : M xR; > R : j = 1,n} is solvable,
the Hamiltonian systerfi.1) on M?" is integrable by quadratures.
As a simple corollary of the Bour-Liouville theorem one gets the following

Corollary 1. If a Hamiltonian system oi?" = T*(R") possesses just € Z.,
functionally independent invariants in involution, that is a Lie algegre abelian,
then it is integrable by quadratures.

In the autonomous case when a Hamiltortée: H, and invariantsdj : M?" —
R, j= 1,n, are independent of the evolution parameterR, the involutivity con-
dition {H;,Hj} = 0,i, ] = 1,n, can be replaced by the weaker dire Hj} = cjH for
some constants; € R, j = 1,n.

The first proof of Theorem 1 was based on a result of S. Lie, which can be formu-
lated as follows.

Theorem 2(S. Lie). Let vector fieldK; ¢ (M2, j = 1,n, be independent in
some open neighborhoddl, e M?", generate a solvable Lie algebgwith respect

to the usual commutatdr,] on '(M?") and [K;, K] = ¢;K for all j = 1,n, where
¢j € R, j = 1,n, are constants. Then the dynamical system
du/dt = K (u), (1.4)

whereu € Uy ¢ M?", is integrable by quadratures.
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Examplel (Motion of three particles olR under a uniform potential field)The
motion of three particles on the axis pairwise interacting via a uniform potential
field Q(||-||) is described as a Hamiltonian system on the canonically symplectic phase
spaceM = T*(R?®) with the following Lie algebraz of invariants onM?":

3 3
H=Hi= > pf/2mi+ > Qlligi - gjll), (1.5)
=1 i<j=1
3 3
H2=qu'pj, H3=ij,
=1 =1
where €, pj) € T*(R), j = 1,3, are coordinates and momenta of particles on the
axisR. The commutation relations for the Lie algelgfare
{H1,H3} =0, {H2, Ha} = Ha, {H1, Hz} = 2H4, (1.6)

hence it is clearly solvable. Taking a regular elenteatg*, such that(H;) = h; =
0, for j = 1 and 3, andh(H>) = h, € R being arbitrary, one obtains the integrability
of the problem above in quadratures.

In 1974 V. Arnold proved [4] the following important result known as the commu-
tative (abelian) Liouville—Arnold theorem.

Theorem 3(J. Liouville — V. Arnold). Suppose a sg of functionsH; : M2 5 R,
j = 1, n, on a symplectic manifolt!?" is abelian, that is
{Hi,Hj}=0 (1.7)
forall i, j = 1, n. If on the compact and connected integral submanifold
M ={ue M™:h(H) =hjeR, j=1n heg|

with h € G being regular, all functiondd : M - R, j = 1,n, are functionally
independent, theM, is diffeomorphic to thé-dimensional torug " ~ M?", and the
motion on it with respect to the Hamiltonidh = H; € G is a quasi-periodic function
of the evolution parametdre R.

A dynamical system satisfying the hypotheses of Theorem 3 is called completely
integrable.

In 1978 Mishchenko and Fomenko [2] proved the following generalization of the
Liouville—Arnold Theorem 3:

Theorem 4 (A. Mishchenko — A. Fomenko)Assume that on a symplectic man-
ifold (M2, w?) there is a nonabelian Lie algebrg@ of invariantsH; : M € R,

j = 1k, with respect to the dual Poisson bracketM&", that is

k
(Hi, Hj} = > cSHs, (1.8)
s=1
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where all valuesisj eR,i,j,s= 1,k, are constants, and the following conditions are
satisfied:
() The integral submanifol] := {u e M2": h(H;) = h e g*} is compact and
connected at a regular elememe G*;
(i) All the functionsH; : M — R j = 1k, are functionally independent on
M2n;
(iii) The Lie algebras of invariants satisfies the following relationship:

dimg + rankg = dim M?", (1.9)

whererankG = rankGy, is the dimension of a Cartan subalgelfa c G.

Then the submanifollsﬂ{] c M2 isr = rankG-dimensional, invariant with respect
to each vector fiel&k € I'(M?"), generated by an elemeHte G, and djfeomorphic
to ther-dimensional torud™ ~ M, on which the motion is a quasiperiodic function
of the evolution parametdre R.

The simplest proof of the Mishchenko—Fomenko Theorem 4 can be obtained from
the well-known [3, 16] classical Lie—Cartan theorem.

Theorem 5 (S. Lie — E. Cartan) Suppose that a poirtt € G* for a given Lie
algebrag of invariantsHj : M* - R, j = 1,k, is not critical, and the rank
{Hi, Hj} - 0,] = 1,k| = 2(n—r) is constant in an open neighborhodat} € R"
of the point{h(H;) = h; e R : j = 1k} ¢ RX. Then in the neighborhooh o H)™ :
Up ¢ M2 there exisk € Z, independent functionk : G —» R, s= 1,k, such that
the functionss := (fso H) : M? e R, s = 1,k satisfy the following relationships:

{Fl’ FZ} = {F3’ F4} =...= {FZ(n—r)—l, FZ(I’]—I’)} = 1’ (110)

with all other bracketqyF;, Fj} = 0, where(i, ) # (2s-1,29), s = 1,n-r.In
particular, (K +r —n) € Z, functionsF; : M2 - R, j=1Ln-r,andFg: M2
R, s = 1,k—2(n-r), compose an abelian algeb@. of new invariants orvi?",
independent oth o H)"1(Up) ¢ M?".

As a simple corollary of the Lie—Cartan Theorem 5 one obtains the following: in
the case of the Mishchenko—Fomenko Theorem where@anklimg = dim M?",
that isr + k = 2n, the abelian algebrg; (it is not a subalgebra ') of invari-
ants onM?" is justn = 1/2 dimM?"-dimensional, giving rise to its local complete
integrability in (ho H)™ (U,) ¢ M?" via the abelian Liouville—Arnold Theorem 3.
It is also evident that the Mishchenko—Fomenko nonabelian integrability Theorem 4
reduces to the commutative (abelian) Liouville—Arnold case when a Lie algebfa
invariants is just abelian, since then rapke dimg = 1/2dimM?" = n € Z_, the
standard complete integrability condition.
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All the cases of integrability by quadratures described above pose the following
fundamental question: How can onffegtively construct by means of algebraic-
analytical methods the corresponding integral submanifold imbedding

Th: Mf, — M?, (1.11)

wherer = rankg, thereby making it possible to express the solutions of an integrable
flow on M{ as some exact quasi-periodic functions on the tdfus M.

Below we shall describe an algebraic-analytical algorithm for resolving this ques-
tion for the case when a symplectic manifoit?" is diffeomorphic to the canonically
symplectic cotangent phase spacgR) ~ M2",

2. GENERAL SETTING

Our main object of study will be elierential systems of vector fields on the cotan-
gent phase spadd?" = T*(R"), n € Z,, endowed with the canonical symplectic
structurew@ e A2(M2"), where byw@ = d (pr* oY), and

n
a® :=(p, do) = ) pjda, (2.1)
=

is the canonical 1-form on the base sp®% lifted naturally to the spacal(M?"),
(g, p) € M2 are canonical coordinates ari (R"), pr : T* (R") — R is the canoni-
cal projection, and-, -) is the usual scalar product iR".

Assume further that there is also given a Lie subgi@fpot necessarily compact),
acting symplectically via the mapping: G x M2" - M2" on M?", generating a Lie
algebra homomorphisi, : T(G) — I'(M?") via the diagram

6x6=T(G) =L (M) (2.2)

L

G —-

whereu € M?". Thus, for anya € G one can define a vector fiekh € I'(M?") as
follows:

Ka=¢.-a (2.3)
Since the manifoldV?" is symplectic, one can naturally define for aaye G a
functionHa € D(M?") as follows:

—ik,w? = dH,, (2.4)
whose existence follows from the invariance property
Lk,w@ =0 (2.5)

for all a € G. The following lemma [1] is useful in applications.
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Lemma 1. If the first homology groupd; (G; R) of the Lie algebraz vanishes,
then the mapping : G — D(M?") defined as

®(a) := Hy (2.6)
for anya € G is a Lie algebra homomorphism gfand D(M?") (endowed with the

Lie structure induced by the symplectic structuf® e A2(M2)). In this cases is
said to be Poissonian.

As the mappingd : G — D(M?") is evidently linear ing, expression (2.6) natu-
rally defines a momentum mappihg M?" — G* as follows: for anyu € M?" and
allae g

(W), a)g = Ha (W), 2.7)
where(., )¢ is the standard scalar product on the dual ggirx G. The following
characteristic equivariance [1] lemma holds.

Lemma 2. The diagram

M2 — - g (2.8)

I

M2 ——- 6"

commutes for aly € G, whereAdZ,l . G* — G* is the corresponding co-adjoint
action of the Lie grous on the dual spacg”.

Take now any vectoh € G* and consider a subspa¢® c G, consisting of
elementsa € G, such that agh = O, where ag : G* — G"is the corresponding Lie
algebrag representation in the dual spagé

The following lemmas hold.

Lemma 3. The subspacgh c G is a Lie subalgebra of7, called here a Cartan
subalgebra.

Lemma 4. Assume a vectdn € G* is chosen in such a way that= dimGy, is
minimal. Then the Cartan Lie subalgeh@ c G is abelian.

In Lemma 4 the corresponding eleméné G* is called regular and the number
r = dim Gy is called the rank of the Lie algebras.

About twenty years ago Mishchenko and Fomenko [2] proved the following im-
portant noncommutative (nonabelian) Liouville—Arnold theorem.

Theorem 6. On a symplectic spaddM?", w?) let there be given a set of smooth
functionsH; € D(M?"), j = 1,k, whose linear span oveR comprises a Lie algebra
G with respect to the corresponding Poisson bracketf. Suppose also that the
set

ME™* = {ue M® :h(Hj) =hj e R, j=1k heg|
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with h € G* regular, is a submanifold of12, and onM2"* all the functionsH; €

D(M?), j = 1, k, are functionally independent. Assume also that the Lie alggbra
satisfies the following condition:

dimg + rankg = dim M?". (2.9)

Then the submanifol| := Mﬁ”‘k is rankG = r-dimensional and invariant with
respect to each vector fieldz € T(M?") with a € G, ¢ G. Given a vector field
K = Kz € T(M?") with a € G, or K € T(M?") such thafK,K,] = Oforall a € G,
then, if the submanifoldv] is connected and compact, it isffidiomorphic to the
r-dimensional toru§" ~ M; and the motion of the vector fieki € (M onitisa
quasiperiodic function of the evolution parameter R.

The easiest proof of this result can be obtained from the well-known [3] classical
Lie—Cartan theorem, mentioned in the Introduction. Below we shall only sketch the
original Mishchenko—Fomenko proof which is heavily based on symplectic theory
techniques, some of which have been discussed above.

Skerch oF proor. Define a Lie groups naturally asG = expg, whereg is the
Lie algebra of function$l; € D(M?"), j = 1k, in the theorem , with respect to the
Poisson brackst, -} on M?". Then for an elemerit € G* and anya = le(zl CiHj e G,

wherec; € R, j = 1,k, the following equality

k k
(ha)g := > cih(H)) = > cjhy (2.10)
-1 =1
holds. Since all functionsl; € D(M?"), j = 1k, are independent on the level

submanifoldM;, c M2, this evidently means that the elemén& G* is regular

for the Lie algebrgg. Consequently, the Cartan Lie subalgeffac G is abelian.

The latter is proved by means of simple straightforward calculations. Moreover, the
corresponding momentum mappihgM?" — G* is constant orM;, and satisfies the
following relation:

I(M[)=heg". (2.11)

From this it can be shown that all vector fieldg € ['(M?"), a € Gy, are tangent
to the submanifoldvj c M2, Thus the corresponding Lie subgroGp := expGn
acts naturally and invariantly oM. If the submanifoldVj c M2 is connected and
compact, it follows from (2.9) that dimdl], = dimM?" — dimG = rankg = r, and
one obtains via the Arnold theorem [4] thislf, ~ T" and the motion of the vector
field K € T(M?") is a quasiperiodic function of the evolution paraméterR, thus
proving the theorem. O
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As a nontrivial consequence of the Lie—Cartan theorem mentioned before and of
Theorem 6, one can prove the following dual theorem about abelian Liouville—Arnold
integrability.

Theorem 7. Let a vector fielK € I'(M2") be completely integrable via the non-
abelian scheme of Theorem 6. Then itis also Liouville—Arnold integrabM¥rand
possesses, under some additional conditions, yet another abelian Lie algglofa
functionally independent invariants dn?", for whichdimGp = n = (1/2) dimM?".

The available proof of the theorem above is quite complicated, and we shall com-
ment on it in detail later on. We mention here only that some analogs of the reduction
Theorem 6 for the case whel?" ~ G*, so that an arbitrary Lie group acts sym-
plectically on the manifold, were proved also in [6-10, 34]. Notice here, that in the
case when equality (2.10) is not satisfied one can then construct in the usual way the
reduced manifolcl\/lﬁn‘k‘r = Mﬁ”‘k/Gh on which there exists a symplectic structure

@@ e AZ(M2T) defined as
o = rhw? (2.12)
with respect to the following compatible reduction-imbedding diagram:
M2nker T pg2nck Ty pon (2.13)

whererp : MK — I\Zﬁ”‘k‘f andm, : M2k — M2 are, respectively, the cor-
responding reductions and imbedding mappings. The nondegeneracy of the 2-form
ch]Z) e A?(My,) defined by (2.13), follows simply from the expression

ker (rrw@(U)) = Tu(MZK) N TEH(M2TH)
= s%an{Kg(u) e Ty(MP " = M M/Gp) aegn|  (214)

for anyu € M2"k, since all vector fieldKz € T(M?"), a € Gy, are tangent to
M2k = M2k /Gy,. Thus, the reduced spatZ" " := M2"*/Gy, with respect to

the orbits of the Lie subgrou@y, action onMZ"* will be a(2n - k - r)-dimensional
symplectic manifold. The latter evidently means that the numbek2r = 2s€ Z,

is even as there is no symplectic structure on odd-dimensional manifolds. This ob-
viously is closely connected with the problem of existence of a symplectic group
action of a Lie groufs on a given symplectic manifoldM?", »®) with a symplectic
structurew® e A@(M2") beinga priori fixed. From this point of view one can con-
sider the inverse problem of constructing symplectic structures on a mamfid
admitting a Lie groups action. Namely, owing to the equivariance property (2.8)
of the momentum mapping: M?* — G*, one can obtain the induced symplectic
structureI*Qf) e AX(M2k") on M2KT from the canonical symplectic structure

QEIZ) e A®@ (Or(h;G)) on the orbit O(h;G) c G* of a regular elemernh € G*.
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Since the symplectic structul’eﬂff) e A%(My) can be naturally lifted to the 2-form

3@ = (7 o 1M0P e A(M2K), the latter being degenerate ®f" can appar-

ently be nonuniquely extended on the whole manifidié to a symplectic structure

w® e A}(M?), for which the action of the Lie grouf is a priori symplectic.
Thus, many properties of a given dynamical system with a Lie alggtoinvari-

ants onM?" are deeply connected with the symplectic structf® € A2(M?") the
manifold M2" is endowed with, and in particular, with the corresponding integral
submanifold imbedding mapping, : Mﬁ”‘k — M?" at a regular elemerit € G*.

The problem of direct algebraic-analytical construction of this mapping was in part
solved in [11] in the case whem = 2 for an abelian algebrg on the manifold

M4 = T*(R?). The treatment of this problem in [11] was extensively based both
on the classical Cartan studies of integral submanifolds of ideals in Grassmann al-
gebras and on the modern Galisot—Reeb-Francoise results for a symplectic manifold
(M2, @) structure, on which there exists an involutive edf functionally inde-
pendent invariantsl; € D(M?), j = 1,n. In what follows below we generalize the
Galisot—Reeb—Francoise results to the case of a nonabelian set of functionally inde-
pendent functionsl; € D, (M?"), j = 1,k, comprising a Lie algebrg and satisfying

the Mishchenko—Fomenko condition (2.9): difw rankG = dim M?". This makes it
possible to devise arftective algebraic-analytical method of constructing the corre-
sponding integral submanifold imbedding and reduction mappings, giving rise to a
wide class of exact, integrable by quadratures, solutions of a given integrable vector
field onM?",

3. INTEGRAL SUBMANIFOLD IMBEDDING PROBLEM FOR AN ABELIAN L IE ALGEBRA OF
INVARIANTS

We shall consider here only a sgtof commuting polynomial function$i; €
D(M?), j = 1,n, on the canonically symplectic phase spAt& = T*(R"). Due
to the Liouville—Arnold theorem [4], any dynamical systére I'(M2") commuting
with corresponding Hamiltonian vector field§, for all a € G, will be integrable
by quadratures in case of a regular elemert G*, which defines the correspond-
ing integral submanifoldM := {u € M2" : h(Hj) = hj € R, j = 1,n} which is
diffeomorphic (when compact and connected) tortftgmensional torud™ ~ M.

This in particular means that there exists some algebraic-analytical expression for the
integral submanifold imbedding mapping : M{' — M?" into the ambient phase
spaceM?", which one should find in order to properly demonstrate integrability by
guadratures.

The problem formulated above was posed and in part solved (as was mentioned
above) forn = 2 in [11] and in [13] for a Henon—Heiles dynamical system which
had previously been integrated [14, 15] using other tools. Here we generalize the
approach of [11] for the general case Z, and proceed further in Section 3 to solve
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this problem in the case of a nonabelian Lie algeBraf polynomial invariants on

M2" = T*(R"), satisfying all the conditions of the Mishchenko—Fomenko Theorem 6.
Define now the basic vector fields; € (M2, j = 1,n, generated by basic

elementdH; € G of an abelian Lie algebrg of invariants onM?", as follows:

—ik,w@ = dH;

—~

3.1)

for all j = 1,n. Itis easy to see that the conditighj, Hi} = 0 for all i, j = 1,n,
yields also K, K;] = 0 for all i, j = 1,n. Taking into account that dif?" = 2n,
one obtains the equalitys(?)" = 0 identically onM?". This makes it possible to
formulate the following Galisau—Reeb result.

Theorem 8. Assume that an elemehte G* is chosen to be regular and a Lie
algebra g of invariants_onM2n is abelian. Then there existffitrential 1-forms
hﬁl) € Al(U(M{]‘)), j = 1,n, whereU(MY) is some open neighborhood of the inte-
gral submanifoldMj) c M2 satisfying the following properties:

: 1).

) ©@ly(up) = Xy dH; A Y,

(i) The exterior dferentialsdh{” e A%(U (M) belong to the ideal (G) in the
Graimann algebra (U (M) generated by thé-formsdH; e A1(U(Mr’])),
j=1n.

Proor. Consider the following identity oi?" :

(®74ik, ) (@)™ = 0= £ (n+ 1! (ATydH) A 0, (3.2)

which implies that the 2-forrv® € 7 (G). Therefore, one can find 1-forn|n§1) €
AYU(MD)), j = 1, n, satisfying the condition

n
@ _ @
w 'U(MQ) = Z;dH, A Y. (3.3)
J:

Sincew@ € A2(U(M)) is nondegenerate ol?", it follows that all 1—formsh§1),
j = 1,n, in (3.3) are independent dd(Mp), proving part (i) of the Theorem. As
dw® = 0 onM?", from (2.3) one gets that

n
> dHjadiY =0 (3.4)
=1

onU(Mp), hence it is obvious thathﬁl) € I(Gg)c AUMD)) forall j = 1, n, proving
part (ii) of the Theorem. O
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Now we proceed to study properties of the integral submanhitj]d- M2" of the
ideal I (G) in the Grassmann algebA{U (M)). In general, the integral submanifold
MP is completely described [16] by means of the imbedding

Th: M — M2 (3.5)
and using this, one can reduce all vector figigse T(M?"), j = ﬁ,gn the sub-
manifold M\ c M2 since they are all evidently in its tangent spaceKjife T(M[),
j = 1,n, are the corresponding pulled-back vector figtgse [(M2"), j = 1,n, then
by definition, the equality _

mhe 0 Kj = Kj o (3.6)
holds for allj = 1, n. Similarly one can construct 1—forn%1) =77 o hﬁl) e AY(MD),
j = 1, n, which are characterized by the following Cartan—-Jost [16] Theorem.
Theorem 9. The following assertions are true:
() Thel—formsh_(jl) € Al(M{]‘), j = 1, n, are independent oM”;
(ii) Thel—formsh_(jl) e AY(MD), j = 1,n, are exact orM” and satisfﬂl)(lzj) =
Sij» 1, j = 1,n.

Proor. As the ideall (G) is by definition vanishing oM c M?2" and closed on

U(MP), the integral submanifol;) is well defined in the case of a regular element

h € G*. This implies that the imbedding (3.5) is nondegeneratéd/gnc M2, or
the 1-formsh_(j1) =7} o hgl), j = 1,n, will persist in being independent if they are
1-formsh§l) e AL(U(MD)), j = 1,n, proving part (i) of the theorem. Using property
(i) of Theorem 8, one sees that on the integral submanittdc M2" all 2-forms
dh_(jl) =0, j = 1, n. Consequently, owing to the Poinédemma [1, 16], the 1-forms
h_(jl) = dtj € AY(MD), j = 1 n, for some mapping§ : M > R, j = 1,n, defining
global coordinates on an appropriate universal coverinylpf Consider now the
following identity based on the representation (3.3):

n
|Kjw<2>|U(MR) = § hD(Kj)dH; := —dH;, (3.7)
i=1

which holds for anyj = 1,n. As all dH; € AYU(MD)), j = 1, n, are independent,
from (3.7) one infers thahi(l)(Kj) = ¢jj foralli, j = 1, n. Recalling now that for any
i =1,n, Ki o, = e © K, one readily computes that

hD(K)) = mh®P(K)) := h(an, 0 Kj) := hO(K; 0 7m) = 6
for alli, j = 1, n, proving part (ii) of the Theorem. O

The following is a simple consequence of Theorem 9:
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Corollary 2. Suppose that the vector fiells € T(M2"), j = 1,n, are parametri-
zed globally along their trajectories by means of the corresponding paranigters

M2 — R, j = 1, n, that is on the phase spadé?"

d/dtj ;= K; (3.8)
for all j = 1, n. Then the following important equalities hold (up to constant normal-
izations) on the integral submanifol} c M2n:

tj|M2 = 1, (3.9)

wherel < j <n.

We consider a completely integrable via Liouville—Arnold Hamiltonian system on
the cotangent canonically symplectic manifoldt (R"), w@), n € Z,, possessing
exactlyn € Z, functionally independent and Poisson commuting algebraic poly-
nomial invariantsH; : T*(R") - R, j = 1,n. Due to the Liouville—Arnold theo-
rem this Hamiltonian system can be completely integrated by quadratures in quasi-
periodic functions on its integral submanifold when taken compact. It is equiva-
lent to the statement that this compact integral submanifoldffeatnorphic to a
torusT", which makes it possible to formulate the problem of integrating the system
by means of searching the corresponding integral submanifold imbedding mapping
mh - Mp — T* (R"), where by definition

M= {(@p) e T*(R") : Hj(g.p) = hj € R, j=1n}. (3.10)
SinceM{ ~ T", and the integral submanifold (1.1) is invariant subject to all Hamil-
tonian flowsK; : T* (R") — T (T* (R"), j = 1,n, where
i, 0P = —dH, (3.11)

there exist corresponding “action—angle” coordinates) € (T9, R") on the torus
T) :_MQ, specifying its imbedding, : T} — T* (R") by means of a set of smooth
functionsy € D (R"), where

T):={@.p) e T"(R") :yj(H) =yj€R, j=1n). (3.12)

The induced by (3.12) mapping: R" > h — R" is of great interest for many appli-
cations and was studied still earlier by Picard and Fuchs subject to the corresponding
differential equations it satisfies:

dyj (h) /o = Fij (v: 1), (3.13)

whereh € R" andFj; : R"xR" - R, i, = 1,n, are some almost everywhere
smooth functions. In the case when the right hand side of (1.5) is a set of algebraic
functions onC" x C" > (y; h), all Hamiltonian flowsK; : T*(R") — T (T*(R")),

j = 1,n, are said to be algebraically completely integrable in quadratures. In general
equations like (3.13) were studied in [19,31], a recent example can be found in [18].
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It is clear enough that Picard—Fuchs equations (3.13) are related to the associated
canonical transformation of the symplectic 2-faa® € A2 (T* (R")) in a neighbor-
hoodU(M}) of the integral submanifold c T*(R"). To make it more precise,

denotew'@ (q, p) = dpr* oD (q; p), where for(g, p) € T* (R")

o® (g;p) == ) pida; = (p.dg) € A*(R") (3.14)
=1

is the canonical Liouville 1-form oiR", {-,-) is the usual scalar product R", pr :
T*(R") — R" is the bundle projection. One can now define a mapping

dSq: R" — T4 (R"), (3.15)
such thatlSq (h) € T (R") is an exact 1-form for alfj € M} andh € R", yielding
(dSe)*(dpr* oY) = (dSg)*w? := d*Sy = 0. (3.16)

Thereby the mapping (3.15) defines a so-called generating function$4 ;. 2R" —
R, satisfying onM;, the relationship

pra® (q; p) + (t, dhy = dSq (), (3.17)

wheret € R" is the set of evolution parameters. From (3.17) one gets right away that
equality

q
Sq(h) = f (p,dp
q(O)

holds for anyg, q© e MP. On the other hand, one can define one more generating
functionS, : R" — R, such that

; (3.18)

ds,:R" - T;(Mﬂ), (3.19)
whereu € My} = ®?=1S} are global separable coordinates existingujhowing to the
Liouville—Arnold theorem. Thus one can write the following canonical relationsip:

(w, duy + (t, dhy = dS, (), (3.20)

wherew; := wj(uj; h) € Tj; (S]) for every j = 1,n. Whence it follows readily that

n Wi
Su(h)=>" f o L) d1, (3.21)
j=1 VH]
satisfying onM} ¢ T* (R") the following relationship
dS, +dL, = dSq|_g.p) (3.22)

for some mapping’, : R" — R. As a result of (3.21) and (3.22) one gets that the
following important expressions

ti = 0S, (h) /oh, (p, 00/duiy = wi + 0L,/ dpi (3.23)
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hold for alli = 1, n. A construction similar to the above can be done subject to the
imbedded torud’) c T*(R") :

n n
dSq() = )" pida; + ) iy, (3.24)
j=1 i=1

where owing to (3.15§§q (y) = Sq(é - ), - y(h) = h,forall (0, ) € U(M,). For
angle coordinateg € TQ one obtains from (3.24) that

i = 0Sq () /o (3.25)
foralli = 1,n. As¢j € R/27Z, i = 1,n, from (3.26) one derives that

1 19 - 10
> 95_@ doi = dij = 21 8y, Ségm dSq(y) = 2oy Do (p,dag) (3.26)

for all canonical cycIeSr(jh) C MQ, j = 1,n, constituting a basis of the one dimen-
sional homology groupd(MP; Z). Thereby, owing to (3.26), it follows that for all
i = 1, n“action” variables can be found as

"= 2 P (p,dg) (3.27)

Recall now thatM{} ~ TQ are difeomorphic also t@?zlSJl, WhereSjl, i =1,n,
are some one-dimensional real circles. The evolution along any of the vector fields
Ki:T*(R") - T(T*(R"), ] = 1,n, on MP c T* (R") is known [1, 2] to be a linear
winding around the torud?”, that can be interpreted also this way: the above intro-
duced independent of every other global coordinate on ciB:}Iejs = 1,n, are such
that the resulting evolution undergoes a quasiperiodic motion. These coordinates be-
ing still called Hamilton—Jacobi ones prove to be very important for accomplishing
the complete integrability by quadratures via solving the corresponding Picard—Fuchs
type equations.

Let us denote these separable coordinates on the integral sumeﬂf@I@TﬂS}

by uj € 7, | = 1,n, and define the corresponding imbedding mapping M| —
T*(R") as
a=q@h), p=ph). (3.28)

There exist two important cases subject to the imbedding (3.28) .

The first case is related to the integral submanifiditi ¢ T* (R") which can be
parametrized as a manifold by means of the base coordig&tds® of the cotangent
bundleT* (R"). This can be explained as follows: the canonical Liouville 1-form
o e AT(R"), in accordance with the diagram
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TH(Mp) = T* (87, 8%) <"— T* (R") (3.29)
prl pri prl
MQ ~ ®?:lsjl T RN

is mapped by the imbedding mapping- pr - 7, : M{! — R" not depending on a set
of parameterd € R", into the 1-form

n
ol =7 = 3" w(uj; hdy;, (3.30)
j=1

where(u,w) € T*(@]_;$1) =~ &7, T*($1). The imbedding mapping : M — R"
due to equality (3.30) makes the functigl : R" — R to be zero giving rise to the
generating functios, : R" — R, enjoying the condition

dS, = dSely_ggupy (3.31)
where as before

n n
Su(h) = " pida; + ) tdh; (3.32)
=1 =1

and defldq (u; h) /oull # O almost everywhere oM? for all h € R". Similarly to
(3.23), one gets from (3.32) that

tj = 8S, (h) /oh; (3.33)

for j = 1, n. Concerning the second part of the imbedding mapping (3.28) we arrive
due to equality (3.30) at the following simple result:
n
pi = ) wjluj; N)ouj/oq, (3.34)
j=1

wherei = 1,n and detldu/dq| # 0 almost everywhere om(My)) due to the local
invertibility of the imbedding mapping : Mjy — R". Thus, we can claim that the
problem of complete integrability in the first case is solv&dhie only imbedding
mappingr : M{ — R" c T*(R") is constructed. This case was in detail considered

in [11], where the corresponding Picard—Fuchs type equations were built based on an
extension of Galisot—Reeb and Francoise results [18]. Namely, similarly to (3.13),
these equations are defined as follows:

owj(uj;, h)/ohg = Pyj(uj, wj; h), (3.35)

wherePy; : T*(&"_;81) x €" — €, k, j = I,n, are some algebraic functions of their
arguments.
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Concerninghe second casehen the integral submanifoldl? c T*(R") cannot
be imbedded almost everywhere into the base sftec T*(R"), the relation-
ship like (3.32) does not take place, and we are forced to consider the usual canon-
ical transformation fronT* (R") to T* (R") based on a mappingL : ®T=1511 -
T*(R"), whereLq : ®]_ 181 — R enjoys for allu € & Sl = MP 5 q the following
relationship

n
pr'o® (g; p) = Z wj dtj + dlg (). (3.36)
j=1
In this case we can derive for apye ®” Sl the previously introduced hereditary
generating functiod, : R" — T* (®?:1511) as

AL = dLalq_gp) - (3.37)
satisfying evidently the following canonical transformation condition:
n n
dSq () = > wj(ujh) duj + > tidhy + dL, (h), (3.38)

=1 j=1
for almost allu € ®’j‘:lsjl andh € R". Based on (3.38) one can derive the following
relationships:

oL, (h) /ohj = {p, (3.39)
forall j=1,2 u € ®T:1511 andh € R". Whence the following important analytical
result,

n )
Z f dwj (4; h) /ohs) da,
=1
n
>0y (3 1) (001 /0ps) = ws + 9L, (M) /s, (3.40)
j=1

holds for alls = 1,2 andy, 4@ € ®7_;$} with parameter € R" being fixed.
Thereby we have found a natural generalization of relationships (3.34) subject to the
extended integral submanifold imbedding mapptg M{ — T* (R") in the form
(3.28). L
Assume now that functions; : C x C" — C, j = 1,n, satisfy in general Picard—
Fuchs equations like (3.35), having the following [3] algebraic solutions:
nj-1
w;’ + Z Ci (M wk =0, (3.41)

wherecjk : €x C" - C, k= 0,n; -1, n-1j= 1,n, are some polynomials in € C.
Each algebraic curve of (3.41) is known to be in general topologically equivalent
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due to the Riemann theorem [20] to some Riemannian suffg%?cf genuyj € 7.,

i = 1,n. Thereby, one can realize the locatfdomorphisnp : Mp — ®?:1Ff]j),

mapping homology group basis cyckeg‘) cMp,j= 1, n, into homology subgroup

H1(®?:1FE);Z) basis cyclesrj (') ¢ Fﬁ), j = 1,n, satisfying the following rela-
tionships:
n
o™y = > no (), (3.42)
k=1

whereny € Z,k = 1,j and | = 1,n, are some fixed integers. Based on (3.42) and
(3.37) one can write down, for instance, expressions (3.27) as follows:

1 n
yi= — n--SE wi (4 h) dA, (3.43)

wherei = 1, n. Subject to the evolution oM\ ¢ T*(R") one can easily obtain from
(3.39) that

dt = > (Gwj(u;; h)/ahi) dy (3.44)
=1

atdh = Oforalli =1,n, giving rise evidently to a globat-parametrization of the set
of circle5®?:15} C ®’j‘:11"f1’), that is one can define some inverse algebraic functions
to Abelian type integrals (3.37) as

p=prh), (3.45)
where as before, = (i1, 2, ..., t,) € R"is an a vector of evolution parameters. Recall-
ing now expressions (3.28) for integral submanifold mapping M{' — T* (R"),
one can at last write down final expressed by “quadratures” mappings for evolutions
onMp c T*(R") as follows:

ad=q(u(r;h) =4a(h), p=pk(h)=pGh), (3.46)
where obviously, a vectd, p) € T*(R") is quasiperiodic in each variabtee 7,
i=1n.

Theorem 10. Every completely integrable Hamiltonian system admitting an al-
gebraic submanifoldM{ c T*(R") pessesses a separable canonical transforma-
tion (3.38)which is described by gierential algebraic Picard—Fuchs type equations
whose solution is a set of algebraic cur8s41)

Therefore, the main ingredient of this scheme of integrability by quadratures is
finding the Picard—Fuchs type equations (3.35) corresponding to the integral sub-
manifold imbedding mapping (3.28) depending in generaR8r» h-parameters for
the case when the integral submaniféil ¢ T* (R") cannot be imbedded into the
base spacR" c T*(R") of the phase spacE’ (R"). Based now on Theorem 8 one
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can find 1-formsh(jl) e AL(T*(R"), j = 1,n, enjoying the following identity on
T (R"):

n n
w@(q,p):= ) dp; adg; = ) dHj A K. (3.47)
=1 =1
The 1-formsh§l) e AL(T*(R"), j = 1,n, possess the stated important property:
pullbacked to the integral submanifold (3.10) gives rise to the global linearization
aphiV = hiY = dy (3.48)

Whereh_(jl) e AY(MD), and . d/dtj = Kj -z for all j = 1,n. Expressions (2.2)
combined with those in (3.44) give rise easily to the following set of relationships

h =" (0wj(uj; h)/h) du (3.49)
=1

atdh; = Oforall j = Lnon M) = ®’J-‘:1$J1 c ®';:1rfj) for all j = 1,n. Since we

are interested in the integral submanifold imbedding mapping (3.25) being locally
diffeomorphic in a neighborhoddl(M}") c T* (R"), the Jacobian d¢q(u; h)/dull #

0 almost everywhere il (M[). On the other hand, as it was proved in [4], the set of

1—formsr_1(jl) € Al(MQ), j =1,n, can be in general, representedi(M;)) as

hV
j

il (@ P dad,,,. (3.50)

=~
I >
[y

whereh_(jt) :T*(R") - R, k, j = 1,n, are some algebraic expressions of their argu-
ments. Thereby, one easily finds from (3.50) and (3.49) that
n

dwi (i h) /ohy = " M (@G b, pGus ) Bk e h) /o) (3.51)

k=1

for all i, j = 1,n. Subject top-variables in (3.51) we must, owing to (3.40), use the
expressions

Pj (u; h) (04 /0us) = ws + 0L, (h) /dus, (3.52)
-1

j
0L, (h) /oh; = (p,dq/dh;)

no»
Mh

being true fors= 1,nand allu € ®7_;Sj, h € R"in the neighborhood (M})) ¢
T* (R") chosen before. Thereby, we arrived at the following form of equations (3.51):

dwi (ui; h) /6h; = Pji (u, w; h), (3.53)
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where for alli, j = 1, n expressions
n
Pji (wwih) := > 00 (@(u; h)., p (s W) D/ ) (3.54)
k=1

depend correspondingly only d?ﬂ) > (ui, wi)-variables for each € {1,n} and all
j = 1, n. This condition can be evidently written as follows:

OPj (. w;h) /O =0, 9Py (u,w; h) /dw = 0 (3.55)

for j,i # k € {1,n} at almost allu € ®?=1Sj1 andh € R". The set of conditions
(3.51) gives rise in general to a system of algebraftedéntial equations subject

to the imbedding mapping pr, : M;y — R" defined analytically by (3.28) and the
generating function (3.37). As a result of solving these equations we obtain evidently,
owing to (3.53) and (3.55), the following system of Picard—Fuchs type equations:

owi (ui; h) /ohj = Pji (ui, wi; h) (3.56)
where, in general, mappings
Pji : TV xR" - € (3.57)

are some algebraic expressions. Since the set of algebraic curves (3.41) must enjoy
the system (3.56), we can retrieve this set solving the Picard—Fuchs type equations
(3.56). The latter gives rise due to (3.39) and (3.28) to the integrability of all flows
onMp c T*(R") by quadratures as was mentioned in Section 1.

Theorem 11. Let there be given a completely integrable Hamiltonian system on
the coadjoint manifoldT * (R") whose integral submanifol; c T*(R") is de-
scribed by Picard—Fuchs type algebraic equati¢®@$6) The corresponding imbed-
ding mappingr, : M! — T*(R") (3.28)is a solution of a compatibility condition
subject to the dgierential-algebraic relationship§3.55) on the canonical transfor-
mations generating functiof3.37)

To show that the scheme described above really leads to an algorithmic proce-
dure of constructing the Picard—Fuchs type equations (3.56) and the corresponding
integral submanifold imbedding mapping : M! — T*(R") in the form (3.28),
we apply it below in Section 6 to some Hamiltonian systems including a so-called
truncated Focker—Plank Hamiltonian system on the canonically symplectic cotangent
spaceTl* (R"). Making use of representations (3.21) and (3.28) and equation (3.31),
we have shown above that the set of 1-forms (3.30) is reduced to the following purely
differential-algebraic relations cMﬁ’r;:

ow (ui; h) /ohj = Pji (i, wi; h), (3.58)
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which generalize similar relations from [18, 31], where the characteristic functions
Pji - T*(MQ) — R, i, j =1,n, are defined as follows:

Pji (ﬂi,wi; h) = Eji (y,w; h)|ME. (3.59)

It is clear that the above set of purelyfdrential-algebraic relationships (3.33) and
(3.34) makes it possible to write explicitly some first order compatibféegintial-
algebraic equations, whose solution yields the first half of the desired imbedding (3.5)
for the integral submanifolé ¢ M*" in an open neighborhookll?” ¢ M?". As a
result of the above computations one can formulate the following main theorem.

Theorem 12. The imbedding3.5) for the integral submanifoldA] c M2" (com-
pact and connected), parametrized by a regular parameterG*, is an algebraic
solution (up to dffeomorphism) to the set of characteristic Picard—Fuchs type equa-
tions (3.35)on T*(M{)), and can be represented in the general cii in the fol-
lowing algebraic-geometric form:

n
wi+ > cs (G hw] =0, (3.60)
s=1

wherecjs : RxG" - R, s ] = 1, n are algebraic expressions, depending only on the
functional structure of the original abelian Lie algebgof invariants onM?". In
particular, if the right-hand side of the characteristic equatigB35)is independent

of h € G, then this dependence will be linearhre G*.

It should be noted here that some ten years ago an attempt was made in [18, 19]
to describe the explicit algebraic form of the Picard—Fuchs type equations (3.35)
by means of straightforward calculations for the well-known completely integrable
Kowalewskaya top Hamiltonian system. The idea suggested in [18, 19] was in some
aspects very close to that devised independently and thoroughly analyzed in [11]
which did not consider the explicit form of the algebraic curves (3.37) starting from
an abelian Lie algebrg of invariants on a canonically symplectic phase sgdée

As is well known, a set of algebraic curves (3.37), prescribed via the above al-
gorithm, to a givera priori abelian Lie algebrg of invariants on the canonically
symplectic phase spadd®" = T*(R") can be realized by means of a setngf
sheeted Riemannian surfade:é, j = 1,n, covering the corresponding real-valued
cycles$?, j = 1, n, which generate the corresponding homology grbluT"; Z) of
the Arnold torusI™ =~ ®r.‘=1$]1 diffeomorphic to the integral submanifold), c M2",

Thus, upon solving the set of algebraic equations (3.37) with respect to the func-
tions wj : Sll x G* — R, j = 1,n, from (3.29) one obtains a vector parameter
7 = (t1,....tn) € R" on M} explicitly described by means of the following abelian
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type equations:

. Hs n ‘s _
{] =Zf0 da ows (2; h) /6h; =Zf0 dA Pjs (4, ws; 1), (3.61)

s=1 YHs s=1 YHs

wherej = I n, (u°;h) € (®’J.‘:1FE1) x G*. Using expression (3.28) and recalling that

the generating functio8 : Mj; xR" — R is a one-valued mapping on an appropriate
covering spaceNi;\; H1(Mf); Z)), one can construct via the method of Arnold [4] the

so called action-angle coordinatesf. Denote the basic oriented cycles ki by

opc M, j= 1,n. These cycles together with their duals generate homology group
Hi(M{; Z) = H1 (T" Z) = &]_,Z;. By virtue of the difeomorphismM{ = ®?:1S}
described above, there is a one-to-one correspondence between the basic cycles of
H1(M"; Z) and those on the algebraic cur\lqﬂé, j = 1,n, given by (3.37):

0 Hi(My; Z) — &), Zjonj, (3.62)

whereoj C FEJ, j = 1,n are the corresponding real-valued cycles on the Riemann
surfaced}’, j = 1,n.
Assume that the following meanings of the mapping (3.37) are prescribed:

0 (o) := @®_4Nij o j (3.63)

for eachi = 1,n, wheren;; € Z,i,j = 1,n - some fixed integers. Then following
the Arnold construction [4, 18], one obtains the set of so-called action-variables on
M ¢ M2
l n
vii= 5 P dS= > njsgg da ws(4; h), (3.64)
i s=1 hs
wherej = 1,n. Itis easy to show [4, 16] that expressions (3.41) naturally define an
a. e. diferentiable invertible mapping

£:G" - R", (3.65)

which enables one to treat the integral submanifd[Has a submanifolcﬂ/l;1 c M2
where

MDD = {ue M :£(h) =y eR"}. (3.66)
But, as was demonstrated in [18, 32], functions (3.43) do not in general generate a
global foliation of the phase spad#?", as they are connected with both topological
and analytical constraints. Since functions (3.41) are evidently also commuting in-
variants onM2", one can define a further canonical transformation of the phase space
M?", generated by the following relationship &g

n

n
widuj + Z pjdyj = dS(u; ), (3.67)
i j=1

1 J
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wherep = (¢1,...,¢n) € T" are the so-called angle-variables on the tdftis M
andsS : M;‘ x R" — R is the corresponding generating function. Whence it follows
easily from (3.28) and (3.38) that

@) = 0S (;7) [0y = > 9S (;y (W) /ohs dhs/dyj = ) tswsj (7)),
s=1 s=1

1
— dox = Sik,
2 . Pk jk

(3.68)

whereQ = {wsj : R" - R, 5 j = 1,n} is the so-called [4] frequency matrix, which
is a. e. invertible on the integral submanifdw; c M?". As an evident result of
(3.45), we claim that the evolution of any vector fiedd € I'(M?") for a € G on the
integral submanifochQ c M?is quasiperiodic with a set of frequencies generated

. a e . . .
by the matrixQ € Aut(R") defined above. As examples showing tlffeetiveness
of the above method of construction of integral submanifold imbeddings for abelian
integrable Hamiltonian systems, one can verify the Liouville—Arnold integrability of
all Henon—Heiles and Neumann type systems described in detail in [21,22]; however,
we shall not dwell on this here.

4. |NTEGRAL SUBMANIFOLD IMBEDDING PROBLEM FOR A NONABELIAN L IE ALGEBRA OF
INVARIANTS

We shall assume below that there is given a Hamiltonian vector Kiedd"(M2")
on the canonically symplectic phase sp&t® = T*(R"), n € Z,, which is endowed
with a nonabelian Lie algebrg of invariants, satisfying all the conditions of the
Mishchenko—Fomenko Theorem 6, that is

dimg + rankg = dim M?", (4.1)

Then, as was proved above, an integral submanhitj|c- M?2" at a regular element
h e G* is rankGg = r-dimensional and éiieomorphic (when compact and connected)
to the standard-dimensional torudl" =~ ®E:1$jl- It is natural to ask the following
guestion: How does one construct the corresponding integral submanifold imbedding

h: Ml — M2, (4.2)

which characterizes all possible orbits of the dynamical sy$teai(M2")?

Having gained some experience in constructing the imbedding (4.2) in the case
of the abelian Liouville—Arnold theorem on integrability by quadratures, we proceed
below to study the integral submanifoM] c M?2" by means of Cartan’s theory
[3,12,16,22] of the integrable ideals in the Grassmann algefvi"). Let 7 (G*) be
an ideal inA(M2"), generated by independenfférentialsdH; € AX(M?"), j = 1k,
in an open neighborhood (M[), where by definitiony = dimg. The ideall (G*)
is obviously Cartan integrable [16, 23] with the integral submanifd[dc M2 (at a
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regular elemenh € G*), on which it vanishes, that i, 7 (G*) = 0. The dimension
dimM{ = dim M2 — dim@ = r = rankg due to condition (4.1) imposed on the
Lie algebrag. It is useful to note here that, owing to the inequalitg k for the
rankg, one readily obtains from (3.1) that digh= k > n. Since each base element
Hieg j=1 1,k, generates a symplectically dual vector fillde T(M?"), j = 1, 1,k
one can try to study the correspondingfeliential systenk (&) which is also Cartan
integrable in the entire open neighborhdd(M{) c M?". Denote the corresponding
dimension of the integral submanifold by dMﬁ =dimK (G) = k. Consider now an
abelian diferential systenk (Gn) c K (G), generated by the Cartan subalgeGrac

G and its integral submanifolth], ¢ U(My). Since the Lie subgrou@n = expGn
acts on the integral submanlfoMr |nvar|antly (see Section 2) and dlMr = rank

G = r, it follows thatMr = M{. On the other hand, the systefn(Gy) c K(g) by
definition means that the integral submaniftid is an invariant part of the integral
submanifoIer'f c U(M{) with respect to the Lie group = expG-action onMr'j. In
this case one has the following result.

Lemma 5. There exist justn-r) € Z, vector fieldslfj e K(G)/K(Gh), | =
1,n-r, for which

W@(Fi,Fj) =0 (4.3)
onU(M[)foralli,j=1n-r.
Prook. It is obvi~ous that the matriw(K) := {0@(K;,K;) : i,j = 1,k} has on
U (M) the rankw(K) = k-, since ding ker (rw®) = dimg (mh.K (Gn)) = r on M{

at the regular elememt € G*. Let us now compIeX|fy the tangent spat@J (M;, ))
using its even dimensionality. Whence one can easily deduce thagMf) there ex-
ist just(n—r) e Z. vectors (not vector fieIds'bZ‘E e KE(@) /KE(Gh), j = Ln-

from the complexified [24] factor spad€® (G) / K‘E (Gh) . To show this, let us re-
duce the skew-symmetric matrix(K) € Hom (R*) to its self-adjoint equivalent
w(K€) € Hom (C" "), having taken into account that dinRk" = dimg RK*"~2 =

dimg RZ™") = dimg C*'. Let nowff e, j = 1,n—r, be eigenvectors of the
nondegenerate self-adjoint matw(K‘E) € Hom(C"™"), that is
w(R)FF = A1, (4.4)

whered; € R, j = Ln—r, and for alli,j = L,n—r, (f€, ff) = 6ij. The above
obviously means that in the baslff e K€(G) /K€ (Gh) : j = L.n—r} the matrix

w(K€) e Hom(C" ") is strictly diagonal and representable as

w(KE = > 2ifCec € (4.5)
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wheregcis the usual Kronecker tensor product of vectors fiefn™ Owing to the
construction of the complexified matixK€) € Hom(C" "), one sees that the space
K€ (@) /K€ (Gn) =~ C™" carries a Kahler structure [24] with respect to which the
following expressions

w(K) = Imw(K), ¢, )r = Re¢, ) (4.6)

hold. Making use now of the representation (4.5) and expressions (4.6), one can find
vector fleldsFJ € K(G) /K (Gh), j = 1,n—r, such that

w(F) = Imw(FC) = J, (4.7)
holds onU(M{), whereJ € Sp(C"™") is the standard symplectic matrix, satisfying
the complex structure [24] identit}? —1. By virtue of the normalization conditions
(fF, 5 = 61, foralli, j = 1,n—-r, one easily infers from (3.7) thaf®(F;, F;) = 0
for aII| j = 1,n—r, where by definition

Fj = ReF| (4.8)
forall j = 1,n—r, and this proves the lemma. O

Assume now that the Lie algebgof invariants orM?" has been split into a direct

sum of subspaces as 3
G =Gh®Ghn, (4.9)

wheregGy is the Cartan subalgebra at a regular eleneatG* (being abelian) and
éh ~ G /G is the corresponding complementdy. Denote a basis af, as{H; €
gh o= ﬁ} where dimgy, = rankGg = k € Z,, and correspondingly, a basis of
Gh as{HJ €Gh=~G/Gnh: j = 1,k—r}. Then, owing to the results of Section 2, the
following relationships hold:

(Hi.Hj} = h({Hi, Hs}) = 0 (4.10)
in the open neighborhood (M) c M2n for all i, j = 1rands=1k-r. We

have as yet had nothing to say of expressia(is, Hm}) for s, m=1, 1,k —r. Making
use of the representation (4.8) for our vector fields (if they ekisg K (@) /K (Gh),

j =1,n—r, one can write the following expansion:

= _ zc,-i DL (4.11)
=1

whereig @ = —dHj, ¢j : ¢* - R,i = Ln—r, j = Lk, are real-valued
functions ong*, being defined uniquely as a result of (4.11). Whence it clearly
follows that there exist invariant : UM)) - R, s= 1,n—r, such that
k—r
—ig® =) cjs(h) dHj = df, (4.12)
=1
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wherefs = 7! cjs () Hj, s=1,n—, holds onU(My).
To proceed further, let us look at the following identity which is similar to (3.2):
(®]qig,) (®TSix, ) (@)™ = 0= = (n+ 1! (A]_ydHj) (Al fs) A 0@, (4.13)
onU(M{). Whence, the following result is easily obtained using Cartan theory [3, 16]:

Lemma 6. The symplectic structue® e A%(U(M/)) has the following canoni-
cal representation:

r n-r
@ _ EY )
w |U(MD_ZdH,Ahj +Zldfs/\ hY, (4.14)
j= s=

whereh_(jl), A& e AYUMD), j=171, s=1n-r.

Expression (4.14) obviously means, thatlofM{) c M?" the differential 1-forms
h_(jl), A e A(U(MD), j = 11, s = In—r, are independent together with exact
1-formsdH;, j = L1, anddfs, s = 1,n—r. Sincedw® = 0 on M?" identically,
from (4.14) one obtains that theﬁda'rentialsdh_(jl), dﬁ(sl) € A2(U(M{])), ji=1r,

s = Ln-r, belong to the ideal (Gn) c I (G*), generated by exact fornafs,

s=1n-r,anddHj, j = L, for all regularh € G*. Consequently, one obtains the
following analog of the Galisau-Reeb Theorem 8.

Theorem 13. Let a Lie algebrag of invariants on the symplectic spad¢?"
be nonabelian and satisfy the Mishchenko—Fomenko condiidr). At a regular
elementh € G* in some open neighborhodd(M{) of the integral submanifold

MI c M?" there exist dfierential 1—formsh_(j1), j=1n andh?, s=1 n—r, satisfy-
ing the following properties:

() @@lyqupy = >y dH; Aﬁ§1)+2”;£df~s/\ﬁ(sl) whereH; € G, j = 1r,is a basis
of the Cartan subalgebrgiy C G (being abelian), ands€ G, s= 1,n-r,
are invariants from the complementary sp&ge=~ G/Gn,

(ii) Thel—formsh_(jl) e AU(MD), j=1r,andh{ < AYUM), s=1n -
are exact onM; and satisfy the equationm_gl)(Ki) =¢jjforalli,j=1r,
F\El)(lfs) = 0andh{’(K;) = Oforall j = 1,r, s= n—r, andh$’(Frn) = 6sm
forallsm=1,n-r.

Proor. Obviously we need to prove only the last statement (ii). Making use of
Theorem 13, one can find on the integral submaniMl{g c M?" the diferential
2—formsdk_1(j1) e AAUMN), j = L1, anddh e A2(U(M])), s = In—r, are
identically vanishing. This means in particular, owing to the classical Pdieamma
[1,4,16], that there exist some exact 1-fordg; € A (U(M))), j = 11, anddiys €
AYUM))), s = Ln—r, wherethj : M, > R, j = 1,r, andihs : M/ — R,
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s = 1,n-r, are smooth independent a. e. functionsMjp they are one-valued on
an appropriate covering of the manifalf, M?2" and supply global coordinates on
the integral submanifolt/; . Using representation (4.14), one can easily obtain that

r n-r
R0l = 2 OARYE) + ) dFFOE) o 1)
J:
foralli =1,r and
r n-r
i (2 _ TR E CEDE N _Af
—ig o )|U(MD - ; dH;h (F ) + ; dfh®(Fm) = dfim (4.16)

forall m=1,n-r. Whence, from (4.15) it follows on that da(My),

WK) =6  AK)=0 (4.17)

foralli, j = 1,r ands=1,n—r, and similarly, from (4.16) it follows that ob (M),
WY(Fm) =0, AY(Fm) =0 (4.18)

forall j = 1,r ands m= 1,n—r. Thus the theorem is proved. O
Having now defined global evolution p@mettqrs M2 - R, j = 1,r, of the
corresponding vector field§; = d/dt;, j = 1,r, and local evolution parametefis:

M2 U(M{) = R, s=1,n-r, of the corresponding vector fielﬁgu(w) = d/ds,
s=1,n-r, one can easily see from (4.18) that the equalities

tilumy = 1, fslumy = ths (4.19)

hold for all j = 1,r, s = 1,n—r, up to constant normalizations. Thereby, one can
develop a new method, similar to that of Section 3, for studying the integral subman-
ifold imbedding problem in the case of the nonabelian Liouville—Arnold integrability
theorem.

Before starting, it is interesting to note that the system of invariants

G, = gheas%an{ﬂeg/gh s= 1,n—r}

constructed above, comprises a new involutive (abelian) complete alggbta

which one can apply the abelian Liouville—Arnold theorem on integrability by quadra-
tures and the integral submanifold imbedding theory devised in Section 3, in order
to obtain exact solutions by means of algebraic-analytical expressions. Namely, the
following corollary holds.

Corollary 3. Assume that a nonabelian Lie algelfzasatisfies the Mishchenko—
Fomenko conditiof@.1)andM; c M2 is its integral submanifold (compact and con-
nected) at a regular elemehte G*, is diffeomorphic to the standard tor@ ~ My .
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Assume also that the dual complete abelian algg@r&dimG. = n = 1/2dimM?")

of independent invariants constructed above is globally defined. Then its integral
submanifoldvi! M2 is diffeomorphic to the standard tor(g" ~ M" - and con-
tains the toruS]l“r M{ as a direct product with some completely degenerate torus
T, thatis MRT o~ Mr x T,

Thus, having successfully applied the algorithm of Section 3 to the algebraic-
analytical characterization of integral submanifolds of a nonabelian Liouville -Arnold
integrable Lie algebrg of invariants on the canonically symplectic manifof" ~
T* (R"), one can produce a wide class of exact solutions represented by quadratures
- which is just what we set out to find. At this point it is necessary to note that up to
now the (dual taz ) abelian complete algebi@, of invariants at a reguldr € G *
was constructed only in some open neighborhidgil;) of the integral submanifold
M{ C M2". As mentioned before, the global existence of the algghrstrongly de-
pends on the possibility of extending these invariants to the entire maMfldT his
possibility is in 1-1 correspondence with the existence of a global complex structure
[24] on the reduced integral submanifd&ﬁfﬁ‘” := MK/Gp, induced by the reduced
symplectic structure’ w® € A%(MK/Gp), wherer. : MK — M?" is the imbedding
for the integrable dierential systenk (¢) c I'(M?"), introduced above. If this is the
case, the resulting complexified manif§i-" ~ MZ(n " will be endowed with a
Kahlerian structure, which makes it possmle to produce the dual abelian afgiebra
as a globally defined set of invariants b1f". This problem will be analyzed in more
detail in Section 6.

5. EXAMPLES
Below we consider some examples of nonabelian Liouville—Arnold integrability
by quadratures covered by Theorem 6.

Example2 (Point vortices in the plane)onsidern € Z., point vortices on the
planeR?, described by the Hamiltonian function

=—7= Z &&jln HQI - pJ“ (5-1)

|¢J 1

with respect to the following partially canonical symplectic structureMf? =
T*(R") :

n
W@ =" £dp; A dg;, (5.2)
=1
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where (j,q;) € R?, j = 1,n, are coordinates of the vorticesiR?. There exist three
additional invariants

Py = ijQja P, = Zf] Pi, (5.3)

:2251 +pJ

satisfying the following Poisson bracket conditions:
(P1, Po} = 261, (PL,P}=—P;,  {P2,P} =Py, (5.4)

(P.H} = 0= (P}.H).

It is evident, that invariants (5.1) and (5.3) comprise@flzlgj = 0 a four-
dimensional Lie algebrg, whose ranig = 2. Indeed, assume that a regular vector
h e G* is chosen, and parametrized by real valogs R, j = 1,4, where

h(P) = hi, h(P) = hs, h(H) = hy, (5.5)
andi = 1, 2. Then, one can easily verify that the element

n n
Qh={ij]P—ZhiPi (5.6)
=1 i=1
belongs to the Cartan Lie subalgelfac G, that is

h({Qn, Pi}) = 0, h({Qn, P}) = 0. (5.7)

Since{Qn, H} = 0 for all valuesh € G*, we claim thaigy = span, {H, Qn} — the
Cartan subalgebra ¢f. Thus, ranlg = dimgGy, = 2, and it comes right away that the
condition (4.1)

dimM?" = 2n = rankG + dimG = 6 (5.8)

holds only ifn = 3. Thereby, the following theorem is proved.

Theorem 14. The three-vortex probleif®.1) on the planeR? is nonabelian Liou-
ville-Arnold integrable by quadratures on the phase spiife=~ T*(R3) with the
symplectic structurés.2).

As a result, the corresponding integral submanifdlﬁlc M6 is two-dimensional
and difeomorphic (when compact and connected) to the t@tis: M2, on which
the motions are quasiperiodic functions of the evolution parameter.

Concerning Corollary 3, the dynamical system (5.1) is also abelian Liouville—
Arnold integrable with an extended integral submanlfmﬁ c M8, which can be
found via the scheme suggested in Section 4. Usmg simple calculations, one ob-
tains an additional invariar® = (Z, 1€))P — Z, 1 P 2 ¢ G, which commutes with
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H andP of G,. Therefore, there exists a new complete dual abelian alggbra
spar, {Q, P,H} of independent invariants okl® with dimg, = 3 = 1/2dimMS,
whose integral submanifolltd’lﬁ,T c M8 (when compact and connected) i§domor-
phic to the torudr® ~ M2 x S,

Note also here that the above additional invarfart G, can be naturally extended
to the case of an arbitrary numbege Z, of vortices as followsQ = (Z?:l &P -

m Pi2 € G-, which obviously also commutes with invariants (5.1) and (5.3) on the
entire phase spadd?".
Example3 (A material point motion in a central fieldlConsider the motion of a

material point in the spadR® under a central potential field whose Hamiltonian
13
== 2
H=3 J§:1 p? + Q(llall) . (5.9)

contains a central fiel@® : R, — R. The motion takes place in the canonical phase
spaceM® = T*(R®), and possesses three additional invariants:

Pi=p2ds—pg  P2=psth—pids,  P3=pid2— p2ta, (5.10)
satisfying the following Poisson bracket relations:
{P1, P2} = P3, {P3,P1} = P2, {P2, P3} = Py. (5.11)
Since{H,Pj} =0forall j = 1,3, one sees that the problem under consideration has

a four-dimensional Lie algebr& of invariants, isomorphic to the classical rotation
Lie algebra s@3) x R ~ G. Let us show that at a regular elemént G* the Cartan
subalgebragn c G has the dimension di@Gn, = 2 = rankG. Indeed, one easily
verifies that the invariant

3
Ph = Z hP; (5.12)
=1

belongs to the Cartan subalgelgtathat is
{H,Pn} =0, h({Pn, Pj}) =0 (5.13)

forall j = 1,3. Thus, as the Cartan subalgelglia= spark {H andPy c G}, one gets
dimGn = 2 = rankGy, and the Mishchenko—Fomenko condition (4.1)

dimM® = 6 = rankGg + dimG = 4+ 2 (5.14)

holds. Hence one can prove its integrability by quadratures via the nonabelian Liou-
ville Liouville—Arnold Theorem 6 and obtain the following theorem:

Theorem 15. It follows from Theorem 6 that the free material point motion in
R3 is a completely integrable by quadratures dynamical system on the canonical
symplectic phase spaé® = T*(R3). The corresponding integral submanifdif c
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M at a regular elemenh € G* (if compact and connected) is two-dimensional and
diffeomorphic to the standard torl&* ~ MZ.

Making use of the integration algorithm devised in Section 2 and 3, one can readily
obtain the corresponding integral submanifold imbedding map;angMﬁ — M6
by means of algebraic-analytical expressions and transformations.

There are clearly many other interesting nonabelian Liouville—Arnold integrable
Hamiltonian systems on canonically symplectic phase spaces that arise in applica-
tions, which can similarly be integrated using algebraic-analytical means. We hope
to study several of these systems in detail elsewhere.

6. EXISTENCE PROBLEM FOR A GLOBAL SET OF INVARIANTS

It was proved in Section 4, that locally, in some open neighborb@d;) c M2n
of the integral submanifol; c M2 one can find by algebraic-analytical means just
n-r € Z, independent vector fields; € K (G) /K (Gn) NT(U(M))), j = Ln-T,
satisfying condition (4.3). Since each vector fiéple K(G)/K(Gr), j=1Ln-r,

is generated by an mvanaHt,e DUM)), | = 1,n—r, it follows readily from (4.3)
that

{Hi,Hj}=0 (6.1)
foralli,j = 1,n—r. Thus, in an open neighborhodd(M;) there exist jush — r
invariants in addition td:|je DUM)), j = Ln-—r, all of which are in invo-

lution. Denote as before this new set of invariantsGas keeping in mind that
dmG. =r+(n-r) = ne Z,. Whence, in an open neighborhobldMy) c Mm2n

we have constructed the g8t of justn = 1/2 dimM?" invariants commuting with
each other, thereby guaranteeing via the abelian Liouville—Arnold theorem its lo-
cal complete integrability by quadratures. Consequently, there exists locally a map-
ping 7, © MK — M where M{_ = U(M{) n M¥ is the integral submani-

fold of the dﬁerentlal systenK (Q) and one can therefore describe the behav-
ior of integrable vector fields on the reduced manlfMﬁ(” 0= Mk‘r/Gh For

global integrability properties of a given sgt of invariants on MZ” w(z)) sat-
isfying the Mishchenko—Fomenko condition (4.1), it is necessary to have the ad-

ditional set of mvarlantsH,e DUM)), | = 1,n—r, extended fromU(M{) to
the entire phase spadd?". This problem evidently depends on the existence of
extensions of vector fleIdEJ e T(UM)). | = 1,n—r, from the neighborhood

UMy c M2 to the whole phase spad4?". On the other hand, as stated before,

the existence of such a continuation depends intimately on the properties of the com-
plexified diferential systenK® (@) /K€ (Gn), which has a nondegenerate complex
metricw(KC) : T(MZ")E x T(MZI)€ €, induced by the symplectic structure

w® e A2(M?). This point can be clarified further by using the notion [24-27] of a
Kahler manifold and some of the associated constructions presented above. Namely,
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consider the local |somorph|sflf(M2(n N ~ T(‘EMn "), where®M! is the com-

plex (n — r)-dimensional local integral submanifold of the complemﬂeﬂedenhal

systemK® (@) /K€ (Gr). This means that the spaEeMﬁf: ") is endowed with the
standard almost complex structure

I Ty S M), 2=, (6.2)

such that the 2-formu(K) := Imw(KS) € Az(l\ﬁﬁg“r)) induced from the above
metric onT(CMR‘Tr) is closed, that iglw(K) = 0. If this is the case, the almost
complex structure on the manifolﬂ(l\ﬁﬁfj‘”) is said to be integrable. Define the
proper complex manifoI&M”‘r on which one can then define global vector fields
Ifj e K(GQ)/K(Gn), j = 1,n—r, which are being sought for the involutive algebra

G- of invariants onM?" to be integrable by quadratures via the abelian Liouville—
Arnold theorem. Thus the following theorem can be obtained.

Theorem 16. A nonabelian seg of invariants on the symplectic spadé?" ~
T*(R"), satisfying the Mishchenko—Fomenko condit{@r®), admits algebraic-ana-
lytical integration by quadratures for the integral submanifold imbedding M;, —

M2 if the corresponding complexified reduced mamﬁMﬂ ~ MZ(n N = Mk r/Gh
of the dfferential systenkK® (G) /K€ (Gh) is Kahlerian with respect to the stan-
dard almost complex structuf®.1) and the nondegenerate complex mets{& ) :
TME)E x T(MET)E - € induced by the symplectic structusé®? e A(M?)

is integrable, that isl Im w(K€) = 0

Theorem 16 shows, in particular, that nonabelian Liouville—Arnold integrability by
guadratures does not in general imply integrability via the abelian Liouville—Arnold
theorem; it actually depends on certain topological obstructions associated with the
Lie algebra structure of invariangson the phase spadé2". We hope to explore this
intriguing problem in another place.

7. SUPPLEMENT

In this section we consider some examples of investigation of integral submanifold
imbedding mappings for abelian Liouville—Arnold integrable Hamiltonian systems
onT*(R?).

7.1. The Henon—Heiles systemThis flow is governed by the Hamiltonian

1., 1 1
Hy = Epi + Epi + i + éqi (7.1)
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on the canonically symplectic phase spM® = T*(R?) with the symplectic struc-
ture

2
w®@ =" dpj A dg (7.2)
=1
As is well known, there exists the following additional invariant that commutes with
(7.1):

Hz = p1p2 + 1/303 + 0502, (7.3)
that is{H1, Ho} = 0 on the entire spadé.
Take a regular elemetit € G = {H; : M4 5 R, j = 1,2}, with fixed values
h(H;) = hj € R, j = 1,2. Then the integral submanifold
M2 :={(a.p) e M* 1 h(H}) =hj e R, j = T2}, (7.4)

if compact and connected, isfiliomorphic to the standard torl$ ~ $* x $* owing

to the Liouville—Arnold theorem, and one can find cyclic (separable) coordinates
uj € 81, j = 1,2, on the torus such that the symplectic structure (7.2) will take the
form:

2
W@ =" dwj A duj, (7.5)
=1
where the conjugate variableg € T*($1), j = 1,2, on Mﬁ depend only on the
corresponding variables € Sjl, j = 1,2. In this case it is evident that the evolution

along ME] will be separable and representable by means of quasi-periodic functions
of the evolution parameters.

To show this, recall that the fundamental determining equations (3.34) based on
the 1-formsﬁ§1) e A(M?), j = 1,2, satisfy the identity

2 2
Zde Aj h_(jl)Zdej/\qu'. (7.6)
=1 =1

Here )

hY = > hi (g, p) da, (7.7)
k=1

wherej = 1, 2. Substituting (7.7) into (7.6), one obtains
qo _ _Pda | pde po _ _Peda  pdge
Pi-p P-P PR -

1
On the other hand, the following implication holds btf ¢ M*:

(7.8)

2 2
of) = > wiludy; = > pidg; =a®, (7.9)
=1

j=1 j
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where we have assumed that the integral submathﬁhﬂjmits the local coordinates
in the base manifoléR? endowed with the canonical 1-fomf]1) € A(Mﬁ) as given
in (7.9). Thus, making use of the imbeddimg: M2 — T*(R?) in the form

dj = dj (; h), pj = pj (u; h), (7.10)

j = 1,2, one readily finds that the equalities
2
pj = Z wk (uk; ) O/ 0q; (7.11)
k=1

hold for j = 1, 2 on the entire integral submanifomﬁ.

Substituting (7.11) into (7.8) and using the characteristic relationships (3.34), one
obtains after simple but cumbersome calculations the followiffgrdintial-algebraic
expressions:

Ol /Op1 — 002/ dua = 0, 00l /Opz + 002/ duz = 0, (7.12)
whose simplest solutions are
O =(u1+p2) /2, Go=(u1—u2)/2. (7.13)

Using expressions (7.11) one finds that

P1 = w1 + wo, P2 = w1 — wo, (7.14)

w1 = A/ +hp — 4/3u3, wp = A/ —hp —4/3u3. (7.15)

Consequently, one obtains the separable [15] Hamiltonian functions (7.1) and (7.3)
in the vicinity of the cotangent spaEFé‘(Mﬁ) :

1 2 1 2 2 3 3 1 2 1 2 2 3 3
h1=§w1+§w2+§(ﬂl+ﬂ2), h2=§w1—§w2+§(ﬂl_ﬂ2), (716)

which generate the following separable motionsMhic T*(R?):

dug/dt = ohy /0wy = /hy +hy — 4/3;1?,
(7.17)
duz/dt := dhy/0ws = \Jhy —hy — 4/3/.12

for the Hamiltonian (7.1), and

duz/dx = dhp/dwy = fhy + hp — 4/343,
(7.18)

duo/dt := Oy /Owy = — \Jhy — hp — 4/343

where

for the Hamiltonian (7.3), wheng t € R are the corresponding evolution parameters.
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Analogously, one can show that there exists [28,29] a similar to (7.13) and (7.14)
integral submanifold imbedding for the following integrable modified Henon—Heiles
involutive system:

1 1 16
Hi=Zp2+ Zp2+ i + =0,
1 2p1 2p2 a19; 3 a1 (7.19)
Ha = 9p3 + 36011 p503 — 12p1 p203 — 203 (05 + 60F) ,
where{H1, H1} = 0 on the entire phase spabt = T*(R?).

Based on considerations similar to the above, one can deduce the following [29]
expressions:

w1 + wo )2

1 3
O = —7 (1 +p2) = é(,ul—,uz

B =2/ G —p),  wn= 2/33 - 4/3p - 8y,
) 1 [—Zx/h_z
2/—6(u1 + p2 + 4q) | M1 — p2

P2 = Vho (uip + 4) / Bua-p2)),  wa = \/2/3#3 +4/3+/h, - 8hy,

thereby solving explicitly the problem of finding the corresponding integral subman-
ifold imbeddingny, : Mﬁ — T*(R?) that generates separable flows in the variables

(1, w) € T*(M3).

7.2. Atruncated 4-dimensional Focker—Plank Hamiltonian system oif *(IR?)
and its integrability by quadratures. Consider the following dynamical system on
the canonically symplectic phase spac¢R?) :

dop/dt = p1+ e (01 + p2) (G2 + p1) . dep/dt = py,
dpu/dt= = (01 + P2) — a|epr + 1/2(p2 + p3 + )] = Ka(a.p).  (7.21)
dpz/dt =~ (G2 + p1)

whereK; : T*(R?) — T(T*(R?) is the corresponding vector field i (R?) >

(g, p), t € Ris an evolution parameter, called a truncated four-dimensional Focker—

Plank flow. It is easy to verify that functiorns; : T*(R?) - R, j = 1,2, where

Hy = 1/2(p2 + p3 + 6f) + capz + @ (01 + P2) [aepy + 1/2(pf + 3+ @3)|  (7.22)
and

(7.20)

P1

— papz + 4 (ug + p2) o + 32<ﬁ} ,

Ha = 1/2(pf + p5 + 6) + G2 (7.23)
are functionally independent invariants with respect to the flow (7.21). Moreover, the
invariant (7.22) is the Hamiltonian function for (7.21), that is the relationship

0@ = —dH (7.24)
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holds onT*(R?), where the symplectic structute?® e A%(T*(R?)) is given as fol-
lows:

2
W@ :=d(pre?) =" dpjAdg, (7.25)
=1

with o € AL(R?) to be the canonical Liouville form oR? :
2
a® (g, p) = ) pjdg (7.26)
j=1

for any(q, p) € T*(R?) ~ AL(R?).

The invariants (7.22) and (7.23) commute evidently with each other subject to the
associated Poisson bracket ®(R?), i. e., {H1, Ho} = 0. Thereby, owing to the
abelian Liouville—Arnold theorem [1, 2], the dynamical system (7.21) is completely
integrable by quadratures a@ri(R?), and we can apply the scheme devised in Section
2 to the commuting invariants (7.22) and (7.23) subject to the symplectic structure
(7.25). One easily calculates that

w® = Z dH A hY, (7.27)

where the corresponding 1-form§hi(1) = h_(il) € Al(Mﬁ), i = 1,2, are given as

HO _ pP2dch — (P1 + G2) dp
L pip2— (p1+02) (G1 + p2) — ah2 (pr + 02)’

HO _ —[(Q1 + p2) (1 + app) + ahp]dog + (p1 + @ [h2 + (G2 + p1) (0o + P2)]) dQ2
2 P1p2 — (02 + P1) (@hz + g1 + P2)

and an invariant submanifol? c T*(R?) is defined as
={@peT®R):Hi(@p=heR, i=12 (7.28)

for some parameteis € R? and based now on expressions (7.28), and (3.38) one
can easily construct functior; (w; h), i, j = 1,2, in (3.53), defined orT*(MZ) ~
T*(®?_,81) subject to the integral submanifold imbedding mapping: M2 —

T*(R?) in coordinateg: € ®%_;S} c ®% 11“&), which we do not write in detail due to

their long and cumbersome form Having applied then the criterion (3.55), we arrive
at the following compatibility relations subject to the mapplqgs(®2 Sl) xR? -
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R2andp: (82;81) x R? - T4(R?) :
O1/0p — 002/0uz = 0,  w10.L, /0wy — w20.L,/0wz = 0,
0201/ 020y + 0%w2/duzdhy = 0,

Owz/0hy (00y/0hy) = dwz/ohy (002/0h1), (7.29)
w10w1/0hy — wo0wy/0hy = 0,

8 (w1dw1/dhy) /8y — &®dq1/dus = 0,

and so on, subject to variablgs ®2 Sl andh e R?. Solving equations like (7.29),
one can find right away that the expressmns

Pr=wi1, P2=w2,

01 = C1 +p1 — w2 (u2; h), 02 = C2 + 2 — wy (u1; h), (7.30)
L/J (h) = —wiwa,
wherec; (hy,h) € RY, j = 1,2, are constant, hold ofi*(M2), giving rise to the

following Picard- Fuchs type equations in the form (3.56):
owy (u1;h) /0hy = 1wy, 0wy (ua; h) /0hp = ahy/wy,
dwz (u2; h) /ohy = 0, Owy (uz; h) /ohy = 1/wo.
The Picard—Fuchs equations (7.31) can be easily integrated by quadratures as follows:
w? + kg (1) —a?hy—2h; =0, w3 +kp () — 2hp = 0, (7.32)

(7.31)

wherek; : 81 — €, j = 1,2, are still unknown functions. For them to be determined
explicitly, it is necessarily to substitute (7.30) into expressions (7.22) and (7.23),
making use of (7.32), which amounts to the following results:

ki = i, ke = 115 (7.33)

under the condition that; = —ahy, ¢, = 0. Thereby, we have constructed, owing to

(7.32), the corresponding algebraic curifé& j = 1.2, (3.41) in the explicit form:
F(l) {(/l w1) : w1 + 1% - h —-2h; = O},

@ . (7.34)

2 = {(Lwo) 1w} + 2% — 2hp = 0},

where Q,wj) € C, | = 1,2, andh € R? are arbitrary parameters. Making use
now of expressions (7.35) and (7.30), one can construct in explicit form the integral
submanifold imbedding mapping, : Mf] — T*(R?) for the flow (7.21):

Gu = 1 — ~f2hp — p2 — o, P1 = w1 (ua; h),

Oz = p2 — J2 — @?h3 — i, P2 = w2 (u2; h),

(7.35)
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where(u, w) € ®12:1F£]j). As mentioned before in Section 2, formulas (7.35) together
with explicit expressions (3.40) make it possible right away to find solutions to the
truncated Focker—Plank flow (7.21) by quadratures, thereby completing its integra-
bility.
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