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A. We investigate oscillatory properties of the half-linear second order dif-
ferential equation

(Φ(x′))′ + c(t)Φ(x) = 0,

whereΦ(x) := |x|p−2x. This equation is regarded as a perturbation of the generalized
Euler equation

(Φ(x′))′ +
γp

tp
Φ(x) = 0,

whereγp =
(

p−1
p

)p
.
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1. I

In this paper, we investigate oscillatory properties of the half-linear second order
differential equation

(Φ(x′))′ + c(t)Φ(x) = 0, (1)

whereΦ(x) := |x|p−2x, p > 1, t ∈ I := [T,∞), andc is a real-valued continuous
function.

Oscillation theory of (1) attracted considerable attention in the past years and it
was shown that many of the oscillation criteria for the linear Sturm–Liouville second
order differential equation

x′′ + c(t)x = 0 (2)

(which is the special casep = 2 of (1)) can be extended to (1).
In these criteria, equation (1) is essentially viewed as a perturbation of the one-

term (nonoscillatory) equation
(Φ(x′))′ = 0 (3)

and the nonoscillation or oscillation of (1) is “measured” by the “smallness” of the
functionc.
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In this paper we investigate equation (1) not as a perturbation of (3), but as a
perturbation of the generalized Euler equation

(Φ(x′))′ +
γp

tp Φ(x) = 0, (4)

whereγp =
(

p−1
p

)p
is the so-calledcritical constantin this equation. In particular,

this equation is nonoscillatory forγ ≤ γp and oscillatory forγ > γp, see [3]. A
similar idea was used in [2,4,5]. In these papers, nonoscillation criteria were mostly
based on the Riccati technique consisting in the fact that ifx is a nonzero solution of
(1) then

w(t) =
Φ(x′(t))
Φ(x(t))

solves the generalized Riccati equation

w′ + c(t) + (p− 1)|w|q = 0,

whereq is the conjugate number top, i. e., 1
p + 1

q = 1.
Here we use the variational principle which is based on the relationship between

disconjugacy of (1) in [a,b] and the positivity of the “p-degree” functional

F (y; a, b) =

∫ b

a
[|y′|p − c(t)|y|p] dt (5)

in the class of (sufficiently smooth) functions satisfyingy(a) = 0 = y(b). In particular,
equation (1) isdisconjugatein [a,b], i. e., any nontrivial solution has at most one zero
in [a,b]) if and only if F (y; a, b) > 0 for every nontrivial functiony ∈ W1,p(a,b)
with y(a) = 0 = y(b). More details will be given in the next section. The variational
approach was used, e. g., in [6].

The main result of this paper is the oscillation criterion which answers in the affir-
mative way the conjecture posed in [2].

This paper is organized as follows. In the Section 2, we recall the properties of
equation (4) needed for our investigation. We also formulate some auxiliary results
and give known results. In Section 3, we present the main result of the paper, an os-
cillation criterion for (1). Section 4 contains some remarks about possible extensions
of the results of this paper.

2. P

First we return to Euler equation (4). In the critical caseγ = γp, this equation

possesses the solution ˜x(t) = t
p−1

p and any linearly independent solution satisfies the
relation

x(t) ∼ t
p−1

p lg
2
p t,

where f1 ∼ f2 for a pair of functionsf1, f2 means thatL := limt→∞
f1(t)
f2(t) exists and

0 < |L| < ∞.
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Now we formulate exactly the relationship between the positivity of the functional
F given in (5) and diconjugacy of (1). This statement is proved, e. g., in [6] and we
formulate it here in a slightly modified form as needed in the next section.

Lemma 1. Equation(1) is oscillatory if and only if for everyT ∈ � there exists
0 . y ∈W1,p

0 (T,∞) such that

F (y; T,∞) =

∫ ∞

T
[|y′(t)|p − c(t)|y(t)|p] dt ≤ 0.

The following lemma sumarizes the results of Došlý and Lomtatidze [2] where (1)
is viewed as a perturbation of the Euler equation (4).

Lemma 2. The following statements hold.

(i) Suppose thatc(t) ≥ 0 and

lim inf
t→∞ lg t

∫ ∞

t

(
c(s) − γp

sp

)
sp−1 ds>

1
2

(
p− 1

p

)p−1

. (6)

Then(1) is oscillatory.
(ii) If

lim sup
t→∞

lg t
∫ ∞

t

(
c(s) − γp

sp

)
sp−1 ds<

1
2

(
p− 1

p

)p−1

(7)

and

lim inf
t→∞ lg t

∫ ∞

t

(
c(s) − γp

sp

)
sp−1 ds> −3

2

(
p− 1

p

)p−1

, (8)

then(1) is nonoscillatory.

Recall also the results of the paper by Elbert and Schneider based on the connec-
tion of oscillatory behaviour between the half-linear differential equation

(Φ(x′))′ +
(

p− 1
p

)p 1
tp

[
1 +

p
2(p− 1)

δ(t)

]
Φ(x) = 0 (9)

(whereδ(t) is a piecewise continuous function on (t0,∞), for somet0 ≥ 0) and the
linear differential equation

(tz′)′ +
δ(t)

t
z = 0. (10)

Lemma 3. Suppose that
∫ ∞ δ(t)

t dt is convergent and
∫ ∞
t

δ(s)
s ds≥ 0 for large t.

(i) If p ≥ 2 and the linear differential equation(10) is nonoscillatory, then the
half-linear differential equation(9) is also nonoscillatory.

(ii) If p ∈ (1,2] and equation(9) is nonoscillatory, then equation(10) is also
nonoscillatory.
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Note that the equivalence of nonoscillation of (9) and (10) is an open problem.
However, under some restrictions on the functionδ(t) or on the corresponding linear
differential equation (10), one can establish a closer connection between (9) and (10).
For more details, see [5].

3. O 

In this section, we present the main result of the paper - an oscillation criterion for
(1). This equation is written in the form

(Φ(x′))′ +
γp

tp Φ(x) +

(
c(t) − γp

tp

)
Φ(x) = 0 (11)

and it is viewed as a perturbation of the generalized Euler equation (4).

Theorem 1. Suppose that

lim inf
t→∞

1
lg t

∫ t

1

(
c(s) − γp

sp

)
sp−1 lg2 s ds> 2

(
p− 1

p

)p−1

. (12)

Then(1) is oscillatory.

P. According to Lemma 1, it suffices to find, for anyT ∈ �, a functiony ∈
W1,p(t,∞) with a compact support in (T,∞), say [t0, t3], such that the functionalF
given by (5) is negative. To this end, letT ∈ � be arbitrary andT < t0 < t1 < t2 <
t3. Further, let f be arbitrary sufficiently smooth function satisfying the boundary
conditions

f (t0) = 0, f (t1) = h(t1)

and let

g(t) = h(t2)
t

p−1
p lg

2
p t3

t

t
p−1

p

2 lg
2
p t3

t2

,

whereh(t) = t
p−1

p lg
2
p t. Define a test functiony as follows:

y(t) =



0 if T ≤ t ≤ t0,
f (t) if t0 ≤ t ≤ t1,
h(t) if t1 ≤ t ≤ t2,
g(t) if t2 ≤ t ≤ t3,
0 if t ≥ t3.

For the computation to follow, we put

ĝ(t) = t
p−1

p lg
2
p

t3
t

and

K(t2, t3) = t
p−1

p

2 lg
2
p

t3
t2
.
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Then, the functiong can be written in the form

g(t) =
h(t2)

K(t2, t3)
ĝ(t).

Further, we set

L = F ( f ; t0, t1) =

∫ t1

t0

[
| f ′(t)|p − γp

tp | f (t)|p
]

dt−
∫ t1

t0

[
c(t) − γp

tp

]
| f (t)|p dt,

G(h; t1, t2) =

∫ t2

t1

[
|h′(t)|p − γp

tp |h(t)|p
]

dt,

G(g; t2, t3) =

∫ t3

t2

[
|g′(t)|p − γp

tp |g(t)|p
]

dt,

H(h; t1, t2) =

∫ t2

t1

[
c(t) − γp

tp

]
|h(t)|p dt,

H(g; t2, t3) =

∫ t3

t2

[
c(t) − γp

tp

]
|g(t)|p dt

2 =

∫ t3

t2

[
c(t) − γp

tp

]
|h(t)|p

∣∣∣∣∣
g(t)
h(t)

∣∣∣∣∣
p

dt.

Then we have

F (y; t0, t3) =

∫ t3

t0

[|y′(t)|p − c(t)|y(t)|p] dt

=

∫ t3

t0

[
|y′(t)|p − γp

tp |y(t)|p
]

dt−
∫ t3

t0

[
c(t) − γp

tp

]
y(t)|p dt

=

∫ t1

t0

[
| f ′(t)|p − γp

tp t)|p
]

dt−
∫ t1

t0

[
c(t) − γp

tp

]
| f (t)|p dt

+

∫ t2

t1

[
|h′(t)|p − γp

tp |h(t)|p
]

dt +

∫ t3

t2

[
|g′(t)|p − γp

tp |g(t)|p
]

dt

−
∫ t2

t1

[
c(t) − γp

tp

]
|h(t)|p dt−

∫ t3

t2

[
c(t) − γp

tp

]
|g(t)|p dt

= F ( f ; t0, t1) + G(h; t1, t2) + G(g; t2, t3) − H(h; t1, t2) − H(g; t2, t3).

Let us start with computingG(h; t1, t2). Since

h′(t) =
p− 1

p
t−

1
p lg

2
p t

(
1 +

2
(p− 1) lg t

)
,

then, using the asymptotic formula

(1 + x)p = 1 + px+
1
2

p(p− 1)x2 + o(x2) asx→ 0, (13)
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we get

|h′(t)|p =

(
p− 1

p

)p

t−1 lg2 t

[
1 +

2p
(p− 1) lg t

+
2p

(p− 1) lg2 t
+ o

(
1

lg2 t

)]
.

Hence,

G(h; t1, t2) =

∫ t2

t1

[
|h′(t)|p − γp

tp |h(t)|p
]

dt

=

∫ t2

t1

[(
p− 1

p

)p

t−1 lg2 t

{
1 +

2p
(p− 1) lg t

+
2p

(p− 1) lg2 t
+ o

(
1

lg2 t

)}

− 1
tp

(
p− 1

p

)p

tp−1 lg2 t

]
dt

= 2

(
p− 1

p

)p−1 ∫ t2

t1

[
1
t

lg t +
1
t

+ o

(
1
t

)]
dt

= 2

(
p− 1

p

)p−1 [
lg t|t2t1 +

1
2

lg2 t|t2t1 + o(lg t2)

]

= 2

(
p− 1

p

)p−1

lg t|t2t1 +

(
p− 1

p

)p−1

lg2 t|t2t1 + o(lg t2)

ast2→ ∞. ConcerningG(h; t1, t2), we obtain

G(g; t2, t3) =
hp(t2)

Kp(t2, t3)

∫ t3

t2

[
|ĝ′(t)|p − γp

tp |ĝ(t)|p
]

dt

=
lg2 t2
lg2 t3

t2

(
p− 1

p

)p ∫ t3

t2

{
1
t

lg2 t3
t

(
1− 2

(p− 1) lg t

)p

− 1
t

lg2 t3
t

}
dt (14)

= 2

(
p− 1

p

)p−1 lg2 t2
lg2 t|t3t2

[
lg t|t3t2 − lg t3 lg t|t3t2 +

1
2

lg2 t|t3t2 + o(lg t3)

]
.

In the last line of the previous computation we used again the formula (13). Now, let
t2 be fixed for a moment. We will show that

lim
t3→∞

G(g; t2, t3) = −
(

p− 1
p

)p−1

lg2 t2. (15)



AN OSCILLATION CRITERION FOR HALF-LINEAR EQUATIONS 209

From (14), we have

lg t|t3t2 − lg t3 lg t|t3t2 + 1
2 lg2 t|t3t2 + o(lg t3)

lg2 t|t3t2
=

lg t3 − lg t2 − lg t3(lg t3 − lg t2) + 1
2 lg2 t3 − 1

2 lg2 t2 + o(lg t3)

lg2 t3 − lg2 t2

=
−1

2 lg2 t3 + lg t3 − lg t2 + lg t3 lg t2 − 1
2 lg2 t2 + o(lg t3)

lg2 t3 − lg2 t2

=
−1

2 + 1
lg t3
− lg t2

lg2 t3
+

lg t2
lg t3
− 1

2
lg2 t2
lg2 t3

+ o
(

1
lg t3

)

1− lg2 t2
lg2 t3

−→ −1
2

ast3 → ∞ and, thus, (15) holds indeed. In the next part of the proof, we show that
the functiongh is strictly monotonic on (t2, t3). Since

g(t)
h(t)

=
h(t2)

K(t2, t3)
ĝ(t)
h(t)

and
(
ĝ(t)
h(t)

)′
=


lg

2
p t3

t

lg
2
p t



′

=



lg t3

t

lg t


2
p


′

= −2
p


lg t3

t

lg t


2−p

p lg t3
t lg2 t

< 0,

we see that
(
g
h

)′
< 0. Hence,gh is monotonic on (t2, t3). Now, by the second mean

value theorem of the integral calculus, there existsξ ∈ (t2, t3) such that
∫ t3

t2

[
c(t) − γp

tp

]
|g(t)|p dt =

∫ t3

t2

[
c(t) − γp

tp

]
|h(t)|p

∣∣∣∣∣
g(t)
h(t)

∣∣∣∣∣
p

dt

=

∫ ξ

t2

[
c(t) − γp

tp

]
|h(t)|p.

Consequently,

H(h; t1, t2) + H(g; t2, t3) =

∫ t3

t1

(
c(t) − γ(t)

tp

)
|h(t)|p dt

=

∫ ξ

t1

(
c(t) − γ(t)

tp

)
|h(t)|p dt

=

∫ ξ

t1

(
c(t) − γ(t)

tp

)
tp−1 lg2 t dt.
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Let us now return to the computation of the functionalF .

F (y; t0, t3) = L + G(h; t1, t2) + G(g; t2, t3) −
∫ ξ

t1

(
c(t) − γp

tp

)
tp−1 lg2 t dt

= lg t2


L

lg t2
+ 2

(
p− 1

p

)p−1

− 2

(
p− 1

p

)p−1 lg t1
lg t2

+

(
p− 1

p

)p−1

lg t2

−
(

p− 1
p

)p−1 lg2 t1
lg t2

+ o(1) +
G(g; t2, t3)

lg t2

− 1
lg t2

∫ ξ

t1

(
c(t) − γp

tp

)
tp−1 lg2 t dt

]

≤ lg t2


L

lg t2
+ 2

(
p− 1

p

)p−1

+

(
p− 1

p

)p−1

lg t2 + o(1) +
G(g; t2, t3)

lg t2

− 1
lg ξ

∫ ξ

1

(
c(t) − γp

tp

)
tp−1 lg2 t dt +

1
lg t2

∫ t1

1

(
c(t) − γp

tp

)
tp−1 lg2 t dt

]
.

Now, letε > 0 be such that the lower limit in (12) is greater than 2
(

p−1
p

)p−1
+ 6ε and

let t1 > t0 be arbitrary. We can chooset2 > t1 in such a way that L
lg t2

< ε, the term
o(1) is< ε and

1
lg ξ

∫ ξ

1

(
c(s) − γp

sp

)
sp−1 lg2 s ds> 2

(
p− 1

p

)p−1

+ 5ε wheneverξ > t2.

Finally, according to (15), we taket3 > t2 such that

G(g; t2, t3)
lg t2

< −
(

p− 1
p

)p−1

lg t2 + ε.

Summarizing all the estimates above, we have

F (y; t0, t3) ≤ lg t2

ε + 2

(
p− 1

p

)p−1

+

(
p− 1

p

)p−1

lg t2 + ε

−
(

p− 1
p

)p−1

lg t2 + ε − 2

(
p− 1

p

)p−1

− 5ε + ε

 = −ε < 0

and, by Lemma 1, equation (1) is oscillatory. �

4. R  

In this concluding section, we formulate some open problems and suggestions for
the further investigation of problems similar to the one solved in Theorem 1.
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4.1

Corollary 1 in [2] states that (1) is oscillatory if (6) holds, i. e., the constant
1
2

(
p−1

p

)p−1
is 4 times less than the constant 2

(
p−1

p

)p−1
in (12). This is a typical phe-

nomenon of oscillation theory. Oscillation criteria proved by using the variational
principle contain the oscillation constant which is 4−times larger than the constant
in the same criterion but proved by the Riccati technique. Based on this observation,

we conjecture that the constant 2
(

p−1
p

)p−1
in (12) can be replaced by the constant

1
2

(
p−1

p

)p−1
and the statement of Theorem 1 remains valid. The proof of this modi-

fied statement of Theorem 1 via the Riccati technique is the subject of the present
investigation.

4.2

Corollary 2 in [2] gives the nonoscillation counterpart of the above mentioned
Corollary 1 of that paper: Equation (1) is nonoscillatory provided (7) and (8) hold.
We conjecture that a similar nonoscillation counterpart can be formulated also for
Theorem 1 as follows.

Conjecture 1. Suppose that

lim sup
t→∞

1
lg t

∫ ∞

t

(
c(s) − γp

sp

)
sp−1 lg2 s ds<

1
2

(
p− 1

p

)p−1

and

lim inf
t→∞

1
lg t

∫ ∞

t

(
c(s) − γp

sp

)
sp−1 lg2 s ds> −3

2

(
p− 1

p

)p−1

.

Then(1) is nonoscillatory.

4.3

In oscillation and nonoscillation criteria of the above-mentioned papers [2, 5],
where the half-linear equation

(r(t)Φ(x′))′ + c(t)Φ(x) = 0 (16)

is viewed as a perturbation of a nonoscillatory equation

(r(t)Φ(x′))′ + c̃(t)Φ(x) = 0, (17)

a functionh appeared whichis a solutionof (16) (in caser(t) ≡ 1 andc̃(t) =
γp

tp it is

h(t) = t
p−1

p ). In our main result, Theorem 1, the function

h(t) = t
p−1

p lg
2
p t

is not a solution of (4) (equation (1) is viewed as a perturbation of this Euler equa-
tion), but it is only close to a solution of this equation, in a certain sense. This
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observation suggests another direction for the next investigation of (16) as a pertur-
bation of (17)—to look for (non)oscillation criteria where

∫ t
(c(s) − c̃(s)) |h(s)|p ds

or
∫ ∞
t

(c(s) − c̃(s)) |h(s)|p dsappear andh generally isnot a solution of (17) but it is
only close to a solution of (17), in a certain sense.
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