
Miskolc Mathematical Notes HU e-ISSN 1787-2413
Vol. 14 (2013), No 3, pp. 887-892 DOI: 10.18514/MMN.2013.830

A simple robust estimation for parameters of

Cauchy distribution

Sándor Fegyverneki



Miskolc Mathematical Notes HU e-ISSN 1787-2413
Vol. 14 (2013), No. 3, pp. 887–892

A SIMPLE ROBUST ESTIMATION FOR PARAMETERS OF
CAUCHY DISTRIBUTION

S. FEGYVERNEKI

Received 17 June, 2013

Abstract. We define robust estimators for the parameters of the Cauchy distribution based on
the probability integral method. The proposed estimators have bounded influence functions and
high breakdown points. These estimators are simple, robust and consistent, but asymptotically
less efficient than the maximum likelihood estimators which are not robust. A simulation study
for finite sample size shows that the efficiency of these robust estimators is rather similar to the
maximum likelihood ones.
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1. INTRODUCTION

Let f�i ;1 � i � ng be an i.i.d. sequence of random variables from the Cauchy
distribution
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where � > 0 (see [8],[9],[10]).
The estimation of the parameters is a well discussed problem. Mostly, the loca-

tion parameter � and the scale parameter � are estimated by the maximum likelihood
(ML) estimators O� and O�; respectively. However, the ML estimators are conditio-
nal robust and the breakdown points are low. There exists other estimators, which
are rather efficient or even unbiased, as linear estimators of order statistics (median,
median absolute deviation).

In [2], [7], [9] Csernyák, Nagy and Steiner made an analysis how the I-divergence
can be used to provide simple, efficient and robust estimator for parameters.

The aim of this short note is to make an analysis the probability integral transform
estimators for the parameters � and � of the Cauchy distribution G0: We know that
if the random variable � has strictly monotone increasing probability distribution
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function F then the random variable F.�/ has uniform distribution on the interval
[0,1]. Therefore
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(1.2)

When the solutions Tn and sn of this system of equations exist, Tn and sn are
called the probability integral transformation (PIT) estimators of the location and the
scale parameter, respectively. These estimators are so-calledM -estimators which are
well-known in the context of robust estimation (see [3], [4], [5], [6]).

2. MAIN RESULTS

Theorem 1. Assume that G0 is differentiable, strictly monotone increasing, then
Tn and sn are well defined, that is, (1.2) has a unique solution with sn > 0:

The main steps of the proof: We follow [6]. The Jacobian of the map
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with y D x�t

s
: F is indifferently either the true or the empirical distribution.

We define a new probability measure F ? by

F ?.dy/D
 0.y/

EF . 0.y//
F.dx/I

then The Jacobian can be written as
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is strictly positive. The existence of a solution now follows from the observation that
for each fixed s; the first component of the map has a unique zero at some t D t .s/
that depends continuously on s: We now conclude from the intermediate value the-
orem for continuous functions that the solution exists uniquely. The joint asymptotic
distribution of .Tn; sn/ can be derived from a general result of Boos and Serfling [1].
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Theorem 2. The joint distribution of .Tn; sn/ converges to a normal one:
p
n..Tn; sn/� .�;�//

d
�!N.0;˙/

where the covariance matrix ˙ is given by
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that is,
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:

The main steps of the proof: We use the general result of Boos and Serfling [1]
on the central limit theorem for .Tn; sn/ for proving this theorem. Tn and sn are the
solutions of
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where
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and
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The assumptions are true for the Lévy-Smirnov distribution [8], since  is mono-
tone increasing and bounded and � is bounded and negative at 0.

Thus it remains to derive the asymptotic covariance matrix ˙ D C�1SŒC�1�T :

Here
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and with random variable �, it has probability distribution G0, where � D 0 and
� D 1,

S D
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These terms can be evaluated by partial integration. The approximations made by
program package Maple 15
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and
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Comparing the asymptotic variances of the PIT estimators Tn and sn with the

ML estimators O� and O� , respectively, we derive the asymptotic relative efficiencies
(ARE). It is known that the ML estimators are asymptotically efficient, having also
an asymptotic normal distribution, with covariance matrix denoted by ˙:

For the robustness, we easily derive the breakdown point "�.Tn/ of the location
estimator. We find that

"�.Tn/D 0:5:

This is the maximum for PIT estimator.
Because the function � is symmetric we can use directly the result of Huber [6] on

the breakdown point "�.sn/:

Theorem 3. If we choose the distribution G0 with �D 0 and � D 1 for the func-

tions  and � then the breakdown point "�.sn/ D
1

3
: This is the maximum for PIT

estimators.
We see that these properties are not similar to ML estimators because the function

 is redescending.

3. NUMERICAL ALGORITHM

We propose an algorithm for estimating the location and the scale simultaneously.
Let the general system be
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where the functions  and � are given by (1.2).
Step 1: Preestimation of location and scale by maxf�ig and median absolute devi-

ation .MAD/; i.e.,
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Step 3: Estimation of scale by
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Step 4: Stop or goto step 2.
Since the function G0.x/ is an absolute continuous distribution function, the con-

vergence of this iterative method follows from by Huber’s result [6] Section 7.8, if
G0.x/ is stricly monotone increasing.

4. SIMULATION

The asymptotic results show that the PIT estimators are less efficient than the ML
ones. But the efficiency for finite samples might be quite different. Therefore, we
simulated finite samples of size n from the Cauchy distribution with�D 0 and � D 1:
From these samples the different estimators were calculated. From nD 500 and 1000
simulations the mean and the standard deviation were derived for each estimator,
which were used for the comparison of their finite sample behaviour. We calculated
the correlations of the paired estimators and the mean square error (MSE), too. These
show that in pairwise comparison the behaviour of PIT amd ML estimators are rather
similar in finite. This is also indicated by their correlations.
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