

Miskolc Mathematical Notes Vol. 16 (2015), No. 2, pp. 657–666

g(x)-FULL CLEAN RINGS

N. ASHRAFI AND Z. AHMADI

Received 24 September, 2013

Abstract. Let C(R) denote the center of a ring R and g(x) be a polynomial of ring C(R)[x]. An element $r \in R$ is called "g(x)-clean" if r = s + u where g(s) = 0 and u is a unit of R and R is g(x)-clean if every element is g(x)-clean. In this paper, we introduce the concept of g(x)-full clean rings and study various properties of them.

2010 Mathematics Subject Classification: 16U60; 16U99; 13A99 Keywords: clean ring, g(x)-clean ring, g(x)-full clean ring.

1. INTRODUCTION

Clean rings were introduced by Nicholson [4]. A ring *R* is called clean if for every element $a \in R$, there exist an idempotent *e* and a unit *u* in *R* such that a = e + u. Let C(R) denote the center of a ring *R* and g(x) be a polynomial in C(R)[x]. Following Camillo and Simon [2], an element $r \in R$ is called g(x)-clean if r = u + s where g(s) = 0 and *u* is a unit of *R*, and *R* is g(x)-clean if every element is g(x)-clean. Moreover, Fan and Yang have studied g(x)-clean rings and their generalizations in [3]. Ashrafi and Ahmadi also studied weakly g(x)-clean rings [1].

In this paper, we extend g(x)-clean rings and introduce the concept of g(x)-full clean rings and study various properties of them. Also we prove that $M_n(R)$ is g(x)-full clean rings for any g(x)-full clean rings R and get a condition under which the definitions of g(x)-cleanness and g(x)-full cleanness are equivalent.

Throughout this paper all rings are assumed to be associative with identity and modules are unitary. J(R) always stands for the Jacobson radical of a ring R, U(R) is the set of all invertible elements of a ring R, $M_n(R)$ denotes the $n \times n$ matrix ring over the ring R and $\mathbb{T}_n(R)$ stands for $n \times n$ upper triangular matrix ring. Recall that:

Definition 1. Let *I* be an ideal of a ring *R*, we say that:

- (1) Idempotents can be lifted modulo *I* if, whenever $a^2 a \in I$, there exists $e^2 = e \in R$ such that $e a \in I$.
- (2) The root \bar{s} of the polynomial $\bar{g}(x) \in (R/I)[X]$ can be lifted modulo *I*, if there exists $a \in R$ such that g(a) = 0 and $s a \in I$.

© 2015 Miskolc University Press

Definition 2. An element $x \in R$ is said to be a full element if there exist $s, t \in R$ such that sxt = 1. The set of all full elements of a ring R will be denoted by K(R). Obviously, invertible elements and one-sided invertible elements are all in K(R).

Definition 3. A ring R is called full-clean if every element of R is a sum of a full element and an idempotent.

Definition 4. Let C(R) denote the center of a ring R and g(x) be a polynomial of ring C(R)[x]. An element in R is said to be g(x)-full clean if it can be written as the sum a root of g(x) and a full element. A ring R is called a g(x)-full clean ring if each element in R is a g(x)-full clean element.

2. g(x)-FULL CLEAN RINGS

Firstly, we get some basic properties of g(x)-full clean rings. Let *R* and *S* be rings and $\theta : C(R) \longrightarrow C(S)$ be a ring homomorphism with $\theta(1) =$

1. Then θ induces a map θ' from C(R)[x] to C(S)[x] such that for $g(x) = \sum_{i=0}^{n} a_i x^i \in$

 $C(R)[x], \theta'(g(x)) := \sum_{i=0}^{n} \theta(a_i) x^i \in C(S)[x]$. We should note that if $n \in \mathbb{Z}$, then $\theta(n) = \theta(1 + \dots + 1) = n\theta(1) = n$. So if g(x) is a polynomial with coefficients in

 $\theta(n) = \theta(1 + \dots + 1) = n\theta(1) = n$. So if g(x) is a polynomial with coefficients if \mathbb{Z} , then clearly $\theta'(g(x)) = g(x)$.

Here we give some properties of g(x)-full clean rings which are similar to those of g(x)-clean rings.

Proposition 1. Let $\theta : R \longrightarrow S$ be a ring epimorphism. If R is g(x)-full clean, then S is $\theta'(g(x))$ -full clean.

Proof. Let $g(x) = a_0 + a_1x + \dots + a_nx^n \in C(R)[x]$. Then $\theta'(g(x)) = \theta(a_0) + \theta(a_1)x + \dots + \theta(a_n)x^n \in C(S)[x]$. As θ is a ring epimorphism so for any $s \in S$, there exist $r \in R$ such that $\theta(r) = s$. Since R is g(x)-full clean, there exist $w \in K(R)$ and $s_0 \in R$ such that $r = w + s_0$ where $g(s_0) = 0$ and swt = 1 for some $s, t \in R$. Then $s = \theta(r) = \theta(w + s_0) = \theta(w) + \theta(s_0)$. But as swt = 1 we have $\theta(s)\theta(w)\theta(t) = \theta(swt) = \theta(1) = 1$. Therefore $\theta(w) \in K(S)$. But $\theta'(g(\theta(s_0))) = \theta(a_0) + \theta(a_1)\theta(s_0) + \dots + \theta(a_n)\theta(s_0^n) = \theta(a_0 + a_1s_0 + \dots + a_ns_0^n) = \theta(g(s_0)) = \theta(0) = 0$, so s is $\theta'(g(x))$ -full clean. Therefore S is $\theta'(g(x))$ -full clean.

Corollary 1. If R is g(x)-full clean, then for any ideal I of R, R/I is $\overline{g}(x)$ -full clean where $\overline{g}(x) \in C(R/I)[x]$.

Proof. Let $\theta: R \longrightarrow R/I$ be the canonical epimorphism. Note that if $a \in C(R)$ then $\bar{a} \in C(R/I)$, so the result follows from previous proposition.

Proposition 2. Let $I \leq J(R)$ be an ideal of R, $\eta : R \longrightarrow R/I$ with $\eta(r) = r + I = \bar{r}$, and $g(x) = \sum_{i=0}^{n} a_i x^i \in C(R)[x]$ with $\bar{g}(x) = \sum_{i=0}^{n} \bar{a}_i x^i \in C(R/I)[x]$. If R/I is $\bar{g}(x)$ -full clean and roots of g(x) lift modulo I, then R is g(x)-full clean.

Proof. For any $r \in R$, Let $r + I = \overline{r} = \overline{s} + \overline{w}$ be the $\overline{g}(x)$ -full clean expression, i.e., $\overline{g}(\overline{s}) = 0$, $\overline{w} \in K(R/I)$ and $\overline{s'}\overline{w}\overline{t} = \overline{1}$ for some $s', t \in R$. Since roots of $\overline{g}(x)$ lift modulo I, there exist $e \in R$ such that g(e) = 0 and $\overline{e} = \overline{s}$. So, r - e - w = i for some $i \in I$ and r = e + (w + i). Hence $\overline{s'}\overline{w}\overline{t} = \overline{1}$, we have $s'wt = 1 + h \in 1 + I \subseteq$ $1 + J(R) \subseteq U(R)$ for some $h \in I$. Therefore, there exist $a \in R$ where (s'wt)a = 1and $s_1, t_1 \in R$ such that $s_1wt_1 = 1$. Hence $s_1(w + i)t_1 = 1 + s_1it_1 \in 1 + J(R) \subseteq$ U(R). We have $s_1(w + i)t_1u = 1$ for some $u \in U(R)$, hence w + i is a full element. Therefore, r is g(x)-full clean, as asserted.

Proposition 3. Let $g(x) \in \mathbb{Z}[x]$ and $\{R_i\}_{i \in I}$ be a family of rings. Then $\prod_{i \in I} R_i$ is g(x)-full clean if and only if for all $i \in I$, R_i is g(x)-full clean.

Proof. Let $\prod_{i \in I} R_i$ is g(x)-full clean. Define $\pi_j : \prod_{i \in I} R_i \longrightarrow R_j$ by $\pi_j(\{a_i\}_{i \in I}) = a_j$. Since for all $j \in I$, π_j is a ring epimorphism, so by Proposition 1, for every $i \in I$, each R_i is g(x)-full clean ring.

For the contrary, suppose that for every $i \in I$, Ri is a g(x)-full clean ring. For any $x = \{x_i\}_{i \in I} \in \prod_{i \in I} R_i$, we write $xi = s_i + w_i$ with $g(s_i) = 0$ and $s_i w_i t_i = 1$ for some $s_i, t_i \in R$. Then x = s + w, where

$$g(s = \{s_i\}_{i \in I}) = a_0\{1_{R_i}\}_{i \in I} + a_1\{s_i\}_{i \in I} + \dots + a_n\{s_i^n\}_{i \in I}$$

= $\{a_0\}_{i \in I} + \{a_1s_i\}_{i \in I} + \dots + \{a_ns_i^n\}_{i \in I}$
= $\{a_0 + a_1s_i + \dots + a_ns_i^n\}_{i \in I}$
= $\{g(s_i)\}_{i \in I} = \{0\}_{i \in I}$

and $w = \{wi\}_{i \in I} \in K(\prod_{i \in I} R_i)$ with $\{s_i\}_{i \in I} \{wi\}_{i \in I} \{ti\}_{i \in I} = \{1\}_{i \in I}$. Hence x is g(x)-full clean, as required.

Recall that for a ring R with a ring endomorphism $\alpha : R \longrightarrow R$, the skew power series ring $R[[x;\alpha]]$ of R is the ring obtained by giving the formal power series ring over R with this property that $xr = \alpha(r)x$ for all $r \in R$. In particular, $R[[x]] = R[[x, id_R]]$.

Proposition 4. Let α be an endomorphism of R and $g(x) \in C(R)[x]$. Then the following statements are equivalent.

(1) *R* is a g(x)-full clean ring.

N. ASHRAFI AND Z. AHMADI

- (2) The formal power series ring R[[x]] of R is a g(x)-full clean ring.
- (3) The skew power series ring $R[[x;\alpha]]$ of R is a g(x)-full clean ring.

Proof. Being homomorphic image of R[[x]] and $R[[x;\alpha]]$, R is g(x)-full clean when R[[x]] or $R[[x;\alpha]]$ is g(x)-full clean.

Now, suppose *R* is a g(x)-full clean ring. For any $h = a_0 + a_1x + ... \in R[[x, \alpha]]$, write $a_0 = e_0 + u_0$ such that $g(e_0) = 0$ and $u_0 \in K(R)$. Assume that $s_0u_0t_0 =$ 1 for some $s_0, t_0 \in R$ and let $h' = h - e_0 = u_0 + a_1x + ...$ The equation $u = (s_0 + 0 + ...)h'(t_0 + 0 + ...) = 1 + s_0a_1\alpha(t_0)x + ...$ shows that $u \in U(R[[x, \alpha]])$, since $U(R[[x; \alpha]]) = \{a_0 + a_1x + ... : a_0 \in U(R)\}$ without any assumption on the endomorphism α . Hence $h' \in K(R[[x, \alpha]])$ and $h = e_0 + h'$ where $e_0 \in R[[x, \alpha]]$ and $g(e_0) = 0$. so, $R[[x; \alpha]]$ is a g(x)-full clean ring.

Since $R[[x]] = R[[x, id_R]]$, the proof is similar to that of $((1) \Rightarrow (3))$, as desired.

Remark 1. Generally, the polynomial ring R[t] is not g(x)-clean for an arbitrary nonzero polynomial $g(x) \in C(R)[x]$. For example let R be a commutative ring, then the polynomial ring R[t] is not g(x)-clean ring [3]. Full elements and invertible elements are the same when the ring R is commutative, so the concept of g(x)-clean and g(x)-full clean are equivalent for commutative rings. Now, let g(x) = x, we show that t is not g(x)-full clean. If t = w + s then it must be that s = 0, so t = w. As, w is a full element then fth = 1 for $f, h \in R$. Since R is commutative, $t \in U(R[t])$. But clearly $t \notin U(R[t])$, therefore R[t] is not g(x) full-clean.

Next we will investigate some cases in which the concept of g(x)-full cleanness and g(x)-cleanness are equivalence. Yu [5] called a ring R to be a left quasi-duo ring if every maximal left ideal of R is a two-sided ideal. Commutative rings, local rings, rings in which every nonunit has a power that is central are all belong to this class of rings [5].

Theorem 1. For a left quasi-duo ring R and $g(x) \in C(R)[x]$, the followings are equivalent:

- (1) R is a g(x)-clean ring;
- (2) *R* is a g(x)-full clean ring.

Proof. If R is g(x)-clean, then this is trivial that R is g(x)-full clean.

Now, let *R* be a g(x)-full clean ring and $r \in R$. So r = w + s such that g(s) = 0and $w \in K(R)$. It suffices to show that $w \in K(R)$ implies that $w \in U(R)$. Let swt = 1for some $s, t \in R$, so *s* is right invertible. Assume that *s* is not left invertible. Then $Rs \subsetneq R$, and there exists a maximal left ideal *M* of *R* such that $Rs \subseteq M \subsetneq R$. But since *R* is a left quasi-duo ring, so *M* is a two sided ideal and $s \in M$. Therefore $sR \subseteq$ *M*. But as *s* is right invertible, so *M* is not a proper ideal and this is a contradiction. So *s* should have left inverse as well and therefore *s* is invertible. Thus wts = 1. In a similar way, we get that $w \in U(R)$, and the result follows. In Fan and Yang [3], proved that if R is g(x)-clean, then so is $M_n(R)$ for all $n \ge 1$. Here we have a similar result for g(x)-full clean. Define $\pi_n : C(R) \longrightarrow M_n(R)$ by $a \longmapsto a I_n$ where I_n is the identity matrix of $M_n(R)$ and $a \in C(R)$. Then $M_n(R)$ is a C(R)-algebra for all $n \ge 1$.

Theorem 2. Let R be a ring and $g(x) \in C(R)[x]$. If R is g(x)-full clean, then $M_n(R)$ is also g(x)-full clean ring for all $n \ge 1$.

Proof. Suppose that *R* is g(x)-full clean. Given any $x \in R$, there exist $e \in R$ and $w \in K(R)$ such that x = e + w and g(e) = 0. We write swt = 1 for some $s, t \in R$. Assume that theorem holds for the matrix ring $M_k(R), k \ge 1$. Let

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \in M_{k+1}(R)$$

with $A_{11} \in R$, $A_{12} \in R^{1 \times k}$, $A_{21} \in R^{k \times 1}$ and $A_{22} \in M_k(R)$.

We have $A_{11} = e + w$ where g(e) = 0 and swt = 1 for some $s, t \in R$. There also exist matrix E and a full matrix W such that $A_{22} - A_{21}tsA_{12} = E + W$ where g(E) = 0 by induction. We write $SWT = I_k$ for some $S, T \in M_k(R)$. Therefore, we have $A = diag(e, E) + \begin{pmatrix} w & A_{12} \\ A_{21} & W + A_{21}tsA_{12} \end{pmatrix}$. Let $g(x) = a_0 + a_1x + \dots + a_mx^m$, then we have:

$$g\begin{pmatrix} e & 0\\ 0 & E \end{pmatrix} = a_0 I_{k+1} + a_1 \begin{pmatrix} e & 0\\ 0 & E \end{pmatrix} + \dots + a_m \begin{pmatrix} e & 0\\ 0 & E \end{pmatrix} = \begin{pmatrix} a_0 I_R & 0\\ 0 & a_0 I_k \end{pmatrix} + \begin{pmatrix} a_1 e & 0\\ 0 & a_1 E \end{pmatrix} + \dots + \begin{pmatrix} a_m e^m & 0\\ 0 & a_m E^m \end{pmatrix}$$
$$= \begin{pmatrix} g(e) & 0\\ 0 & g(E) \end{pmatrix} = 0$$

Also, let $P = \begin{pmatrix} s & 0 \\ -SA_{21}ts & S \end{pmatrix}$, $Q = \begin{pmatrix} t & -tsA_{12}T \\ 0 & T \end{pmatrix} \in M_{k+1}(R)$ and the equation

$$P\left(\begin{array}{cc}w&A_{12}\\A_{21}&W+A_{21}tsA_{12}\end{array}\right)Q=\left(\begin{array}{cc}1&0\\0&I_n\end{array}\right)=I_{k+1}$$

shows that $\begin{pmatrix} w & A_{12} \\ A_{21} & W + A_{21}tsA_{12} \end{pmatrix}$ is a full matrix, hence A is g(x)-full clean, as desired.

Proposition 5. Let $a \in R$ be a g(x)-full clean element and $g(x) \in C(R)[x]$ where g(1) = 0, then $A = \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix}$ is always g(x)-full clean in $M_2(R)$ for any $b \in R$.

Proof. If a = e + w where g(e) = 0 and swt = 1 for some $s, t \in R$, then we can write A as

$$A = \begin{pmatrix} e & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} w & b \\ 0 & -1 \end{pmatrix}$$

We also have $\begin{pmatrix} s & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} w & b \\ 0 & -1 \end{pmatrix} \begin{pmatrix} t & -tsb \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. Now if $g(x) = \sum_{i=0}^{n} a_i x^i$ we have,
$$g(\begin{pmatrix} e & 0 \\ 0 & 1 \end{pmatrix}) = a_0 I_2 + a_1 \begin{pmatrix} e & 0 \\ 0 & 1 \end{pmatrix}) + \dots + a_m \begin{pmatrix} e & 0 \\ 0 & 1 \end{pmatrix})^m$$
$$= \begin{pmatrix} a_0 1_R & 0 \\ 0 & a_0 1_R \end{pmatrix} + \begin{pmatrix} a_1 e & 0 \\ 0 & a_1 \end{pmatrix} + \dots + \begin{pmatrix} a_m e^m & 0 \\ 0 & a_m \end{pmatrix}$$
$$= \begin{pmatrix} g(e) & 0 \\ 0 & g(1) \end{pmatrix} = 0$$

Therefore, A is a g(x)-full clean element.

Theorem 3. Let $C = \begin{pmatrix} A & V \\ W & B \end{pmatrix}$ where A, B and $_AV_{B,B}W_A$ are respectively two rings and bimodules. Also let $g(x) \in \mathbb{Z}[x]$. Then C is g(x)-full clean if and only if A and B are g(x)-full clean.

Proof. Assume that *C* is $f \cdot (g(x) \cdot \text{clean})$. Let $I = \begin{pmatrix} 0 & V \\ W & B \end{pmatrix}$ and $J = \begin{pmatrix} A & V \\ W & 0 \end{pmatrix}$. One can check that *I*, *J* are ideals of *C* and $C/I \simeq A$, $C/J \simeq B$ (it is enough to consider the epimorphism $\varphi : C \longrightarrow A$ by $\varphi(\begin{pmatrix} a & v \\ w & b \end{pmatrix}) = a$ and the epimorphism $\psi : C \longrightarrow B$ by $\varphi(\begin{pmatrix} a & v \\ w & b \end{pmatrix}) = b$, respectively with kernel *I* and *J*). Clearly g(x)-full cleanness of *A*, *B* follows from Corollary 1.

Conversely, let A and B be both g(x)-full clean rings. For any $r = \begin{pmatrix} a & v \\ w & b \end{pmatrix} \in C$, we have $a = e_1 + u_1$ and $b = e_2 + u_2$ for some $e_1, e_2 \in R$ where $g(e_1) = g(e_2) = 0$ and $u_1, u_2 \in K(R)$. Assume that $s_1u_1t_1 = 1, s_2u_2t_2 = 1$ for some $s_1, t_1, s_2, t_2 \in R$. So we have $r = \begin{pmatrix} e_1 & 0 \\ 0 & e_2 \end{pmatrix} + \begin{pmatrix} u_1 & v \\ w & u_2 \end{pmatrix} = E + U$. Now $g(x) = \sum_{i=0}^n a_i x^i$. Hence $g(E) = a_0I_0 + a_1E + \dots + a_nE^n$ $= \begin{pmatrix} a_0 & 0 \\ 0 & a_0 \end{pmatrix} + \begin{pmatrix} a_1e_1 & 0 \\ 0 & a_1e_2 \end{pmatrix} + \dots + \begin{pmatrix} a_ne_1^n & 0 \\ 0 & a_ne_2^n \end{pmatrix}$

$$= \left(\begin{array}{cc} g(e_1) & 0\\ 0 & g(e_2) \end{array}\right) = 0$$

and the equation

$$\begin{pmatrix} s_1 & 0 \\ -s_2wt_1s_1 & s_2 \end{pmatrix} \begin{pmatrix} u_1 & v \\ w & u_2 \end{pmatrix} \begin{pmatrix} t_1 & -t_1s_1vt_2 \\ 0 & t_2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

implies that U is a full matrix. Hence r is g(x)-full clean, as required.

Proposition 6. Let R and S be two rings, M be an (R, S)-bimodule and $g(x) \in \mathbb{Z}[x]$.

- (1) Let $E = \begin{pmatrix} R & M \\ 0 & S \end{pmatrix}$ be the formal triangular matrix ring. Then E is g(x)-full clean ring if and only if R and S are g(x)-full clean rings.
- (2) For any $n \ge 1$, R is g(x)-full clean if and only if the $n \times n$ upper triangular matrix ring $T_n(R)$ are g(x)-full clean.

Proof. Formal triangular matrix rings are special cases of C in Theorem 3.

Let *R* be g(x)-full clean and $A = (a_{ij}) \in \mathbb{T}_n(R)$ with $a_{ij} = 0$ for $1 \le j < i \le n$. Since *R* is g(x)-full clean, for any $1 \le i \le n$, there exist $e_{ii} \in R$ and $w_{ii} \in K(R)$ such that $a_{ii} = w_{ii} + e_{ii}$ with $g(e_{ii}) = 0$. Also assume that $s_{ii}w_{ii}t_{ii} = 1$ for some $s_{ii}, t_{ii} \in R$. So we have

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ 0 & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_{nn} \end{pmatrix} = \begin{pmatrix} w_{11} + e_{11} & a_{12} & \dots & a_{1n} \\ 0 & w_{22} + e_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & w_{nn} + e_{nn} \end{pmatrix}$$
$$= \begin{pmatrix} w_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ 0 & w_{22} & a_{23} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & w_{nn} \end{pmatrix} + \begin{pmatrix} e_{11} & 0 & \dots & 0 \\ 0 & e_{22} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & e_{nn} \end{pmatrix}$$

Suppose $g(x) = \sum_{i=0}^{m} a_i x^i \in C(R)[x]$, so we have

$$g(E) = a_0 I_n + a_1 E + \dots + a_n E^n$$

= $\begin{pmatrix} a_0 & 0 & \dots & 0 \\ 0 & a_0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_0 \end{pmatrix} + \begin{pmatrix} a_1 e_{11} & 0 & \dots & 0 \\ 0 & a_1 e_{22} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_1 e_{nn} \end{pmatrix} + \dots$

663

N. ASHRAFI AND Z. AHMADI

$$+ \begin{pmatrix} a_m e_{11}^m & 0 & \dots & 0 \\ 0 & a_m e_{22}^m & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_m e_{nn}^m \end{pmatrix}$$
$$= \begin{pmatrix} g(e_{11}) & 0 & \dots & 0 \\ 0 & g(e_{22}) & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & g(e_{nn}) \end{pmatrix} = 0.$$

Also, it is straightforward with induction on *n*, to prove calculate that $W \in K(\mathbb{T}_n(R))$. So $\mathbb{T}_n(R)$ is g(x)-full clean.

Now let $\mathbb{T}_n(R)$ is g(x)-full clean. Define $\theta : \mathbb{T}_n(R) \longrightarrow R$ by $\theta(A) = a_{11}$ where

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ 0 & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_{nn} \end{pmatrix},$$

then it is clear that θ is a ring epimorphism. For any $a \in R$, let B be the diagonal matrix diog(a, ...a). Then $a = \theta(B) = \theta(W + S) = \theta(W) + \theta(S)$ where $\theta(W) =$ $w_{11} \in K(R)$ and

$$g(\theta(S)) = a_0 + a_1\theta(S) + \dots + a_n\theta(S^n)$$

= $\theta(B_0) + \theta(B_1)\theta(S) + \dots + \theta(B_n)\theta(S^n)$
= $\theta(B_0 + B_1S + \dots + B_nS^n)$
= $\theta(a_0I_n + (a_1I_n)S + \dots + (a_nI_n)S^n)$
= $\theta(g(S)) = 0.$

Thus a is g(x)-full clean, i.e., R is g(x)-full clean ring.

Proposition 7. Let R be a ring, $n \in \mathbb{N}$ and $2 \in U(R)$. Then the followings are equivalent:

- (1) R is full-clean;
- (2) $R is (x^2 2^n x)$ -full clean; (3) $R is (x^2 + 2^n x)$ -full clean;
- (4) R is $(x^2 2x)$ -full clean;
- (5) R is $(x^2 + 2x)$ -full clean;
- (6) *R* is $(x^2 1)$ -full clean;
- (7) every element of R is the sum of a full element and a square root of 1.

Proof. (1) \Rightarrow (7) Suppose *R* is full-clean and $x \in R$. Then (x+1)/2 = e + u for some $e^2 = e$ and $u \in K(R)$. So x = (2e-1) + 2u with $(2e-1)^2 = 1$ and $2u \in K(R)$.

(7) \Rightarrow (1) Let every element of *R* is the sum of a full element and a square root of 1. Then given $x \in R$, we have 2x - 1 = t + w with $t^2 = 1$ and *w* a full element in *R*. So x = (t+1)/2 + w/2 with $((t+1)/2)^2 = (t+1)/2$ and w/2 is a full element in *R*, as asserted.

(1) \Rightarrow (2) Since $2 \in U(R)$, $2^n \in U(R)$. Let $a \in R$, then $a/2^n = e + u$ such that $e^2 = e$ and $u \in K(R)$. So, $a = 2^n e + 2^n u$ where $(2^n e)^2 - 2^n (2^n e) = 0$ and $2^n u \in K(R)$. Therefore, R is $(x^2 - 2^n x)$ -full clean.

(2) \Rightarrow (1) Let $r \in R$. Since R is $f \cdot ((x^2 - 2^n x) \cdot \text{clean})$, $r2^n = s + w$ such that s is a root of $(x^2 - 2^n x)$ and $w \in K(R)$. Thus, $r = s/2^n + w/2^n$ where $w/2^n \in K(R)$ and $(s/2^n)^2 = s(s-2^n+2^n)/(2^n)^2 = s2^n/(2^n)^2 = s/2^n$. So R is f-clean. Similarly, we can prove (1) \Leftrightarrow (3), (1) \Leftrightarrow (4) and (1) \Leftrightarrow (5).

Let R be a ring and $_{R}V_{R}$ be an R-R-bimodule which is a ring possibly without a unity in which (vw)r = v(wr), (vr)w = v(rw) and (rv)w = r(vw) hold for all $v, w \in V$ and $r \in R$. The ideal extension of R by V is defined to be the additive abelian group $I(R, V) = R \bigoplus V$ with multiplication (r, v)(s, w) = (rs, rw + vs + vw).

Proposition 8. Let R be a ring and $_{R}V_{R}$ be an R-R-bimodule, $g(x) \in \mathbb{Z}[x]$. An ideal-extension E = I(R, V) of R by V is g(x)-full clean if R is g(x)-full clean and for any $v \in R$, there exists $w \in R$ such that v + w + wv = 0.

Proof. Let $t = (r, v) \in E$. Then r = s + u where g(s) = 0 and $u \in K(R)$. Therefore t = (s, 0) + (u, v). Let $g(x) = \sum_{i=0}^{n} a_i x^i$, we have $g((s, 0)) = a_0(1, 0) + a_1(s, 0) + \dots + a_n(s, 0)^n$ $= a_0(1, 0) + a_1(s, 0) + \dots + a_n(s^n, 0)$ $= (a_0, 0) + (a_1s, 0) + \dots + (a_ns^n, 0)$ $= (a_0 + a_1s + \dots + a_ns^n, 0) = (g(s), 0) = (0, 0)$

and we will show that $(u, v) \in K(E)$. Assume that sut = 1. For $svt \in V$, there exists $w \in V$ such that svt + w + wsvt = 0 by assumption. Also, one can check that (s, ws)(u, v)(t, 0) = (1, 0). Hence $(u, v) \in K(E)$ and E is a g(x)-full clean ring. \Box

REFERENCES

- N. Ashrafi and Z. Ahmadi, "Weakly g(x)-clean rings," *Iran. J. Math. Sci. Inform.*, vol. 7, no. 2, pp. 83–91, 111, 2012.
- [2] V. Camillo and J. J. Simón, "The Nicholson-Varadarajan theorem on clean linear transformations," *Glasg. Math. J.*, vol. 44, no. 3, pp. 365–369, 2002, doi: 10.1017/S0017089502030021.
- [3] L. Fan and X. Yang, "On rings whose elements are the sum of a unit and a root of a fixed polynomial," *Comm. Algebra*, vol. 36, no. 1, pp. 269–278, 2008, doi: 10.1080/00927870701665461.
- [4] W. K. Nicholson, "Lifting idempotents and exchange rings," *Trans. Amer. Math. Soc.*, vol. 229, pp. 269–278, 1977, doi: 10.1090/S0002-9947-1977-0439876-2.

[5] H.-P. Yu, "On quasi-duo rings," *Glasgow Math. J.*, vol. 37, no. 1, pp. 21–31, 1995, doi: 10.1017/S0017089500030342.

Authors' addresses

N. Ashrafi

Semnan University, Faculty of Mathematics, Statistics and Computer Science, Semnan, Iran *E-mail address:* nashrafi@semnan.ac.ir & ashrafi49@yahoo.com

Z. Ahmadi

Semnan University, Faculty of Mathematics, Statistics and Computer Science, Semnan, Iran *E-mail address:* zahmadiv@yahoo.com