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1. I

We are interested in conditions sufficient for the unique solvability of then-dimen-
sional initial value problem of the form

u′(t) = (`u)(t) + f (t), t ∈ [a,b], (1.1)

u(τ) = c, (1.2)

where−∞ < a < b < +∞, u : [a,b] → �n, n ∈ �, for arbitraryc ∈ �n and
f ∈ L([a, b],�n). In (1.1),` : C([a, b],�n)→ L([a, b],�n) is a linear operator which
is assumed to be (~σ, τ)-positive in the following sense.

Definition 1.1. [1, 3] An operator` : C([a,b],�n) → L([a,b],�n) is said to be
(~σ, τ)-positivewith some~σ ∈ {−1,1}n andτ ∈ [a, b] if the relation

u(t) ≥~σ 0 for all t ∈ [a,b], (1.3)

implies that
(`u)(t) sign(t − τ) ≥~σ 0 for a. e.t ∈ [a,b].

Here, the symbol≥~σ stands for the partial ordering of the space�n generated by
the coneσ1�+ × σ2�+ × · · · × σn�+, i. e.,

�n 3 u = (uk)
n
k=1 ≥~σ 0 if, and only ifσkuk ≥ 0 for all k = 1,2, . . . ,n. (1.4)
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In a similar way, we define the corresponding strict inequality:

�n 3 u = (uk)
n
k=1 >~σ 0 if, and only ifσkuk > 0 for all k = 1,2, . . . ,n.

By a solution of problem (1.1), (1.2), as usual, an absolutely continuous function
u : [a, b] → �n is meant which possesses property (1.2) at the pointτ and satisfies
equation (1.1) almost everywhere on [a, b].

Remark1.2. As noted in [3], a (~σ, τ)-positive linear operator fromC([a, b],�n) to
L([a, b],�n) is always bounded.

For the Cauchy problem (1.1), (1.2), we obtain new versions of the general unique
solvability conditions established in [1, 3]. The main idea here, as the title of the
paper suggests, is to use certain “multistage iterations,” in terms of which the main
assumptions of the theorems are formulated.

2. U    (1.1), (1.2)

To formulate the theorems on the Cauchy problem (1.1), (1.2), we need to intro-
duce some auxiliary functions related to the homogeneous problem

u′(t) = (`u)(t), t ∈ [a, b], (2.1)

u(τ) = 0. (2.2)

2.1. Multistage iterations for the homogeneous problem.With the homogeneous
problem (2.1), (2.2), which corresponds, in a natural way, to the original Cauchy
problem (1.1), (1.2), we associate the sequence of functions{yk | k = 0, 1,2, . . . } ⊂
C([a,b],�n) determined by the recurrence relation

yk(t) :=
r∑

i=1

αi

∫ t

τ
(`yk−i)(s)ds, t ∈ [a, b], k ≥ r, (2.3)

whereα1, α2, . . . , αr are certain fixed non-negative constants.
Here,r ∈ � is fixed, andy0, y1, . . . , yr−1 are arbitrary absolutely continuous func-

tions from [a,b] to �n chosen so that

yk(t) ≥~σ 0, t ∈ [a, b], k = 0, 1, . . . , r − 1, (2.4)

and

yk(τ) = 0, k = 0,1, . . . , r − 1. (2.5)

Remark2.1. In the case wherer = 1 andα1 = 1, equality (2.3) takes the form

yk(t) =

∫ t

τ
(`yk−1)(s)ds, t ∈ [a,b], k ∈ �, (2.6)
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and thus coincides with the sequence used, e. g., in [1–3]. Formula (2.6) defines the
standard iteration sequence used in studies of the uniqueness of the trivial solution of
the integral functional equation

y(t) =

∫ t

τ
(`y)(s)ds, t ∈ [a, b],

which, obviously, is equivalent to the homogeneous problem (2.1), (2.2).

2.2. General theorems.The following general theorem on the solvability of prob-
lem (1.1), (1.2) is true.

Theorem 2.2. Let the operator̀ in equation(1.1) be (~σ, τ)-positive for some~σ ∈
{−1,1}n. Assume also that one can specify some integersr andm, m ≥ r ≥ 1, a real
number% ∈ (1,+∞), some constants{βk}mk=0 ⊂ [0,+∞) and {αi}ri=1 ⊂ [0,+∞), and
certain absolutely continuous vector-functionsy0, y1, . . . , yr−1 satisfying conditions
(2.4), (2.5), and the relation

r−1∑

k=0

βkyk(t) >~σ 0 for all t ∈ [a,b] \ {τ} (2.7)

such that the differential functional inequality

[ r−1∑

k=0

βky
′
k(t) +

m−1∑

k=0

( ∑

ν∈Tr,m(k)

βν+kαν − %βk

)
(`yk) (t)

− %βm (`ym) (t)

]
sign(t − τ) ≥~σ 0 (2.8)

is satisfied for almost everyt from [a,b], where, by definition,

Tr,m(k) :=
{
ν ∈ � | ν ≤ r ≤ ν + k ≤ m

}
(2.9)

for r ∈ �, m≥ r, andk = 0,1, . . . ,m− 1.
Then the Cauchy problem(1.1), (1.2) has a unique solutionu(·) for arbitrary

f ∈ L([a, b],�n) and c ∈ �n, and this solution is representable as the uniformly
convergent functional series

u(t) = f̃ (t) +

∫ t

τ
(` f̃ )(s)ds+

∫ t

τ
`

(∫ ·

τ
(` f̃ )(ξ)dξ

)
(s)ds+ . . . , t ∈ [a,b], (2.10)

where, by definition,

f̃ (t) := c +

∫ t

τ
f (s)ds, t ∈ [a, b]. (2.11)

Moreover, if the functionf and vectorc in (1.1), (1.2)satisfy the additional condi-
tion ∫ t

τ
f (s)ds≥~σ −c for all t ∈ [a,b], (2.12)
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then the unique solutionu(·) of this problem satisfies relation(1.3).

Remark2.3. It is not difficult to show that the setTr,m(k), wherek = 0,1, . . . ,m−
1, consists of those integersν which satisfy the inclusionν ∈ {r, r + 1, . . . ,m} ∩
{k + 1, k + 2, . . . , k + r} , or, in other words,

Tr,m(k) =
{
ν ∈ � | max{r, k + 1} ≤ ν ≤ min {m, k + r}} (2.13)

for k = 0,1, . . . ,m− 1. Therefore, the differential inequality (2.8) can be rewritten in
the form

[ r−1∑

k=0

βky
′
k(t) +

m−1∑

k=0

( min{m,k+r}∑

ν=max{r,k+1}
βν+kαν − %βk

)
(`yk) (t)

− %βm (`ym) (t)

]
sign(t − τ) ≥~σ 0.

It seems, however, that form (2.8) is more convenient for applications.
Note that, due to the inequalitym≥ r, for k = 0, 1,2, . . . ,m− 1, we have

max{r, k + 1} ≤ m, max{r, k + 1} ≤ k + r

and, hence, by (2.13), the setTr,m(k) is non-empty for anyk = 0, 1, . . . ,m− 1.

Remark2.4. Condition (2.7) implies, in particular, that

r−1∑

k=0

βk > 0, (2.14)

and, therefore, we can always take 1 for one of the non-negative coefficientsβ0, β1,
. . . , βr−1 in Theorem 2.2. It is handier, however, to keep all these coefficients unfixed.

Remark2.5. Theorem 2.2 implies, in particular, Theorem 1 from [1]. Both these
statements, as we shall see in Section 3, are implied by Theorem 1 from [3]. This
means that the theorems mentioned are, in fact, equivalent, although their correspond-
ing assumptions are rather different from one another.

Remark2.6. Similarly to [3], one can show that condition (2.8) is optimal in the sense
that the assertion of Theorem 2.2, generally speaking, is not true if (2.8) is assumed
with % = 1.

The assumptions of the following version of Theorem 2.2 are somewhat simpler.

Theorem 2.7. Let the operator̀ in equation(1.1) be (~σ, τ)-positive for some~σ ∈
{−1, 1}n. Assume also the existence of a natural numberr, real number% ∈ (1,+∞),
some non-negative constants{αi}ri=1 and {βk}rk=0, and certain absolutely continuous
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vector-functionsy0, y1, . . . , yr−1 satisfying conditions(2.4), (2.5), and(2.7)such that
the differential functional inequality


r−1∑

k=0

βky
′
k(t) +

r−1∑

k=0

(βrαr−k − %βk) (`yk) (t) − %βr (`yr ) (t)

 sign(t − τ) ≥~σ 0 (2.15)

is satisfied for almost everyt from [a,b].
Then the Cauchy problem(1.1), (1.2) has a unique solutionu(·) for arbitrary

f ∈ L([a, b],�n) and c ∈ �n, and this solution is representable as the uniformly
convergent functional series(2.10), wheref̃ is the function defined by equality(2.11).

Moreover, if the functionf and vectorc in (1.1), (1.2)satisfy the additional condi-
tion (2.12), then the unique solutionu(·) of this problem satisfies relation(1.3).

Note that the functionsy0, y1, . . . , yr−1 in Theorem 2.7 are givena priori, whereas
the functionyr is constructed according to formula (2.3):

yr (t) =

r∑

i=1

αi

∫ t

τ
(`yr−i)(s)ds, t ∈ [a,b].

2.3. Corollaries. Here, we present several corollaries derived from Theorems 2.2
and 2.7.

Corollary 2.8. Let the operator̀ in equation(1.1) be (~σ, τ)-positive for some~σ ∈
{−1,1}n. Assume also the existence of anr ∈ �, a real numberγ ∈ (1,+∞), some
non-negative constants{βk}r−1

k=0, and of certain absolutely continuous vector-functions
y0, y1, . . . , yr−1 satisfying conditions(2.4), (2.5), and (2.7) such that the differential
functional inequality


r−1∑

k=0

βky
′
k(t) − γ

r∑

i=1

βr−i

(
`

(∫ ·

τ
(lyr−i)(s)ds

))
(t)

 sign(t − τ) ≥~σ 0 (2.16)

holds for the functionsy0, y1, . . . , yr−1 at almost every pointt from [a, b].
Then the conclusion of Theorem 2.7 is true for problem(1.1), (1.2).

The conditions involving iteration sequences of type (2.3) admit different varia-
tions. For example, the following statement is true.

Corollary 2.9. Let the operator̀ in equation(1.1) be (~σ, τ)-positive for some~σ ∈
{−1,1}n. Assume that there exist certain absolutely continuous functionsy0, y1 :
[a,b] → �n satisfying the conditions

yk(t) >~σ 0 andyk(τ) = 0 for all t ∈ [a,b] \ {τ} , k = 0,1, (2.17)

and some constants% ∈ (1,+∞), m ∈ � (m ≥ 2), {α1, α2} ⊂ [0,+∞), α1α2 , 0, and
{β0, β1, β2, . . . , βm} ⊂ (0,+∞) such that

α1βk+1 + α2βk+2 = %βk, k = 1, 2, . . . ,m− 2, (2.18)
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for which the relation
[
β0y
′
0(t) + β1y

′
1(t) + (α2β2 − %β0) (`y0) (t)

+ (α1βm− %βm−1) (`ym−1) (t) − %βm (`ym) (t)
]
sign(t − τ) ≥~σ 0 (2.19)

holds for almost allt ∈ [a,b], where the functionsym−1 and ym are defined by the
recurrence relation

yk(t) := α1

∫ t

τ
(`yk−1)(s)ds+ α2

∫ t

τ
(`yk−2)(s)ds, t ∈ [a, b],

for k = 2, 3, . . . .,m.
Then the conclusion of Theorem 2.7 is true for problem(1.1), (1.2).

Remark2.10. As will be seen from the proof of Corollary 2.9, instead of (2.17), the
absolutely continuous functionsy0 andy1 can be assumed to be just non-negative in
the sense of relation≥~σ (see formula (1.4)) and such that

y0(τ) = y1(τ) = 0; y0(t) + y1(t) >~σ 0 for t ∈ [a,b] \ {τ} ,
i. e., one of these functions may vanish at points different fromτ whenever the other
one remains non-zero.

Corollary 2.11. If ` in equation(1.1) is (~σ, τ)-positive for some~σ ∈ {−1, 1}n and,
furthermore, one can specify some% ∈ (1,+∞), α ∈ (0, %), and certain absolutely
continuous vector-functionsz0, z1 : [a, b] → �n satisfying the conditions

zk(t) >~σ 0 andzk(τ) = 0 for all t ∈ [a, b] \ {τ} , k = 0,1, (2.20)

and, for almost everyt from [a,b], the inequality
[
z′0(t) + z′1(t) − (% − α) (`z0) (t) − α (`zm−1) (t) − % (`zm) (t)

]
sign(t − τ) ≥~σ 0, (2.21)

where thezm−1 andzm are the functions defined recursively by the relation

zk(t) := (% − α)
∫ t

τ
(`zk−1)(s)ds+ α

∫ t

τ
(`zk−2)(s)ds, t ∈ [a,b], (2.22)

for k = 2, 3, . . . ,m, then the assertion of Theorem 2.7 is true for problem(1.1), (1.2).

The following version of Corollary 2.11 is more similar to Theorem 3.1.

Corollary 2.12. If ` in equation(1.1) is (~σ, τ)-positive for some~σ ∈ {−1, 1}n and,
furthermore, there exist some% ∈ (1,+∞), α ∈ (0, %), and certain absolutely continu-
ous vector-functionsz0, z1 : [a,b] → �n satisfying conditions (2.20) and, for almost
everyt from [a,b], the inequality

[
z′0(t) + z′1(t) − (% − α) (`z0) (t) − α (`z1) (t) − % (`z2) (t)

]
sign(t − τ) ≥~σ 0,
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where

z2(t) := (% − α)
∫ t

τ
(`z1)(s)ds+ α

∫ t

τ
(`z0)(s)ds, t ∈ [a, b],

then the assertion of Theorem 2.7 is true for problem(1.1), (1.2).

For the equation with deviating argument

u′(t) =

N∑

j=1

P j (t) u
(
ω j(t)

)
+ f (t), t ∈ [a,b], (2.23)

where f ∈ L([a, b],�n), N ∈ �, {P j | j = 1, 2, . . . ,N} ⊂ L ([a,b],GLn (�)), and
ω j : [a,b] → [a, b], j = 1,2, . . . ,N, are measurable functions, one can establish,
e. g., the following statement.

Corollary 2.13. Assume that, for a certain~σ ∈ {−1,1}n, the functionsP j : [a,b] →
GLn(�) and ω j : [a,b] → [a,b], j = 1, 2, . . . ,N, in equation(2.23) satisfy the
inequalities

N∑

ν=1

Pν(t)~σ sign(t − τ) ≥~σ 0 for a. e.t ∈ [a,b] (2.24)

and, furthermore, the condition

r∑

i=1

βr−i

N∑

j=1

P j (t)
∫ ω j (t)

τ

N∑

ν=1

Pν (s) g |ων(s) − τ|qr−i ds· sign(t − τ)

≤~σ α
r−1∑

k=0

βkqk |t − τ|qk−1 g for a. e.t ∈ [a,b] (2.25)

holds with some{βk | k = 0,1, . . . , r−1} ⊂ [0,+∞), {qk | k = 0,1, . . . , r−1} ⊂ [1,+∞),
α ∈ (0,1), andg ∈ �n, g >~σ 0.

Then, for arbitraryf fromL([a,b],�n) andc∈�n, the initial value problem(2.23),
(1.2) has a unique solutionu(·), and this solution is representable as the uniformly
convergent series

u(t) = f̃ (t) +

N∑

k1=1

∫ t

τ
Pk1u(ξ1) f̃

(
ωk1(ξ1)

)
dξ1

+

N∑

k1=1

∫ t

τ
Pk1(ξ1)

∫ ωk1(ξ1)

τ

N∑

k2=1

Pk2(ξ2) f̃
(
ωk2(ξ2)

)
dξ2dξ1 + . . . , t ∈ [a,b],

with the functionf̃ : [a, b] → �n given by formula(2.11). Moreover, under the addi-
tional condition(2.12), the solution of problem(2.23), (1.2)satisfies inequality(1.3).
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3. P

We need the following theorem from [3].

Theorem 3.1. [3] Let us suppose that the linear operator` in equation(1.1) is (~σ, τ)-
positive for some~σ ∈ {−1, 1}n. Assume also that there exist a number% ∈ (1,+∞)
and an absolutely continuous functiony : [a, b] → �n such that

y(τ) = 0, (3.1)

y(t) >~σ 0 for all t ∈ [a,b] \ {τ} , (3.2)

and, furthermore, the functional differential inequality
[
y′(t) − % (`y) (t)

]
sign(t − τ) ≥~σ 0 (3.3)

is satisfied for almost everyt from [a,b].
Then the Cauchy problem(1.1), (1.2) is uniquely solvable for arbitraryc ∈ �n

and f ∈ L([a,b],�n). The unique solutionu(·) of problem(1.1), (1.2) is, moreover,
representable as the uniformly convergent functional series(2.10).

If, in addition, c and f satisfy condition(2.12), then the solutionu(·) mentioned
possesses property(1.3).

The idea of proof of the results stated in Sections 2.2 and 2.3 is to construct a
suitable solution of the differential inequality (3.3) by using some or other properties
of the “multistage” iteration sequence (2.3).

3.1. Proof of Theorem 2.2.Let us fix certain absolutely continuous vector-functions
{yk}r−1

k=0 : [a, b] → �n and construct the corresponding functions{yk}mk=r : [a,b] → �n

according to formula (2.3). We consider the case where

m≥ r. (3.4)

Introduce the function

y(t) :=
m∑

k=0

βkyk(t), t ∈ [a,b], (3.5)

with the coefficients{βk}mk=0 ⊂ [0,+∞) determined by the assumptions of the theorem.
Note that, in view of (2.4), assumption (2.7) implies that (2.14) holds.

Let us show that, under our assumptions, function (3.5) satisfies inequality (2.8).
Indeed, by virtue of (3.5), the corresponding function

w%,y := y′ − %`y (3.6)

has the form

w%,y =

m∑

k=0

βk

[
y′k − %`yk

]
,
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whence, by (3.4),

w%,y =

r−1∑

k=0

βk

[
y′k − %`yk

]
+

m∑

k=r

βk

[
y′k − %`yk

]

=

r−1∑

k=0

βky
′
k +

m∑

k=r

βky
′
k − %

m∑

k=0

βk`yk. (3.7)

Note that the first sum in (3.7) contains the given functionsy0, y1, . . . , yr−1 only.
In view of formula (2.3) for the functionsyr , yr+1, . . . , we have

y′k(t) :=
r∑

i=1

αi (`yk−i) (t), t ∈ [a,b], k ≥ r,

and, therefore, equality (3.7) can be brought to the form

w%,y =

r−1∑

k=0

βky
′
k +

m∑

k=r

βk

r∑

i=1

αi`yk−i − %
m∑

k=0

βk`yk. (3.8)

Now we need the following technical lemma.

Lemma 3.2. For arbitrary vectorsx0, x1, . . . , xm−1 from�n, the equality
m∑

k=r

βk

r∑

i=1

αi xk−i =

m−1∑

j=0

γ j x j (3.9)

holds, where the coefficientsγ0, γ1, . . . , γm−1 are given by the formulae

γk :=
∑

ν∈Tr,m(k)

βν+kαν, k = 0,1, . . . ,m− 1, (3.10)

and the setsTr,m(k), k = 0,1, . . . ,m− 1, are defined by equality(2.9).

Proof of Lemma 3.2.It is clear from the inequalities 1≤ i ≤ r ≤ k ≤ m that the
expression

m∑

k=r

βk

r∑

i=1

αi xk−i

is, in fact, a linear combination of the valuesx0, x1, . . . , xm−1. It therefore remains to
determine the corresponding coefficients.

Since equality (3.9) should be satisfied for arbitrary values ofx0, x1, . . . , xm−1, we
can put, in particular,

x j := δ j,s, j = 0,1, . . . ,m− 1,

wheres is an arbitrary integer between 0 andm−1, andδ j,s is the Kronecker symbol,

δ j,s =


1 for j = s

0 otherwise.
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In this case, (3.9) has the form
m∑

k=r

βk

r∑

i=1

αiδk−i,s = γs. (3.11)

It is easy to see that
r∑

i=1

αiδk−i,s =


αk−s if k− s ∈ {1,2, . . . , r}
0 if k− s < {1,2, . . . , r}

and, hence,
m∑

k=r

βk

r∑

i=1

αiδk−i,s =
∑

k : r≤k≤m and 1≤k−s≤r

βkαk−s. (3.12)

In view of (3.11), the change of variableν = k− sbrings (3.12) to the form
∑

ν : 1≤ν≤r≤ν+s≤m

βν+sαν = γs.

The last relation, according to the definition of the setsTr,m(s), s = 0,1, . . . ,m− 1,
can be rewritten as

∑
ν∈Tr,m(s) βν+sαν = γs, which is nothing but (3.10). This leads us

immediately to the required equality (3.9) for arbitraryx0, x1, . . . , xm−1. �

Returning now to expression (3.6), we conclude that, in view of Lemma 3.2, for-
mula (3.8) can be rewritten as

w%,y =

r−1∑

k=0

βky
′
k +

m−1∑

k=0

γk`yk − %
m∑

k=0

βk`yk

=

r−1∑

k=0

βky
′
k +

m−1∑

k=0

(γk − %βk) `yk − %βm`ym, (3.13)

whereγ0, γ1, . . . , γm−1 are given by relation (3.10). In view of (3.10), equality (3.13)
is equivalent to the relation

w%,y =

r−1∑

k=0

βky
′
k +

m−1∑

k=0


∑

ν∈Tr,m(k)

βν+kαν − %βk

 `yk − %βm`ym.

Therefore, assumption (2.8) guarantees that function (3.6) satisfies the condition

w%,y(t) sign(t − τ) ≥~σ 0 for a. e.t ∈ [a, b],

i. e., the functional differential inequality (3.3) holds for the functiony given by (3.5).
We have thus constructed a solution,y, of the differential inequality (3.3). It will

be possible to apply Theorem 3.1 if we show that, under our assumptions, the solution
mentioned possesses properties (3.1) and (3.2). We prove this by using the following
lemma.
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Lemma 3.3. Assume that the operator̀ : C([a, b],�n) → L([a,b],�n) is (~σ, τ)-
positive with respect to certain~σ ∈ {−1,1}n and τ ∈ [a,b]. Then, for arbitrary
continuous functions{yk}r−1

k=0 : [a, b] → �n satisfying conditions(2.4) and (2.5), the
corresponding functionsyr , yr+1, . . . defined by formulae(2.3)also satisfy condition
(2.4):

yk(t) ≥~σ 0, t ∈ [a,b], k ≥ r.

Moreover, each of these functions vanishes at the pointτ.

Proof of Lemma 3.3.The first assertion is derived from the definition of functions
(2.3) similarly to the proof of Lemma 1 from [1]. The important difference is that, in
our case, we need to make use of the non-negativeness of the coefficientsα1, α2, . . . , αr

in formula (2.3) for the functionsyr , yr+1, . . . . We omit the details here.
The property

yk(τ) = 0 for all k = 0, 1, 2, . . . ,m

is obvious from condition (2.5) and formula (2.3). �

Application of Lemma 3.3 allows us to claim that, in view of the (~σ, τ)-positiveness
of the operator̀ , the inequality

βkyk(t) ≥~σ 0, t ∈ [a,b], k = 0, 1, . . . ,m, (3.14)

is satisfied because allβk, k = 0,1, . . . ,m, are non-negative. It follows from (3.14)
that

m∑

k=0

βkyk(t) −
r−1∑

k=0

βkyk(t) =

m∑

k=r

βkyk(t) ≥~σ 0

and, hence,
m∑

k=0

βkyk(t) ≥~σ
r−1∑

k=0

βkyk(t) (3.15)

for everyt from [a,b].
Inequality (3.15) yields

y(t) =

m∑

k=0

βkyk(t) ≥~σ
r−1∑

k=0

βkyk(t), t ∈ [a,b],

whence, by virtue of assumption (2.7), we obtain

y(t) ≥~σ
r−1∑

k=0

βkyk(t) >~σ 0, t ∈ [a, b] \ {τ},

i. e.,y satisfies condition (3.2).
Thus, we have shown that function (3.5) satisfies the differential functional in-

equality (3.3) and possesses properties (3.1) and (3.2), i. e., the assumptions of The-
orem 3.1 are satisfied. Application of Theorem 3.1 leads us to the assertion re-
quired. �
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3.2. Proof of Theorem 2.7.To obtain the assertion of Theorem 2.7, it suffices to
apply Theorem 2.2 withm = r and take into account the equalities

Tr,r (k) =
{
r − k

}
, k = 0, 1, . . . , r − 1. (3.16)

3.3. Proof of Corollary 2.8. We shall apply Theorem 2.7. For this purpose, let us
put

% =
√
γ, βr = 1, (3.17)

and

yr (t) :=
√
γ

r∑

i=1

βr−i

∫ t

τ
(lyr−i)(s)ds, t ∈ [a,b].

This function, as is easy to see, coincides with the functionyr defined by formula
(2.3) where

αi = βr−i
√
γ, i = 1, 2, . . . , r. (3.18)

It remains to notice that, in view of (3.17) and (3.18), the relations

βrαr−k − %βk = 0, k = 0, 1, . . . , r − 1,

are true and, therefore, the corresponding differential inequality (2.15) takes the form


r−1∑

k=0

βky
′
k(t) − %βr (lyr )(t)

 sign(t − τ) ≥~σ 0.

Application of Theorem 2.7 completes the proof. �

3.4. Proof of Corollary 2.9. We shall show that, under the conditions assumed, the
differential inequality (2.8) is true and Theorem 2.2 is applicable.

For an arbitrary integerk such that 0≤ k ≤ m− 1, a numberν belongs to the set
T2,m(k) if, and only if eitherν = 1 orν = 2, i. e.,

m−1⋃

k=0

T2,m(k) ⊂ {
1, 2

}
.

Recall that, by assumption,m≥ 2.
More precisely, 1∈ T2,m(k) ⇔ 1 ≤ k ≤ m− 1 and 2∈ T2,m(k) ⇔ 0 ≤ k ≤ m− 2.

Thus, the setsT2,m(k), k = 0,1, . . . ,m− 1, have the following structure:

T2,m(k) =



{2} for k = 0,

{1,2} for k = 1,2, . . . ,m− 2,

{1} for k = m− 1.
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Therefore, with these values of the parameters, the differential inequality (2.8) of
Theorem 2.2 has the form

[
β0y
′
0(t) + β1y

′
1(t) + (α2β2 − %β0) (`y0) (t)

+

m−2∑

k=1

(α1βk+1 + α2βk+2 − %βk) (`yk) (t)

+ (α1βm− %βm−1) (`ym−1) (t) − %βm (`ym) (t)

]
sign(t − τ) ≥~σ 0. (3.19)

Recall that the numbersβ1, β2, . . . , βm, andα1, α2, by assumption, satisfy relations
(2.18).

It follows from (2.18) that the inner sum in (3.19) is equal to zero, i. e., in this
case, (2.8) coincides with (2.19). It now remains to apply Theorem 2.2, which leads
us immediately to the assertion desired. �

3.5. Proof of Corollary 2.11. First of all note that sequence (2.22) is a particular
case of (2.3) with a suitable choice of coefficients. More precisely,

zk = yk, k = 2,3, . . .

with y0 = z0, y1 = z1, r = 2, and

α2 = α, α1 = α. (3.20)

We can apply Corollary 2.9. Indeed, let us set

βk = β, k = 0, 1, . . . ,m,

whereβ is a certain positive constant. Since, by (3.20),α1 +α2 = %, it is obvious that
relations (2.18) are satisfied. Inequality (2.19) in our case has form (2.21). �

3.6. Proof of Corollary 2.12. It suffices to putm = 2 in Corollary 2.11. �

3.7. Proof of Corollary 2.13. Let us putγ = 1
α and, fork = 0,1, . . . , r − 1,

yk(t) = |t − τ|qk , t ∈ [a,b]. (3.21)

Functions (3.21), obviously, satisfy condition (2.7) with arbitrary non-negative con-
stantsβ0, β1, . . . , βr−1 such that

∑r−1
k=0 βk > 0.

By using the formulae

y′k(t) = qk |t − τ|qk−1 sign(t − τ) , t ∈ [a,b], k = 0, 1, . . . , r − 1,

it is easy to verify that, in this case, (2.25) coincides with inequality (2.16). The
(~σ, τ)-positiveness of the linear operator

C([a, b],�n) 3 u 7−→ `u :=
N∑

ν=1

Pν(·)u(ων(·)), t ∈ [a, b],
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under condition (2.24), is a consequence of Lemma 2 from [1]. Therefore, the re-
quired assertion follows from Corollary 2.8. �
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