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1. |NTRODUCTION

We are interested in conditionsfBaient for the unique solvability of the-dimen-
sional initial value problem of the form

u'(t) = (Lu)(t) + (1), te[a b, (1.1)
u(r) =c, (1.2)

where—-co < a < b < +o0, u: [a,b] » R", n € N, for arbitraryc € R" and
f e L([a,b],R"). In (1.1),£: C([a, b],R") — L([a,b],R") is a linear operator which
is assumed to ber( 7)-positive in the following sense.

Definition 1.1. [1, 3] An operator? : C([a,b],R") — L([a b],R") is said to be
(¢, 7)-positivewith somea € {-1, 1}" andr € [a, b] if the relation
ut) >z 0 forallte[a, b, (1.3)
implies that
(Lu)(t)sign(t—7) >z 0 fora.e.te[ab].
Here, the symbat; stands for the partial ordering of the spa®generated by
the coneriR, X 02R, X --- X opRy4, I. €.,
R" 5 u = (u)g_, >z 0if, and only ifoxu, > O forallk = 1,2,...,n. (1.4)
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In a similar way, we define the corresponding strict inequality:
R" 5> u = (u)_, >z 0if, and only ifoxu, > O forallk =1,2,...,n.

By a solution of problem (1.1), (1.2), as usual, an absolutely continuous function
u: [a,b] - R"is meant which possesses property (1.2) at the poantd satisfies
equation (1.1) almost everywhere alp].

Remarkl.2 As noted in [3], a {, 7)-positive linear operator fror@([a, b], R") to
L([a b], R™) is always bounded.

For the Cauchy problem (1.1), (1.2), we obtain new versions of the general unique
solvability conditions established in [1, 3]. The main idea here, as the title of the
paper suggests, is to use certain “multistage iterations,” in terms of which the main
assumptions of the theorems are formulated.

2. UNIQUE SOLVABILITY OF PROBLEM (1.1), (1.2)

To formulate the theorems on the Cauchy problem (1.1), (1.2), we need to intro-
duce some auxiliary functions related to the homogeneous problem

u'(t) = (Lu)(t), te[a by, (2.1)
u(r) = 0. 2.2)

2.1. Multistage iterations for the homogeneous problemWith the homogeneous
problem (2.1), (2.2), which corresponds, in a natural way, to the original Cauchy
problem (1.1), (1.2), we associate the sequence of functignsk = 0,1,2,...} C

C([a, b], R") determined by the recurrence relation

r t
w0 =Y [(E@nc)@ds  telabl ke 2:3)
i=1 T

whereas, ay, . .., ar are certain fixed non-negative constants.
Here,r € N is fixed, andyg, y1, . . ., yr—1 are arbitrary absolutely continuous func-
tions from [a, b] to R" chosen so that

yk(t) =z O, te[ab], k=0,1,...,r -1, (2.4)
and
yk(t) =0, k=0,1,...,r -1 (2.5)

Remark2.1 Inthe case where= 1 anda; = 1, equality (2.3) takes the form

t
ult) = f (tye)©ds  telabl, keN, (2.6)
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and thus coincides with the sequence used, e. g., in [1-3]. Formula (2.6) defines the
standard iteration sequence used in studies of the uniqueness of the trivial solution of
the integral functional equation

t
v~ [(@)9ds  tefabl
which, obviously, is equivalent to the homogeneous problem (2.1), (2.2).

2.2. General theorems.The following general theorem on the solvability of prob-
lem (1.1), (1.2) is true.

Theorem 2.2. Let the operato in equation(1.1) be (¢, 7)-positive for some* €
{-1, 1}". Assume also that one can specify some integarsim,m>r > 1, a real
numberp € (1, +c0), some constant®yly!, c [0, +o0) and{ail;_; c [0, +o0), and
certain absolutely continuous vector-functiopsya, . .., yr—1 satisfying conditions
(2.4), (2.5), and the relation

r-1
D Ban(t) >4 0 forall te[ab]\(r) 2.7)
k=0

such that the dferential functional inequality

r-1 m-1
S k0 + [ B - 8 €0 )
k=0 k=0

veTr m(K)

- gbn(En) O san(t =) 20 (2
is satisfied for almost evetyfrom[a, b], where, by definition,
TmK):={veN|vr<v+k<m (2.9)

forre NNym>r,andk=0,1,...,m- 1.

Then the Cauchy problerfi.1), (1.2) has a unique solutiom(-) for arbitrary
f € L([a,b],R") andc € R", and this solution is representable as the uniformly
convergent functional series

t t .
ut) = F(t)+f(£f”)(s)ds+fe(f(zf)(g)dg)(s)ds+..., te[ab], (2.10)
where, by definition,
f(t) ::c+ftf(s)ds te[ab]. (2.11)

Moreover, if the functiorf and vectorcin (1.1), (1.2) satisfy the additional condi-
tion

t
f f(s)ds>z —c forallte[a b], (2.12)
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then the unique solution() of this problem satisfies relatiqd.3).

Remark2.3. It is not difficult to show that the séf, m(k), wherek = 0,1,...,m-
1, consists of those integerswhich satisfy the inclusiorv € {r,r+1,....,m} N
(k+ Lk+2,...,k+r}, or, in other words,

Trm(K) ={ve N|max{r,k+ 1} <v<min{mKk+r}} (2.13)

fork=0,1,...,m- 1. Therefore, the dierential inequality (2.8) can be rewritten in
the form

m—1( min{mk+r}

r-1
DLTCEDY
k=0

k=0

Burcts - Q,Bk) )

v=max{r,k+1}
— 0Bm (Lym) (t) [ sign(t — 7) > O.

It seems, however, that form (2.8) is more convenient for applications.
Note that, due to the inequality > r, fork=0,1,2,...,m— 1, we have
max{r,k+ 1} < m, max{r,k+ 1} < k+r

and, hence, by (2.13), the Sktn(K) is non-empty forank=0,1,...,m- 1.

Remark2.4. Condition (2.7) implies, in particular, that

r-1
D Bc>0, (2.14)
k=0

and, therefore, we can always take 1 for one of the non-negativBaeetsgo, S1,
...,Br—1in Theorem 2.2. Itis handier, however, to keep all theséfimbents unfixed.

Remark2.5. Theorem 2.2 implies, in particular, Theorem 1 from [1]. Both these
statements, as we shall see in Section 3, are implied by Theorem 1 from [3]. This
means that the theorems mentioned are, in fact, equivalent, although their correspond-
ing assumptions are ratheifldirent from one another.

Remark2.6. Similarly to [3], one can show that condition (2.8) is optimal in the sense
that the assertion of Theorem 2.2, generally speaking, is not true if (2.8) is assumed
with o = 1.

The assumptions of the following version of Theorem 2.2 are somewhat simpler.

Theorem 2.7. Let the operato® in equation(1.1) be (&, 7)-positive for some* €
{-1,1}". Assume also the existence of a natural numbezal numberp € (1, +0),
some non-negative constantg};_, and {k},_,, and certain absolutely continuous
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vector-functiong, y1, . . ., yr—1 Satisfying condition$2.4), (2.5), and(2.7) such that
the djferential functional inequality

r-1 r-1
D Ba® + - (Braek — 0Bk) (eyi) (1) — 0B: (€yr) () [sign(t —7) 2 0 (2.15)
k=0 k=0

is satisfied for almost evetyfrom[a, b].
Then the Cauchy problerfi.1), (1.2) has a unique solutiom(-) for arbitrary
f € L([a,b],R") andc € R", and this solution is representable as the uniformly
convergent functional seri¢8.10), wheref is the function defined by equalit.11)
Moreover, if the functiorf and vectorcin (1.1), (1.2) satisfy the additional condi-
tion (2.12) then the unique solutiomn(-) of this problem satisfies relatigii.3).

Note that the functiongg, y1, ..., yr—1 in Theorem 2.7 are givea priori, whereas
the functiony, is constructed according to formula (2.3):

r t
w® =Y [@e)eis  tefabl
i=1 T

2.3. Corollaries. Here, we present several corollaries derived from Theorems 2.2
and 2.7.

Corollary 2.8. Let the operato® in equation(1.1) be (&, 7)-positive for some* €
{-1,1}". Assume also the existence ofraa N, a real numbery € (1, +c), some
non-negative constangsk}rk;%), and of certain absolutely continuous vector-functions
Yo, Y1, . - . » yr—1 Satisfying conditiong2.4), (2.5), and (2.7) such that the dferential
functional inequality

gﬁky'k(t) - 7§ﬂr—i (e [ '(Iyr_o(s)ds)) (t)} Sgnt-1)250  (2.16)

holds for the functiongo, y1, . .., yr_1 at almost every poirtfrom[a, b].
Then the conclusion of Theorem 2.7 is true for prob{&r), (1.2).

The conditions involving iteration sequences of type (2.3) adnfiiedint varia-
tions. For example, the following statement is true.

Corollary 2.9. Let the operato# in equation(1.1) be (¢#, 7)-positive for some* €
{-1,1}". Assume that there exist certain absolutely continuous funciigng :
[a, b] — R" satisfying the conditions

yk(t) >z Oandyy(r) = Oforallte [a,b] \ {7}, k=0,1, (2.17)

and some constantse (1, +o0), me N (m > 2), {a1, a2} C [0, +0), a1a2 # 0, and
{Bo. 1. B2, - - -, Bm} C (0, +c0) such that

a1Bk+1 + @2B8k+2 = 9Bk k=12,....m-2, (2.18)
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for which the relation
Boyo(t) + Bryi(t) + (@282 — 9Bo) (Lyo) (t)

+ (@36 = 0Bm-2) (Eym-1) (O ~ 0Bm (bym) (O sign(t = 7) 2, 0 (2.19)

holds for almost alt € [a, b], where the functiongm_1 and yn, are defined by the
recurrence relation

t t
sl = a1 f (Cycr)(Sds+ az f (tye2)(9ds telabl,

fork=23,.....m.
Then the conclusion of Theorem 2.7 is true for prob{ért), (1.2).

Remark2.10 As will be seen from the proof of Corollary 2.9, instead of (2.17), the
absolutely continuous functiong andy, can be assumed to be just non-negative in
the sense of relatiop; (see formula (1.4)) and such that

yo(r) =ya(r) =0;  yo(t) +y1(t) >¢ O for tel[ab]\({r},

i. e., one of these functions may vanish at pointegent fromr whenever the other
one remains non-zero.

Corollary 2.11. If £ in equation(1.1) is (¢, 7)-positive for some? € {-1, 1}" and,
furthermore, one can specify somes (1, +x), a € (0, ), and certain absolutely
continuous vector-functiors, z; : [a,b] — R" satisfying the conditions

z(t) > 0Oandz(r) = 0forallte [a,b] \ {r}, k=10,1, (2.20)
and, for almost every/from [a, b], the inequality
|20) + (1) - (0 - @) (£20) (1) — e (€zm-1) (1) — © (£2m) (¥) sigN(t — 7) 25 0, (2.21)
where thezy,_1 and z;, are the functions defined recursively by the relation

t t
z(t) := (0 — a) f (€z-1)(9)ds+ f (bz-2)(s)ds  te[ab], (2.22)
fork=23,...,m, then the assertion of Theorem 2.7 is true for prob{ém), (1.2).
The following version of Corollary 2.11 is more similar to Theorem 3.1.

Corollary 2.12. If £ in equation(1.1) is (¢, 7)-positive for some? € {-1, 1}" and,
furthermore, there exist sonaes (1, +), a € (0, 0), and certain absolutely continu-
ous vector-functiongy, z; : [a,b] — R" satisfying conditions (2.20) and, for almost
everyt from[a, b], the inequality

|2(t) + (1) - (0 — @) (£20) (1) - @ (€22) (1) — 0 (£22) (1) sign(t - 7) 2 O,
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where
t t
2() =0~ a) [ (ez)(9ds+a [ €2)9ds telabl
then the assertion of Theorem 2.7 is true for prob{@ém), (1.2).

For the equation with deviating argument
N
UM =Y PiOuw®) + f1).  telabl, (2.23)
=1

wheref € L([abl,R"), N € N, {P; | j = 12,...,N} c L([ab],GL,(R)), and
wj > [ab] = [ab], ] = 1,2,...,N, are measurable functions, one can establish,
e. g., the following statement.

Corollary 2.13. Assume that, for a certaidt € {—1, 1}", the function®; : [a,b] —
GLa(R) and wj : [a,b] — [ab], j = 1,2,...,N, in equation(2.23) satisfy the
inequalities

N
Z Py()F@signt—7)>; 0  fora.e.te[a b (2.24)
v=1

and, furthermore, the condition

r N wj(t) N
D B Y P f D Py (9glwy(9) - 7% ds-sign(t - 7)
i=1 j=1 v=1

r-1
<z ) Beklt-t%tg  foraetel[ab] (225)
k=0

holds withsomé3x | k=0,1,...,r-1} c [0, +o0), {0k | k=0,1,...,r=1} C [1, +0),
a €(0,1),andg € R", g >3 0.

Then, for arbitraryf fromL([a, b], R") andc € R", the initial value problen(2.23)
(1.2) has a unique solution(-), and this solution is representable as the uniformly
convergent series

ut = O+ Y] | Putten) floenda
ki=1vT7

N t wiy (1) N -
£Y [Paed [ PuledfwntEndade . tefabl
k=1 T T ko=1

with the functionf : [a, b] — R" given by formulg2.11) Moreover, under the addi-
tional condition(2.12), the solution of problent2.23) (1.2) satisfies inequalit{l1.3).
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3. Proors

We need the following theorem from [3].

Theorem 3.1.[3] Let us suppose that the linear operattin equation(1.1)is (&, 7)-
positive for some* € {-1,1}". Assume also that there exist a numpes (1, +0)
and an absolutely continuous functign [a, b] — R" such that

y(r) =0, (3.2)
y(t) > 0 forall te[ab]\{r}, (3.2)

and, furthermore, the functionalrential inequality

[y'(t) — o (&y) (D] sign(t - 7) 2z O (3.3)

is satisfied for almost evetyfrom [a, b].

Then the Cauchy probleii.1), (1.2) is uniquely solvable for arbitrarg € R"
and f € L([a, b],R"). The unique solution(-) of problem(1.1), (1.2)is, moreover,
representable as the uniformly convergent functional s¢fek0)

If, in addition, c and f satisfy condition(2.12) then the solutiomu(-) mentioned
possesses properfy.3).

The idea of proof of the results stated in Sections 2.2 and 2.3 is to construct a
suitable solution of the tlierential inequality (3.3) by using some or other properties
of the “multistage” iteration sequence (2.3).

3.1. Proof of Theorem 2.2.Let us fix certain absolutely continuous vector-functions
{yk}rk;% : [a, b] —» R"and construct th(_a corresponding functi¢ngy’, : [a,b] — R"
according to formula (2.3). We consider the case where

mxr. (3.9)

Introduce the function
m
y(®) == ) Ban®,  telab], (3.5)
k=0

with the codficients{Bkl. , € [0, +c0) determined by the assumptions of the theorem.
Note that, in view of (2.4), assumption (2.7) implies that (2.14) holds.
Let us show that, under our assumptions, function (3.5) satisfies inequality (2.8).
Indeed, by virtue of (3.5), the corresponding function
Woy =y —oly (3.6)
has the form

m
woy = ) i|vk— o],
k=0
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whence, by (3.4),

r-1 m
Woy = kzz(:)ﬂk [yf( - nyk] + kzz;ﬁk [y'k - nyk]

r-1 m m
= > B+ D B —e ) Bebyx. 3.7)
k=0 k=r k=0

Note that the first sum in (3.7) contains the given functigngs, . .., yr_1 only.
In view of formula (2.3) for the functiong, y;.1, ..., we have

r
B®:= > @) ®  telabl, kxr,
i=1
and, therefore, equality (3.7) can be brought to the form

r-1 m
Wo,y = Zﬁky,k + Z,Bk
k=0 k=r

Now we need the following technical lemma.

r m
@ily—i — 0 Zﬁkﬁyk. (3.8)
=1 k=0

Lemma 3.2. For arbitrary vectorsxg, X1, . .., Xn—1 fromR", the equality
m r m-1
DB aixei = Y X (3.9)
k=r =1 j=0

holds, where the cggcientsyq, y1, ..., ym-1 are given by the formulae
o= . Bukav,  k=01..,.m-1, (3.10)

and the set3, n(k), k=0,1,...,m- 1, are defined by equalit2.9).

Proof of Lemma 3.2It is clear from the inequalities ¥ i < r < k < mthat the

expression
r

m

Zﬂk Z @ X

k=r i=1
is, in fact, a linear combination of the valugs X, ..., Xm-1. It therefore remains to
determine the corresponding d¢beients.

Since equality (3.9) should be satisfied for arbitrary valuegofs, . . ., Xm-1, we
can put, in particular,
Xj = 0js j=01....m-1,

wheresis an arbitrary integer between 0 amd- 1, andd; s is the Kronecker symbol,

P 1 forj=s
710 otherwise
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In this case, (3.9) has the form

Zﬁk
k=r

r
QiOk-i,s = Vs (3.12)
=1

It is easy to see that

2 5 ts fFk-se(l2....r)
QjOk—js =
2. 19k =11 ifk—s¢{1,2,...,r}

and, hence,

m r
Zﬂk @iOk-i,s = Z Brak-s. (3.12)
k=r =1 k:r<k<mand Ikk-s<r

In view of (3.11), the change of variable= k — sbrings (3.12) to the form
Z Bvisty = Vs
v 1<v<r<v+s<m

The last relation, according to the definition of the sktg(s), s=0,1,...,m—-1,
can be rewritten afl e, (9 Bv+sav = ¥s, Which is nothing but (3.10). This leads us
immediately to the required equality (3.9) for arbitragy X1, . . . , Xm-1. O

Returning now to expression (3.6), we conclude that, in view of Lemma 3.2, for-
mula (3.8) can be rewritten as

r-1 m-1 m
Woy = kzoﬁk!/k + ;) Yy — 0 kZ;),Bkﬁyk

r-1 m-1
= B+ D (v — 0BK) &k — oPmbym, (3.13)
Py Py

whereyg, y1, ..., Yym-1 are given by relation (3.10). In view of (3.10), equality (3.13)
is equivalent to the relation

r-1 m-1
Wo,y = Zﬁky/k + Z { Z By+kary — Q:Bk] Lyk — 0Bmlym.
k=0

k=0 \veTrm(k)
Therefore, assumption (2.8) guarantees that function (3.6) satisfies the condition
we,(M)sign(t—7) > 0 fora.ete[ab],

i. e., the functional dierential inequality (3.3) holds for the functigrgiven by (3.5).

We have thus constructed a solutignpf the diferential inequality (3.3). It will
be possible to apply Theorem 3.1 if we show that, under our assumptions, the solution
mentioned possesses properties (3.1) and (3.2). We prove this by using the following
lemma.
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Lemma 3.3. Assume that the operatdr: C([a,b],R") — L([a,b],R") is (&, 1)-
positive with respect to certaicr € {—1,1})" andr € [a,b]. Then, for arbitrary
continuous functionejk}L;% : [a,b] — R" satisfying condition$2.4) and (2.5), the
corresponding functiong, yr.1, ... defined by formula€.3) also satisfy condition
(2.4):

yk(t) =2 0, te[ab], kx>r.
Moreover, each of these functions vanishes at the point

Proof of Lemma 3.3The first assertion is derived from the definition of functions
(2.3) similarly to the proof of Lemma 1 from [1]. The importanffdrence is that, in
our case, we need to make use of the non-negativeness of fhieienésay, as, .. ., ar
in formula (2.3) for the functiong,, y.1, .... We omit the details here.
The property
y(r) =0 forallk=0,12,...,m
is obvious from condition (2.5) and formula (2.3). O

Application of Lemma 3.3 allows us to claim that, in view of tldg £)-positiveness
of the operato¥, the inequality

Bryk(t) = 0, te[a,b], k=0,1,...,m (3.14)

is satisfied because &, k = 0,1,...,m, are non-negative. It follows from (3.14)
that

m r-1 m
D Ba® = D" Ban®) = > Bra(®) 24 0
k=0 k=0 ket
and, hence,
m r-1
D Ban®) 2# Y Pru(®) (3.15)
k=0 k=0

for everyt from [a, b].
Inequality (3.15) yields

m r-1
y(t) = > Bak®) 25 ) Ba®),  telab],
k=0 k=0

whence, by virtue of assumption (2.7), we obtain
r-1
y(t) 25 Y P® >2 0, telab]\(r),
k=0
i. e.,y satisfies condition (3.2).

Thus, we have shown that function (3.5) satisfies thedintial functional in-
equality (3.3) and possesses properties (3.1) and (3.2), i. e., the assumptions of The-
orem 3.1 are satisfied. Application of Theorem 3.1 leads us to the assertion re-
quired. O
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3.2. Proof of Theorem 2.7.To obtain the assertion of Theorem 2.7, iffiazes to
apply Theorem 2.2 witlm = r and take into account the equalities

T, (K=1{r-k, k=01..,r-1 (3.16)

3.3. Proof of Corollary 2.8. We shall apply Theorem 2.7. For this purpose, let us
put

o=+, B =1 (3.17)

and

r t

w® = V7 Y s [ (o)(9ds telabl

i=1 T
This function, as is easy to see, coincides with the funciiodefined by formula
(2.3) where

@i = Br-i Y, i=12,...,r. (3.18)
It remains to notice that, in view of (3.17) and (3.18), the relations
Brar—x — 0Pk = 0, k=0,1,...,r-1,

are true and, therefore, the correspondirtgdéntial inequality (2.15) takes the form

r-1

D Bi®) - o (ly)(® | sign(t - 7) 24 0.
k=0
Application of Theorem 2.7 completes the proof. O

3.4. Proof of Corollary 2.9. We shall show that, under the conditions assumed, the
differential inequality (2.8) is true and Theorem 2.2 is applicable.

For an arbitrary integek such that 0< k < m— 1, a numbew belongs to the set
Tom(K) if, and only if eitherv =1 orv = 2,i. e,

m-1
| Tam(®) < {1, 2).
k=0

Recall that, by assumptiom > 2.
More precisely, Ie Tom(k) ©@ 1<k<m-1and 2e Tym(k) @ 0 <k<m-2.
Thus, the set$,m(k), k=0,1,...,m- 1, have the following structure:

{2} fork =0,
Tom(K) =4{1,2} fork=12,...,m-2,
{1 fork=m-1.
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Therefore, with these values of the parameters, tfferdntial inequality (2.8) of
Theorem 2.2 has the form

Boyo(t) + L1y (t) + (a2B2 — 0Bo) (€yo) (1)
m-2
+ > (@B + @22 — 0B (€yd) (1)
k=1

+ (@18m — 0Bm-1) (bym-1) () — 0Bm (€ym) (1) | sign(t — 7) >z 0. (3.19)

Recall that the numbeg, B2, ..., Bm, @anda1, a2, by assumption, satisfy relations
(2.18).

It follows from (2.18) that the inner sum in (3.19) is equal to zero, i. e., in this
case, (2.8) coincides with (2.19). It now remains to apply Theorem 2.2, which leads
us immediately to the assertion desired. O

3.5. Proof of Corollary 2.11. First of all note that sequence (2.22) is a particular
case of (2.3) with a suitable choice of ¢heients. More precisely,

Z = Yk, k=23,...
with yo = 29, y1 = 71, ¥ = 2, and
a2 = a, a1 = a. (3.20)
We can apply Corollary 2.9. Indeed, let us set
Bk =B, k=0,1,....,m,

whereg is a certain positive constant. Since, by (3.2Q)+ a2 = o, it is obvious that
relations (2.18) are satisfied. Inequality (2.19) in our case has form (2.21). O

3.6. Proof of Corollary 2.12. It suffices to pum = 2 in Corollary 2.11. O
3.7. Proof of Corollary 2.13. Let us puty = % and, fork=0,1,...,r -1,
w(® =t-7%,  telah]. (3.21)

Functions (3.21), obviously, satisfy condition (2.7) with arbitrary non-negative con-

stantsBo, B1, . - ., Br—1 such thati L B > 0.
By using the formulae

Yi(t) = gkt — 7/% L sign(t - 7), te[ab], k=0,1,...,r -1,

it is easy to verify that, in this case, (2.25) coincides with inequality (2.16). The
(¢, 7)-positiveness of the linear operator

N
C(la.bl.R") 3 ur— u= ) PyQu(@r()).  telabl.
v=1
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under condition (2.24), is a consequence of Lemma 2 from [1]. Therefore, the re-
quired assertion follows from Corollary 2.8. O
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