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Abstract. In this work we show that under weaker assumptions on the memory kernel g, expo-
nential and polynomial decay rates of the solution energy in Li and Zhao [8] are only special
cases. Our result improves earlier results in the literature.
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1. INTRODUCTION

In this article, we investigate the following initial value problem8̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

ut t �k0�uC

Z t

0

g.t � s/div
�
a.x/ru.s/

�
dsCb.x/h.ut /D 0;

.x; t/ 2˝ � .0;1/;

�k0
@u

@�
C

Z t

0

g.t � s/
�
a.x/ru.s// : �ds D f .u/; .x; t/ 2 �1� .0;1/;

u.x; t/D 0; .x; t/ 2 �0� .0;1/;

u.x;0/D u0.x/ ut .x;0/D u1.x/; x 2˝;

(1.1)
where k0 > 0, ˝ is a bounded domain in Rn.n � 1/ with a smooth boundary @˝ D
�0[�1;� 0\� 1 D ¿, �0 and �1 are closed with positive measures, � is the unit
outward normal to @˝, g denotes the memory kernel and a;b;h and f are real valued
functions which satisfy appropriate conditions.

This problem arises in the study of motion of viscoelastic materials. We refer to
[7,18] for mathematical analysis on the motions of materials with memory. The above
problem with dirichlet boundary conditions has been considered by many authors. In
this regard we recall the pioneer works by Cavalcanti et al. [1, 3], Santos [19] and
Rivera et al. [15, 16].
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In [8], Li and Zhao studied the problem (1.1) and proved exponential and poly-
nomial decay results under weaker assumptions on g which improved [17]. In fact,
in [17], the authors studied problem (1.1) with nonlinear boundary damping when
f .u/D juju and b.x/D 1 on ˝. Assuming that the kernel g in the memory term
decays exponentially, they showed exponential energy decay by using the perturbed
energy method provided that kgkL1Œ0;1/ is small enough. In [9] Li et al. considered
a related problem with nonlinear boundary dissipation. Under suitable conditions on
the initial data and relaxation function, they established existence and uniqueness of
global solutions by means of Galerkin method and showed that the energy decays
exponentially if the decay rate of the memory kernel is also exponentially. These res-
ults have been recently improved by Wu and Chen [21] where the authors considered
a nonlinear wave equation with boundary dissipation in presence of a local damping
term, b.x/ut , in ˝. The authors used Lyapunov functions to establish general decay
rate of solution energy which is not necessarily of exponential or polynomial type.
However, in order to prove main results, they supposed that the function a.x/ satisfies

jra.x/j2 � ˛21ja.x/j: (1.2)

For more related results about the boundary stabilization we refer to Cavalcanti et
al.[2], Liu and Yu [10], Lu et al. [11], Messaoudi and Soufyane [13]. We can also re-
call some other pioneer papers in connecting with the viscoelasticity such as Sobrinho
and Rivera [20], Fabrizio and Polidro [6], Rivera et al. [14] and Dafermos [4].

In this work, we study problem (1.1). We show that for a certain class of relaxation
functions, the decay rate of the energy is similar to that of g. Therefore, our result
improves earlier results in [8, 9] where only the exponential and polynomial decay
rates are obtained. The main point of the contribution is based on an inequality given
by Martinez [12]. In this way, we are allowed to weaken some technical assumptions
for the kernel g or even for the function a.x/ (such as inequality (1.2) which has been
considered in [21]).

2. PRELIMINARIES

In this section we present some materials that will be needed throughout the paper.
We begin by presenting the precise hypotheses on the problem (1.1).

.H1/ a;b W˝!R are positive functions so that a;b 2 L1.˝/ and

b.x/� b0 > 0: (2.1)

.H2/ f WR!R satisfies

f .s/s � 2F.s/� 0; 8s 2R; (2.2)

where

F.´/D

Z ´

0

f .s/ds: (2.3)
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.H3/ h WR!R is a nondecreasing function, such that for some positive constants ˛
and ˇ, satisfies

h.s/s � ˛jsj2; jh.s/j � ˇjsj; 8s 2R: (2.4)

.H4/ g W Œ0;1/! Œ0;1/ is a non-increasing C 1 function such that

g.0/ > 0; k0�kak1

Z C1
0

g.s/ds D l > 0; (2.5)

and there exists a non-increasing positive differentiable function � such that

g0.t/� ��.t/g.t/; 8t � 0;

Z C1
0

�.s/ds D1: (2.6)

We will also consider the Hilbert space

H 1
�0
.˝/D fu 2H 1.˝/ W uD 0 on �0g:

Lemma 1 (Poincaré inequality). There exists a positive constant B such that

kukL2.˝/ � BkrukL2.˝/;

for all u 2H 1
�0
.˝/.

Referring to [5, 17], we state the following existence and uniqueness theorem.

Theorem 1. If .u0;u1/ 2
�
H 2.˝/\H 1

�0
.˝/

�
�H 1

�0
.˝/, then the problem .1:1/

has a unique solution satisfying

u 2 L1loc
�
0;1IH 1

�0
.˝/\H 2.˝/

�
; ut 2 L

1
loc

�
0;1IH 1

�0
.˝/

�
;

ut t 2 L
1
loc

�
0;1IL2.˝/

�
:

Moreover
u 2 C

�
Œ0;1/IH 1

0 .˝/
�
; ut 2 C

�
Œ0;1/IL2.˝/

�
:

Finally, we present the following lemma by Martinez [12] which plays important
role in our proof.

Lemma 2. Let E W RC! RC be a nonincreasing function and  W RC! RC be a
C 2 increasing function such that  .0/D 0 and limt!C1 .t/DC1. Assume that
there exists c > 0 for whichZ C1

t

 0.s/E.s/ds � cE.t/; 8t � 0; .2:8/

then
E.t/� �E.0/e�! .t/; .2:9/

for some positive constants ! and �.
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3. ENERGY DECAY

In this section we state and prove our main result. First, we define the energy
related to problem (1.1) as in [8]

E.t/D
1

2

Z
˝

jut .t/j
2dxC

1

2

Z
˝

�
k0�a.x/

Z t

0

g.s/ds
�
jru.t/j2dx

C
1

2
.g ıru/.t/C

Z
�1

F.u/d�; (3.1)

where

.g ıru/.t/D

Z
˝

Z t

0

g.t � s/a.x/jru.t/�ru.s/j2dsdx:

We also observe that Z
˝

�
k0�a.x/

Z t

0

g.s/ds
�
jru.t/j2dx ��

k0�kak1

Z t

0

g.t/dt
�
kru.t/k22 � lkru.t/k

2
2:

Lemma 3 (Lemma 2.3 of [8]). The energy function E.t/ satisfies E.t/� 0 and

E 0.t/D
1

2
.g0 ıru/.t/�

1

2
g.t/

Z
˝

a.x/jru.t/j2dx�

Z
˝

b.x/h.ut /utdx � 0:

(3.2)

Theorem 2. Assume that .u0;u1/ 2
�
H 2.˝/\H 1

�0
.˝/

�
�H 1

�0
.˝/, .H1/� .H3/

and (2.5) hold, and
a.x/� a0 > 0: (3.3)

(i) If
g0.t/� �cg.t/; c > 0; (3.4)

then, the energy E.t/ of problem (1.1) satisfies the decay rate

E.t/� 4E.0/e�Ct ; 8t � T:

(ii) If
g0.t/� �cg1C

1
p .t/; p > 2; c > 0; (3.5)

then, the energy E.t/ of problem .1:1/ satisfies the decay rate

E.t/�
C

.1C t /p
; 8t � T;

for some C;T > 0.

Proof. See [8], Theorems 3.1 and 3.2. �

In the next theorem, we state our main result. We extend the above rates of decay
to a more general case which is similar to that of g. In fact, we use the assumption
(2.6) which is weaker than (3.4) and (3.5) .
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Theorem 3. Assume that .H1/�.H4/ hold. If the initial data .u0;u1/2
�
H 2.˝/\

H 1
�0
.˝/

�
�H 1

�0
.˝/, then the solution of problem (1.1) satisfies

E.t/�KE.0/e��
R t

0 �.s/ds; (3.6)

for some K;� > 0.

Proof. Multiplying (1.1)1 by �.t/u and integrating over ˝ � Œt1; t2� .0� t1 � t2/,
we get Z t2

t1

�.t/

Z
˝

uut tdxdtCk0

Z t2

t1

�.t/

Z
˝

jru.t/j2dxdt

C

Z t2

t1

�.t/

Z
˝

b.x/uh.ut /dxdt C

Z t2

t1

�.t/

Z
�1

uf .u/d� dt

�

Z t2

t1

�.t/

Z
˝

ru.t/ :

Z t

0

g.t � s/
�
a.x/ru.s/

�
dsdxdt D 0: (3.7)

For the last term in the right hand side of (3.7) we haveZ
˝

ru.t/ :

Z t

0

g.t�s/
�
a.x/ru.s/

�
dsdx

D

Z
˝

ru.t/ :

Z t

0

g.t � s/a.x/
�
ru.s/�ru.t/

�
dsdx

C

Z t

0

g.s/ds

Z
˝

a.x/jru.t/j2dx: (3.8)

Substituting (3.8) in (3.7) and using (2.2) , (2.3) and (3.1) we obtain

2

Z t2

t1

�.t/E.t/dt

� �

Z t2

t1

�.t/

Z
˝

uut tdxdtC

Z t2

t1

�.t/kutk
2
2dt �

Z t2

t1

�.t/

Z
˝

b.x/uh.ut /dxdt

C

Z t2

t1

�.t/

Z
˝

ru.t/ :

Z t

0

g.t � s/a.x/
�
ru.s/�ru.t/

�
dsdxdt

C

Z t2

t1

�.t/.g ıru/.t/dt: (3.9)

For the first term in the right hand side of (3.9) we have

�

Z t2

t1

�.t/

Z
˝

uut tdxdt

D�

Z
˝

�.t/uutdx

ˇ̌̌̌t2
t1

C

Z t2

t1

� 0.t/

Z
˝

uutdxdtC

Z t2

t1

�.t/kutk
2
2dt: (3.10)
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By Lemma 1 and (3.1) we haveˇ̌̌̌
ˇ�
Z
˝

�.t/uutdx

ˇ̌̌̌t2
t1

ˇ̌̌̌
ˇ�

2X
iD1

ˇ̌̌̌
�.t/

Z
˝

uutdx

ˇ̌̌̌
tDti

�

2X
iD1

�
�.t/

�
B2

2
kruk22C

1

2
kutk

2
2

��
tDti

�

2X
iD1

��
B2

l
C1

�
�.t/E.t/

�
tDti

� 2

�
B2C l

l

�
�.t1/E.t1/: (3.11)

Similarly,ˇ̌̌̌Z t2

t1

� 0.t/

Z
˝

uutdxdt

ˇ̌̌̌
�

Z t2

t1

j� 0.t/j

�
B2

2
kruk22C

1

2
kutk

2
2

�
� �

�
B2C l

l

�Z t2

t1

� 0.t/E.t/dt �

�
B2C l

l

�
�.t1/E.t1/: (3.12)

To estimate the last term in the right-hand side of (3.10), we use (3.2), (2.1) and (2.4)
to obtain

E 0.t/� �

Z
˝

b.x/h.ut /utdx � �b0

Z
˝

h.ut /utdx � �b0˛kutk
2
2:

Therefore,Z t2

t1

�.t/kutk
2
2dt � �

1

b0˛

Z t2

t1

�.t/E 0.t/dt �
1

b0˛
�.t1/E.t1/: (3.13)

From (3.10)-(3.13) we getˇ̌̌̌
�

Z t2

t1

�.t/

Z
˝

uut tdxdt

ˇ̌̌̌
C

Z t2

t1

�.t/kutk
2
2dt �

�
3l�1.B2C l/C

2

b0˛

�
�.t1/E.t1/:

(3.14)
By (2.4), Young’s inequality, (3.1) and (3.2) we arrive atˇ̌̌̌
�

Z t2

t1

�.t/

Z
˝

b.x/uh.ut /dxdt

ˇ̌̌̌
�ˇ

Z t2

t1

�.t/

Z
˝

b.x/

�
ıB2

2
jruj2C

1

2ı
jut j

2

�
dxdt

�
ı

2
ˇB2kbk1

Z t2

t1

�.t/kruk22dt �
ˇ

2ı˛

Z t2

t1

�.t/E 0.t/dt

�
ı

l
ˇB2kbk1

Z t2

t1

�.t/E.t/dtC
ˇ

2ı˛
�.t1/E.t1/: (3.15)

Also, we haveZ
˝

a.x/ru.t/ :

Z t

0

g.t�s/
�
ru.s/�ru.t/

�
dsdx
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� ı

Z
˝

a.x/jru.t/j2dxC
1

4ı

Z
˝

a.x/

�Z t

0

g.t � s/
�
ru.s/�ru.t/

�
ds

�2
dx

� ıkak1kruk
2
2C

1

4ı

Z t

0

g.s/ds

Z
˝

Z t

0

g.t � s/a.x/jru.s/�ru.t/j2dsdx

�
2ı

l
kak1E.t/C

k0� l

4ıkak1
.g ıru/.t/: (3.16)

By (2.6) we have

�.t/.g ıru/.t/� �.g0 ıru/.t/� �2E 0.t/: (3.17)

Finally, using (3.14)-(3.17), the estimate (3.9) takes the form�
2�

ı

l

�
ˇB2kbk1C2kak1

��Z t2

t1

�.t/E.t/dt

�

�
3l�1.B2C l/C

2

b0˛
C

ˇ

2ı˛

�
�.t1/E.t1/�

�
k0� l

2ıkak1
C2

�Z t2

t1

E 0.t/dt

�

��
3l�1.B2C l/C

2

b0˛
C

ˇ

2ı˛

�
�.0/C

k0� l

2ıkak1
C2

�
E.t1/ (3.18)

Choosing ı small enough and letting t2 go to infinity, we rewrite (3.18) asZ C1
t

�.t/E.t/dt � �E.t/; 8t � 0; (3.19)

for some � > 0. Then, the assumptions of Lemma 2 satisfied with  .t/D
R t
0 �.s/ds.

Therefore (3.6) is established and the proof of Theorem 3 is now complete. �

Remark 1. We note that similar rates of decay were given in [21]. However, we
did not use (3.3) which has been supposed in [8]-H1 and [21]-A3.
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